Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has...
Uložené v:
| Vydané v: | NeuroImage (Orlando, Fla.) Ročník 221; s. 117204 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Inc
01.11.2020
Elsevier Limited Elsevier |
| Predmet: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR).
Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated.
Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency.
In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases. |
|---|---|
| AbstractList | In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR).Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated.Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency.In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases. In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases. In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR).Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated.Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency.In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases. In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases. |
| ArticleNumber | 117204 |
| Author | Berman, Shai Backner, Yael Krupnik, Ronnie Paul, Friedemann Karussis, Dimitrios Levin, Netta Petrou, Panayiota Mezer, Aviv A. |
| Author_xml | – sequence: 1 givenname: Shai orcidid: 0000-0001-9047-9200 surname: Berman fullname: Berman, Shai email: shai.berman@mail.huji.ac.il organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel – sequence: 2 givenname: Yael orcidid: 0000-0003-2118-223X surname: Backner fullname: Backner, Yael organization: fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel – sequence: 3 givenname: Ronnie surname: Krupnik fullname: Krupnik, Ronnie organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel – sequence: 4 givenname: Friedemann surname: Paul fullname: Paul, Friedemann organization: NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany – sequence: 5 givenname: Panayiota surname: Petrou fullname: Petrou, Panayiota organization: The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel – sequence: 6 givenname: Dimitrios surname: Karussis fullname: Karussis, Dimitrios organization: The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel – sequence: 7 givenname: Netta surname: Levin fullname: Levin, Netta organization: fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel – sequence: 8 givenname: Aviv A. surname: Mezer fullname: Mezer, Aviv A. organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32745679$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk1vEzEQhleoiH7AX0CWuHBJ8Mfaa18QENFSqRIXOFuOPZs4OOtge1Pl3-MlpUg55bTW6PGznnnnurkY4gBNgwieE0zEh818gDFFvzUrmFNMa5l0FLcvmiuCFZ8p3tGL6czZTBKiLpvrnDcYY0Va-aq5ZLRruejUVRMXcXCjLT4OyEEwh4z8gMoa0N7n0QS0M2X9OJVjj3YprhLk7PeAtmMofhcAZRsgxezzhHoYSkY27k06oEdf1miZTBXmkupPxgSvm5e9CRnePH1vmp-3X38svs0evt_dLz4_zCzveJkRRXslVd8KobgyygnOSG-pFNTJ3mHFOkkFKODYqpY5QckScyOck7ijqmc3zf3R66LZ6F2qo0oHHY3XfwsxrbRJxde3a2ewIYwJ3hveCgIGKwmCSeawANnR6np_dNX-f4-Qi976bCEEM0Acs6Ytw6xrFVUVfXeCbuKYhtpppWorlNZGKvX2iRqXW3DPz_sXSwXkEbB1sjlB_4wQrKcN0Bv9fwP0tAH6uAH16seTq9YXM-VbahLhHMGXowBqPHsPSWdbY7XgfAJb6vz8OZJPJxIb_OCtCb_gcJ7iD_IP6SQ |
| CitedBy_id | crossref_primary_10_1016_j_clinph_2024_02_020 crossref_primary_10_1016_j_msard_2022_104255 crossref_primary_10_1002_hbm_25654 crossref_primary_10_1016_j_msard_2022_104116 crossref_primary_10_3389_fnins_2021_692599 crossref_primary_10_1007_s00429_021_02358_w crossref_primary_10_1212_NXI_0000000000200092 crossref_primary_10_3389_fnagi_2021_701322 crossref_primary_10_1016_S1474_4422_21_00179_4 crossref_primary_10_3390_diagnostics15101189 crossref_primary_10_3390_ijms24054375 crossref_primary_10_3390_s21196343 crossref_primary_10_1002_hbm_25744 crossref_primary_10_1136_jnnp_2023_331183 crossref_primary_10_1212_WNL_0000000000209952 |
| Cites_doi | 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O 10.1097/WCO.0000000000000222 10.1016/S1053-8119(03)00336-7 10.1016/S1474-4422(13)70259-X 10.1212/WNL.0000000000000522 10.1016/j.nicl.2017.12.010 10.1016/j.mri.2016.12.001 10.1089/brain.2011.0071 10.1038/nm.3390 10.1016/j.neuroimage.2016.06.002 10.1016/j.neuroimage.2018.06.060 10.1167/8.10.12 10.1002/mrm.21732 10.1007/s003300050789 10.1523/ENEURO.0545-19.2020 10.1016/j.neuroimage.2019.116186 10.1016/S1474-4422(17)30278-8 10.1371/journal.pone.0049790 10.1016/S0140-6736(08)61620-7 10.1002/mrm.1278 10.1371/journal.pone.0102546 10.1007/s00330-014-3358-8 10.1016/j.neuroimage.2019.03.025 10.1055/s-0036-1579692 10.1007/s13167-017-0102-x 10.1177/1352458514538110 10.1002/ana.22005 10.1002/ana.22366 10.1016/j.nicl.2018.05.004 10.1016/S1474-4422(06)70573-7 10.1038/s41467-019-11319-1 10.1002/mrm.21577 10.1016/j.neuroimage.2012.03.072 10.1212/NXI.0000000000000449 10.1177/1352458511431076 10.1212/NXI.0000000000000399 10.1136/bjo.71.8.602 10.1177/1352458514551452 10.1002/mrm.10308 10.1016/j.neuroimage.2017.06.009 10.1002/nbm.783 10.3389/fneur.2019.00455 10.1080/14737175.2019.1559051 10.1038/ncomms5932 10.1212/WNL.0b013e3182a1aa3e 10.1212/WNL.0b013e31821f4602 10.1007/s12031-007-0029-0 10.1212/NXI.0000000000000135 10.1097/WNO.0000000000000634 10.1016/j.neuroimage.2014.02.026 10.1002/nbm.787 10.1038/nn.3045 10.1016/j.neuroimage.2017.06.076 10.1136/bmj.4.5893.661 10.1002/hbm.23264 10.1002/mrm.22497 10.1016/j.clinph.2006.01.014 10.1167/iovs.14-14571 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Nov 1, 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Nov 1, 2020 |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 DOA |
| DOI | 10.1016/j.neuroimage.2020.117204 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| ExternalDocumentID | oai_doaj_org_article_da0a13365fa5461ea098e6383d06e872 32745679 10_1016_j_neuroimage_2020_117204 S105381192030690X |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G 9DU AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AFFHD AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF EFLBG EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO |
| ID | FETCH-LOGICAL-c575t-192f989f466959a9d6531fc2862d8fd0937826e9e50c943d621b05a6dd80729f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600795000066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Oct 14 18:57:17 EDT 2025 Thu Oct 02 10:49:21 EDT 2025 Tue Oct 07 06:47:44 EDT 2025 Mon Jul 21 05:48:51 EDT 2025 Sat Nov 29 07:05:31 EST 2025 Tue Nov 18 21:49:47 EST 2025 Fri Feb 23 02:41:27 EST 2024 Tue Oct 14 19:39:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-192f989f466959a9d6531fc2862d8fd0937826e9e50c943d621b05a6dd80729f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2118-223X 0000-0001-9047-9200 |
| OpenAccessLink | https://doaj.org/article/da0a13365fa5461ea098e6383d06e872 |
| PMID | 32745679 |
| PQID | 2469522653 |
| PQPubID | 2031077 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_da0a13365fa5461ea098e6383d06e872 proquest_miscellaneous_2430374929 proquest_journals_2469522653 pubmed_primary_32745679 crossref_primary_10_1016_j_neuroimage_2020_117204 crossref_citationtrail_10_1016_j_neuroimage_2020_117204 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117204 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117204 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2020 |
| Publisher | Elsevier Inc Elsevier Limited Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
| References | Berman, West, Does, Yeatman, Mezer (bib0014) 2018; 182 Galetta, Villoslada, Levin, Shindler, Ishikawa, Parr, Balcer (bib0021) 2015; 2 Horsfield, Jones (bib0024) 2002; 15 Nitz, Reimer (bib0035) 1999 Yeatman, Dougherty, Myall, Wandell, Feldman (bib0056) 2012; 7 Yeatman, Wandell, Mezer (bib3045) 2014; 5 Backner, Petrou, Glick-Shames, Raz, Zimmermann, Jost, Levin (bib0008) 2019; 10 Klistorner, Wang, Yiannikas, Parratt, Dwyer, Barton, Barnett (bib0027) 2018; 17 Gregori, Pro, Bombelli, La Riccia, Accornero (bib1045) 2006; 117 Weiskopf, Mohammadi, Lutti, Callaghan (bib0055) 2015; 28 Reese, Heid, Weisskoff, Wedeen (bib0044) 2003; 49 Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib0012) 2000; 44 Dadar, Maranzano, Misquitta, Anor, Fonov, Tartaglia, Collins (bib0017) 2017; 157 Drakesmith, Harms, Rudrapatna, Parker, Evans, Jones (bib0018) 2019; 203 Talman, Bisker, Sackel, Long, Galetta, Ratchford, Balcer (bib0053) 2010 Schurr, Duan, Norcia, Ogawa, Yeatman, Mezer (bib2045) 2018; 181 Stikov, Perry, Mezer, Rykhlevskaia, Wandell, Pauly, Dougherty (bib0051) 2012; 29 Kuchling, Backner, Oertel, Raz, Bellmann-Strobl, Ruprecht, Scheel (bib0028) 2018; 19 Raz, Dotan, Benoliel, Chokron, Ben-Hur, Levin (bib0043) 2011; 76 Basser, Jones (bib0011) 2002; 15 Schippling, Balk, Costello, Albrecht, Balcer, Calabresi, Petzold (bib0046) 2015; 21 Klistorner, Sriram, Vootakuru, Wang, Barnett, Garrick, Yiannikas (bib0026) 2014; 82 Sanders, Volkers, Van der Poel, Van Lith (bib0045) 1987; 71 Sled, Pike (bib0049) 2001; 46 Andersson, Skare, Ashburner (bib0003) 2003; 20 Assaf, Blumenfeld‐Katzir (bib0004) 2008; 59 Mezer, Yeatman, Stikov, Kay, Cho, Dougherty, Wandell (bib0034) 2013; 19 Filo, Shtangel, Salamon, Kol, Weisinger, Shifman, Mezer (bib0019) 2019; 10 Alexander, Hurley, Samsonov, Adluru, Hosseinbor, Mossahebi, Field (bib0001) 2011 Sherbondy, Dougherty, Napel, Wandell (bib0047) 2008; 8 Kaden, Kelm, Carson, Does, Alexander (bib0025) 2016; 139 Takemura, Yuasa, Amano (bib59) 2020 Avants, Tustison, Song (bib0006) 2009 Raz, Chokron, Ben-Hur, Levin (bib0042) 2013; 81 Alshowaeir, Yiannikas, Garrick, Parratt, Barnett, Graham, Klistorner (bib0002) 2014; 55 Halliday, McDonald, Mushin (bib0022) 1973; 4 Backner, Levin (bib0007) 2018; 38 Sinnecker, Oberwahrenbrock, Metz, Zimmermann, Pfueller, Harms, Wuerfel (bib0048) 2015; 25 Sriram, Wang, Yiannikas, Garrick, Barnett, Parratt, Klistorner (bib0050) 2014; 9 Compston, Coles (bib0015) 2008 Costello (bib0016) 2016; 36 Balcer, Miller, Reingold, Cohen (bib0009) 2015 Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0058) 2012; 61 Zatorre, Fields, Johansen-Berg (bib0057) 2012; 15 Frohman, Costello, Zivadinov, Stuve, Conger, Winslow, Balcer (bib0020) 2006 Stüber, Morawski, Schäfer, Labadie, Wähnert, Leuze, Turner (bib0052) 2014; 93 Mezer, Rokem, Berman, Hastie, Wandell (bib0033) 2016; 37 Meyers, Kolind, MacKay (bib0031) 2017; 37 Pawlitzki, Neumann, Kaufmann, Heidel, Stadler, Sweeney-Reed, Schreiber (bib0038) 2017; 4 Oertel, Zimmermann, Brandt, Paul (bib0037) 2019; 19 Oberwahrenbrock, Traber, Lukas, Gabilondo, Nolan, Songster, Schippling (bib0036) 2018; 5 Polman, Reingold, Banwell, Clanet, Cohen, Filippi, Wolinsky (bib0040) 2011; 69 Helms, Dathe, Kallenberg, Dechent (bib0023) 2008; 60 Langdon, Amato, Boringa, Brochet, Foley, Fredrikson, Benedict (bib0030) 2012; 18 Berman, Filo, Mezer (bib0013) 2019; 195 Assaf, Pasternak (bib0005) 2008; 34 Toosy, Mason, Miller (bib0054) 2014, January Kuchling, Brandt, Paul, Scheel (bib0029) 2017; 8 Petzold, Balcer, Calabresi, Costello, Frohman, Frohman, Zimmermann (bib0039) 2017; 16 Raz, Bick, Ben-Hur, Levin (bib0041) 2015; 21 Barral, Gudmundson, Stikov, Etezadi-Amoli, Stoica, Nishimura (bib0010) 2010; 64 Talman (10.1016/j.neuroimage.2020.117204_bib0053) 2010 Sinnecker (10.1016/j.neuroimage.2020.117204_bib0048) 2015; 25 Alshowaeir (10.1016/j.neuroimage.2020.117204_bib0002) 2014; 55 Mezer (10.1016/j.neuroimage.2020.117204_bib0034) 2013; 19 Costello (10.1016/j.neuroimage.2020.117204_bib0016) 2016; 36 Avants (10.1016/j.neuroimage.2020.117204_bib0006) 2009 Toosy (10.1016/j.neuroimage.2020.117204_bib0054) 2014 Berman (10.1016/j.neuroimage.2020.117204_bib0014) 2018; 182 Balcer (10.1016/j.neuroimage.2020.117204_bib0009) 2015 Assaf (10.1016/j.neuroimage.2020.117204_bib0004) 2008; 59 Polman (10.1016/j.neuroimage.2020.117204_bib0040) 2011; 69 Takemura (10.1016/j.neuroimage.2020.117204_bib59) 2020 Galetta (10.1016/j.neuroimage.2020.117204_bib0021) 2015; 2 Schippling (10.1016/j.neuroimage.2020.117204_bib0046) 2015; 21 Reese (10.1016/j.neuroimage.2020.117204_bib0044) 2003; 49 Andersson (10.1016/j.neuroimage.2020.117204_bib0003) 2003; 20 Raz (10.1016/j.neuroimage.2020.117204_bib0043) 2011; 76 Basser (10.1016/j.neuroimage.2020.117204_bib0012) 2000; 44 Alexander (10.1016/j.neuroimage.2020.117204_bib0001) 2011 Meyers (10.1016/j.neuroimage.2020.117204_bib0031) 2017; 37 Halliday (10.1016/j.neuroimage.2020.117204_bib0022) 1973; 4 Pawlitzki (10.1016/j.neuroimage.2020.117204_bib0038) 2017; 4 Helms (10.1016/j.neuroimage.2020.117204_bib0023) 2008; 60 Weiskopf (10.1016/j.neuroimage.2020.117204_bib0055) 2015; 28 Raz (10.1016/j.neuroimage.2020.117204_bib0041) 2015; 21 Backner (10.1016/j.neuroimage.2020.117204_bib0008) 2019; 10 Backner (10.1016/j.neuroimage.2020.117204_bib0007) 2018; 38 Sanders (10.1016/j.neuroimage.2020.117204_bib0045) 1987; 71 Schurr (10.1016/j.neuroimage.2020.117204_bib2045) 2018; 181 Mezer (10.1016/j.neuroimage.2020.117204_bib0033) 2016; 37 Yeatman (10.1016/j.neuroimage.2020.117204_bib3045) 2014; 5 Nitz (10.1016/j.neuroimage.2020.117204_bib0035) 1999 Gregori (10.1016/j.neuroimage.2020.117204_bib1045) 2006; 117 Klistorner (10.1016/j.neuroimage.2020.117204_bib0026) 2014; 82 Oertel (10.1016/j.neuroimage.2020.117204_bib0037) 2019; 19 Barral (10.1016/j.neuroimage.2020.117204_bib0010) 2010; 64 Petzold (10.1016/j.neuroimage.2020.117204_bib0039) 2017; 16 Klistorner (10.1016/j.neuroimage.2020.117204_bib0027) 2018; 17 Frohman (10.1016/j.neuroimage.2020.117204_bib0020) 2006 Dadar (10.1016/j.neuroimage.2020.117204_bib0017) 2017; 157 Sriram (10.1016/j.neuroimage.2020.117204_bib0050) 2014; 9 Basser (10.1016/j.neuroimage.2020.117204_bib0011) 2002; 15 Berman (10.1016/j.neuroimage.2020.117204_bib0013) 2019; 195 Stikov (10.1016/j.neuroimage.2020.117204_bib0051) 2012; 29 Kuchling (10.1016/j.neuroimage.2020.117204_bib0029) 2017; 8 Zatorre (10.1016/j.neuroimage.2020.117204_bib0057) 2012; 15 Kaden (10.1016/j.neuroimage.2020.117204_bib0025) 2016; 139 Sherbondy (10.1016/j.neuroimage.2020.117204_bib0047) 2008; 8 Kuchling (10.1016/j.neuroimage.2020.117204_bib0028) 2018; 19 Oberwahrenbrock (10.1016/j.neuroimage.2020.117204_bib0036) 2018; 5 Raz (10.1016/j.neuroimage.2020.117204_bib0042) 2013; 81 Langdon (10.1016/j.neuroimage.2020.117204_bib0030) 2012; 18 Sled (10.1016/j.neuroimage.2020.117204_bib0049) 2001; 46 Drakesmith (10.1016/j.neuroimage.2020.117204_bib0018) 2019; 203 Zhang (10.1016/j.neuroimage.2020.117204_bib0058) 2012; 61 Compston (10.1016/j.neuroimage.2020.117204_bib0015) 2008 Horsfield (10.1016/j.neuroimage.2020.117204_bib0024) 2002; 15 Yeatman (10.1016/j.neuroimage.2020.117204_bib0056) 2012; 7 Filo (10.1016/j.neuroimage.2020.117204_bib0019) 2019; 10 Stüber (10.1016/j.neuroimage.2020.117204_bib0052) 2014; 93 Assaf (10.1016/j.neuroimage.2020.117204_bib0005) 2008; 34 |
| References_xml | – volume: 37 start-page: 3623 year: 2016 end-page: 3635 ident: bib0033 article-title: Evaluating quantitative proton-density-mapping methods publication-title: Hum Brain Mapp. – volume: 7 year: 2012 ident: bib0056 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS ONE – volume: 20 start-page: 870 year: 2003 end-page: 888 ident: bib0003 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – start-page: 1 year: 2009 end-page: 35 ident: bib0006 article-title: Advanced Normalization Tools (ANTS) publication-title: Insight J. – year: 2014, January ident: bib0054 article-title: Optic neuritis publication-title: Lancet Neurol. – volume: 55 start-page: 3758 year: 2014 end-page: 3764 ident: bib0002 article-title: Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 81 start-page: 702 year: 2013 end-page: 709 ident: bib0042 article-title: Temporal reorganization to overcome monocular demyelination publication-title: Neurology – volume: 4 start-page: 661 year: 1973 end-page: 664 ident: bib0022 article-title: Visual evoked response in diagnosis of multiple sclerosis publication-title: Br. Med. J. – volume: 38 start-page: 85 year: 2018 end-page: 90 ident: bib0007 article-title: Keep your eyes wide open: on visual- and vision-related measurements to better understand multiple sclerosis pathophysiology publication-title: J. Neuro-Ophthalmol. – year: 2010 ident: bib0053 article-title: Longitudinal study of vision and retinal nerve fiber layer thickness in MS publication-title: Ann. Neurol. – volume: 82 start-page: 2165 year: 2014 end-page: 2172 ident: bib0026 article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions publication-title: Neurology – volume: 64 start-page: 1057 year: 2010 end-page: 1067 ident: bib0010 article-title: A robust methodology for in vivo T1 mapping publication-title: Magn. Reson. Med. – volume: 182 start-page: 304 year: 2018 end-page: 313 ident: bib0014 article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex publication-title: Neuroimage – volume: 117 start-page: 1154 year: 2006 end-page: 1157 ident: bib1045 article-title: Vep latency: sex and head size publication-title: Clin. Neurophysiol. – volume: 69 start-page: 292 year: 2011 end-page: 302 ident: bib0040 article-title: Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria publication-title: Ann. Neurol. – volume: 17 start-page: 1028 year: 2018 end-page: 1035 ident: bib0027 article-title: Evidence of progressive tissue loss in the core of chronic MS lesions: a longitudinal DTI study publication-title: NeuroImage: Clin. – volume: 18 start-page: 891 year: 2012 end-page: 898 ident: bib0030 article-title: Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) publication-title: Multiple Scler. J. – volume: 195 start-page: 128 year: 2019 end-page: 139 ident: bib0013 article-title: Modeling conduction delays in the corpus callosum using MRI-measured g-ratio publication-title: Neuroimage – volume: 59 start-page: 1347 year: 2008 end-page: 1354 ident: bib0004 article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. – volume: 60 start-page: 1396 year: 2008 end-page: 1407 ident: bib0023 article-title: High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T 1 relaxation obtained from 3D FLASH MRI publication-title: Magn. Reson. Med. – volume: 49 start-page: 177 year: 2003 end-page: 182 ident: bib0044 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn Reson Med – volume: 2 year: 2015 ident: bib0021 article-title: Acute optic neuritis: unmet clinical needs and model for new therapies publication-title: Neurol. Neuroimmunol. NeuroInflamm. – volume: 5 year: 2014 ident: bib3045 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. – volume: 157 start-page: 233 year: 2017 end-page: 249 ident: bib0017 article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging publication-title: Neuroimage – volume: 19 start-page: 1667 year: 2013 end-page: 1672 ident: bib0034 article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging publication-title: Nat. Med. – volume: 21 start-page: 562 year: 2015 end-page: 571 ident: bib0041 article-title: Focal demyelinative damage and neighboring white matter integrity: an optic neuritis study publication-title: Mult. Scler. – volume: 61 start-page: 1000 year: 2012 end-page: 1016 ident: bib0058 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage – volume: 15 start-page: 456 year: 2002 end-page: 467 ident: bib0011 article-title: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review publication-title: NMR Biomed. – volume: 15 start-page: 528 year: 2012 end-page: 536 ident: bib0057 article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning publication-title: Nat. Neurosci. – volume: 8 start-page: 279 year: 2017 end-page: 294 ident: bib0029 article-title: Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system publication-title: EPMA J. – volume: 76 start-page: 2103 year: 2011 end-page: 2111 ident: bib0043 article-title: Sustained motion perception deficit following optic neuritis: behavioral and cortical evidence publication-title: Neurology – volume: 46 start-page: 923 year: 2001 end-page: 931 ident: bib0049 article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI publication-title: Magn. Reson. Med. – volume: 10 year: 2019 ident: bib0008 article-title: Vision and vision-related measures in progressive multiple sclerosis publication-title: Front. Neurol. – volume: 37 start-page: 187 year: 2017 end-page: 194 ident: bib0031 article-title: Simultaneous measurement of total water content and myelin water fraction in brain at 3T using a T2 relaxation based method publication-title: Magn. Reson. Imaging – volume: 9 year: 2014 ident: bib0050 article-title: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients publication-title: PLoS ONE – volume: 10 year: 2019 ident: bib0019 article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI publication-title: Nat. Commun. – volume: 36 start-page: 185 year: 2016 end-page: 195 ident: bib0016 article-title: Vision disturbances in multiple sclerosis publication-title: Semin. Neurol. – volume: 15 start-page: 570 year: 2002 end-page: 577 ident: bib0024 article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review publication-title: NMR Biomed. – volume: 34 start-page: 51 year: 2008 end-page: 61 ident: bib0005 article-title: Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a Review publication-title: J. Mol. Neurosci. – volume: 25 start-page: 122 year: 2015 end-page: 131 ident: bib0048 article-title: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study publication-title: Eur. Radiol. – volume: 21 start-page: 163 year: 2015 end-page: 170 ident: bib0046 article-title: Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria publication-title: Mult. Scler. – year: 2011 ident: bib0001 article-title: Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains publication-title: Brain Connect. – year: 2015 ident: bib0009 article-title: Vision and vision-related outcome measures in multiple sclerosis publication-title: Brain – year: 1999 ident: bib0035 article-title: Contrast mechanisms in MR imaging publication-title: Eur. Radiol. – volume: 44 start-page: 625 year: 2000 end-page: 632 ident: bib0012 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. – volume: 8 year: 2008 ident: bib0047 article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography publication-title: J Vis – volume: 139 start-page: 346 year: 2016 end-page: 359 ident: bib0025 article-title: Multi-compartment microscopic diffusion imaging publication-title: Neuroimage – volume: 28 start-page: 313 year: 2015 end-page: 322 ident: bib0055 article-title: Advances in MRI-based computational neuroanatomy publication-title: Curr. Opin. Neurol. – volume: 93 start-page: 95 year: 2014 end-page: 106 ident: bib0052 article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast publication-title: Neuroimage – year: 2006 ident: bib0020 article-title: Optical coherence tomography in multiple sclerosis publication-title: Lancet Neurol. – volume: 4 year: 2017 ident: bib0038 article-title: Loss of corticospinal tract integrity in early MS disease stages publication-title: Neurol. Neuroimmunol. Neuroinflamm. – volume: 29 start-page: 997 year: 2012 end-page: 1003 ident: bib0051 article-title: Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure publication-title: Neuroimage – volume: 203 year: 2019 ident: bib0018 article-title: Estimating axon conduction velocity in vivo from microstructural MRI publication-title: Neuroimage – volume: 16 start-page: 797 year: 2017 end-page: 812 ident: bib0039 article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis publication-title: Lancet Neurol. – volume: 19 start-page: 538 year: 2018 end-page: 550 ident: bib0028 article-title: Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system publication-title: Neuroimage Clin. – year: 2008 ident: bib0015 article-title: Multiple sclerosis publication-title: Lancet – volume: 5 year: 2018 ident: bib0036 article-title: Multicenter reliability of semiautomatic retinal layer segmentation using OCT publication-title: Neurol. Neuroimmunol. Neuroinflamm. – year: 2020 ident: bib59 article-title: Predicting neural response latency of the human early visual cortex from MRI-based tissue measurements of the optic radiation publication-title: eNeuro – volume: 19 start-page: 31 year: 2019 end-page: 43 ident: bib0037 article-title: Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis publication-title: Expert Rev. Neurother. – volume: 71 start-page: 602 year: 1987 end-page: 608 ident: bib0045 article-title: Visual function and pattern visual evoked response in optic neuritis publication-title: Br. J. Ophthalmol. – volume: 181 start-page: 645 year: 2018 end-page: 658 ident: bib2045 article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation publication-title: Neuroimage – volume: 44 start-page: 625 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2020.117204_bib0012 article-title: In vivo fiber tractography using DT-MRI data publication-title: Magn. Reson. Med. doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O – volume: 28 start-page: 313 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0055 article-title: Advances in MRI-based computational neuroanatomy publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000222 – volume: 20 start-page: 870 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2020.117204_bib0003 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage doi: 10.1016/S1053-8119(03)00336-7 – start-page: 1 year: 2009 ident: 10.1016/j.neuroimage.2020.117204_bib0006 article-title: Advanced Normalization Tools (ANTS) publication-title: Insight J. – year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib0054 article-title: Optic neuritis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(13)70259-X – volume: 82 start-page: 2165 issue: 24 year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib0026 article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions publication-title: Neurology doi: 10.1212/WNL.0000000000000522 – volume: 17 start-page: 1028 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib0027 article-title: Evidence of progressive tissue loss in the core of chronic MS lesions: a longitudinal DTI study publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2017.12.010 – volume: 37 start-page: 187 year: 2017 ident: 10.1016/j.neuroimage.2020.117204_bib0031 article-title: Simultaneous measurement of total water content and myelin water fraction in brain at 3T using a T2 relaxation based method publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2016.12.001 – year: 2011 ident: 10.1016/j.neuroimage.2020.117204_bib0001 article-title: Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains publication-title: Brain Connect. doi: 10.1089/brain.2011.0071 – volume: 19 start-page: 1667 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2020.117204_bib0034 article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging publication-title: Nat. Med. doi: 10.1038/nm.3390 – volume: 139 start-page: 346 year: 2016 ident: 10.1016/j.neuroimage.2020.117204_bib0025 article-title: Multi-compartment microscopic diffusion imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.002 – volume: 181 start-page: 645 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib2045 article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.06.060 – volume: 8 issue: 10 year: 2008 ident: 10.1016/j.neuroimage.2020.117204_bib0047 article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography publication-title: J Vis doi: 10.1167/8.10.12 – volume: 60 start-page: 1396 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2020.117204_bib0023 article-title: High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T 1 relaxation obtained from 3D FLASH MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21732 – year: 1999 ident: 10.1016/j.neuroimage.2020.117204_bib0035 article-title: Contrast mechanisms in MR imaging publication-title: Eur. Radiol. doi: 10.1007/s003300050789 – year: 2020 ident: 10.1016/j.neuroimage.2020.117204_bib59 article-title: Predicting neural response latency of the human early visual cortex from MRI-based tissue measurements of the optic radiation publication-title: eNeuro doi: 10.1523/ENEURO.0545-19.2020 – volume: 29 start-page: 997 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2020.117204_bib0051 article-title: Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure publication-title: Neuroimage – year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0009 article-title: Vision and vision-related outcome measures in multiple sclerosis – volume: 203 year: 2019 ident: 10.1016/j.neuroimage.2020.117204_bib0018 article-title: Estimating axon conduction velocity in vivo from microstructural MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116186 – volume: 16 start-page: 797 issue: 10 year: 2017 ident: 10.1016/j.neuroimage.2020.117204_bib0039 article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(17)30278-8 – volume: 7 issue: 11 year: 2012 ident: 10.1016/j.neuroimage.2020.117204_bib0056 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS ONE doi: 10.1371/journal.pone.0049790 – year: 2008 ident: 10.1016/j.neuroimage.2020.117204_bib0015 article-title: Multiple sclerosis publication-title: Lancet doi: 10.1016/S0140-6736(08)61620-7 – volume: 46 start-page: 923 issue: 5 year: 2001 ident: 10.1016/j.neuroimage.2020.117204_bib0049 article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.1278 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib0050 article-title: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients publication-title: PLoS ONE doi: 10.1371/journal.pone.0102546 – volume: 25 start-page: 122 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0048 article-title: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study publication-title: Eur. Radiol. doi: 10.1007/s00330-014-3358-8 – volume: 195 start-page: 128 year: 2019 ident: 10.1016/j.neuroimage.2020.117204_bib0013 article-title: Modeling conduction delays in the corpus callosum using MRI-measured g-ratio publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.03.025 – volume: 36 start-page: 185 issue: 2 year: 2016 ident: 10.1016/j.neuroimage.2020.117204_bib0016 article-title: Vision disturbances in multiple sclerosis publication-title: Semin. Neurol. doi: 10.1055/s-0036-1579692 – volume: 8 start-page: 279 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2020.117204_bib0029 article-title: Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system publication-title: EPMA J. doi: 10.1007/s13167-017-0102-x – volume: 21 start-page: 163 issue: 2 year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0046 article-title: Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria publication-title: Mult. Scler. doi: 10.1177/1352458514538110 – year: 2010 ident: 10.1016/j.neuroimage.2020.117204_bib0053 article-title: Longitudinal study of vision and retinal nerve fiber layer thickness in MS publication-title: Ann. Neurol. doi: 10.1002/ana.22005 – volume: 69 start-page: 292 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2020.117204_bib0040 article-title: Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria publication-title: Ann. Neurol. doi: 10.1002/ana.22366 – volume: 19 start-page: 538 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib0028 article-title: Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2018.05.004 – year: 2006 ident: 10.1016/j.neuroimage.2020.117204_bib0020 article-title: Optical coherence tomography in multiple sclerosis publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(06)70573-7 – volume: 10 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2020.117204_bib0019 article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI publication-title: Nat. Commun. doi: 10.1038/s41467-019-11319-1 – volume: 59 start-page: 1347 issue: 6 year: 2008 ident: 10.1016/j.neuroimage.2020.117204_bib0004 article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. doi: 10.1002/mrm.21577 – volume: 61 start-page: 1000 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2020.117204_bib0058 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.03.072 – volume: 5 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib0036 article-title: Multicenter reliability of semiautomatic retinal layer segmentation using OCT publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000449 – volume: 18 start-page: 891 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2020.117204_bib0030 article-title: Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) publication-title: Multiple Scler. J. doi: 10.1177/1352458511431076 – volume: 4 issue: 6 year: 2017 ident: 10.1016/j.neuroimage.2020.117204_bib0038 article-title: Loss of corticospinal tract integrity in early MS disease stages publication-title: Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000399 – volume: 71 start-page: 602 issue: 8 year: 1987 ident: 10.1016/j.neuroimage.2020.117204_bib0045 article-title: Visual function and pattern visual evoked response in optic neuritis publication-title: Br. J. Ophthalmol. doi: 10.1136/bjo.71.8.602 – volume: 21 start-page: 562 issue: 5 year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0041 article-title: Focal demyelinative damage and neighboring white matter integrity: an optic neuritis study publication-title: Mult. Scler. doi: 10.1177/1352458514551452 – volume: 49 start-page: 177 issue: 1 year: 2003 ident: 10.1016/j.neuroimage.2020.117204_bib0044 article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo publication-title: Magn Reson Med doi: 10.1002/mrm.10308 – volume: 157 start-page: 233 year: 2017 ident: 10.1016/j.neuroimage.2020.117204_bib0017 article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.009 – volume: 15 start-page: 456 issue: 7–8 year: 2002 ident: 10.1016/j.neuroimage.2020.117204_bib0011 article-title: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review publication-title: NMR Biomed. doi: 10.1002/nbm.783 – volume: 10 year: 2019 ident: 10.1016/j.neuroimage.2020.117204_bib0008 article-title: Vision and vision-related measures in progressive multiple sclerosis publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00455 – volume: 19 start-page: 31 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2020.117204_bib0037 article-title: Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis publication-title: Expert Rev. Neurother. doi: 10.1080/14737175.2019.1559051 – volume: 5 year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib3045 article-title: Lifespan maturation and degeneration of human brain white matter publication-title: Nat. Commun. doi: 10.1038/ncomms5932 – volume: 81 start-page: 702 issue: 8 year: 2013 ident: 10.1016/j.neuroimage.2020.117204_bib0042 article-title: Temporal reorganization to overcome monocular demyelination publication-title: Neurology doi: 10.1212/WNL.0b013e3182a1aa3e – volume: 76 start-page: 2103 issue: 24 year: 2011 ident: 10.1016/j.neuroimage.2020.117204_bib0043 article-title: Sustained motion perception deficit following optic neuritis: behavioral and cortical evidence publication-title: Neurology doi: 10.1212/WNL.0b013e31821f4602 – volume: 34 start-page: 51 issue: 1 year: 2008 ident: 10.1016/j.neuroimage.2020.117204_bib0005 article-title: Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a Review publication-title: J. Mol. Neurosci. doi: 10.1007/s12031-007-0029-0 – volume: 2 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2020.117204_bib0021 article-title: Acute optic neuritis: unmet clinical needs and model for new therapies publication-title: Neurol. Neuroimmunol. NeuroInflamm. doi: 10.1212/NXI.0000000000000135 – volume: 38 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib0007 article-title: Keep your eyes wide open: on visual- and vision-related measurements to better understand multiple sclerosis pathophysiology publication-title: J. Neuro-Ophthalmol. doi: 10.1097/WNO.0000000000000634 – volume: 93 start-page: 95 issue: P1 year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib0052 article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.02.026 – volume: 15 start-page: 570 issue: 7–8 year: 2002 ident: 10.1016/j.neuroimage.2020.117204_bib0024 article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review publication-title: NMR Biomed. doi: 10.1002/nbm.787 – volume: 15 start-page: 528 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2020.117204_bib0057 article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning publication-title: Nat. Neurosci. doi: 10.1038/nn.3045 – volume: 182 start-page: 304 year: 2018 ident: 10.1016/j.neuroimage.2020.117204_bib0014 article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.076 – volume: 4 start-page: 661 issue: 5893 year: 1973 ident: 10.1016/j.neuroimage.2020.117204_bib0022 article-title: Visual evoked response in diagnosis of multiple sclerosis publication-title: Br. Med. J. doi: 10.1136/bmj.4.5893.661 – volume: 37 start-page: 3623 issue: 10 year: 2016 ident: 10.1016/j.neuroimage.2020.117204_bib0033 article-title: Evaluating quantitative proton-density-mapping methods publication-title: Hum Brain Mapp. doi: 10.1002/hbm.23264 – volume: 64 start-page: 1057 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2020.117204_bib0010 article-title: A robust methodology for in vivo T1 mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22497 – volume: 117 start-page: 1154 issue: 5 year: 2006 ident: 10.1016/j.neuroimage.2020.117204_bib1045 article-title: Vep latency: sex and head size publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2006.01.014 – volume: 55 start-page: 3758 issue: 6 year: 2014 ident: 10.1016/j.neuroimage.2020.117204_bib0002 article-title: Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.14-14571 |
| SSID | ssj0009148 |
| Score | 2.429041 |
| Snippet | In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating... |
| SourceID | doaj proquest pubmed crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 117204 |
| SubjectTerms | Adult Cell therapy Central nervous system Demyelinating diseases Demyelination Diffusion Magnetic Resonance Imaging Disease Evoked Potentials, Visual - physiology Female Humans Latency Longitudinal Studies Magnetic Resonance Imaging Male Middle Aged Multiple sclerosis Multiple Sclerosis, Chronic Progressive - diagnostic imaging Multiple Sclerosis, Chronic Progressive - pathology Multiple Sclerosis, Chronic Progressive - physiopathology Myelin Neural Conduction - physiology Neuritis Neurological complications Optic nerve Optic neuritis Patients Retina Retina - diagnostic imaging Retina - pathology Retina - physiopathology Stem cells Substantia alba Tomography, Optical Coherence Visual evoked potentials Visual pathways Visual Pathways - diagnostic imaging Visual Pathways - pathology Visual Pathways - physiopathology Visual system White Matter - diagnostic imaging White Matter - pathology White Matter - physiopathology Young adults |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSEuiJZXoFRG4hrhTTaOLU5t1aqHtuoBUG-W44cUBEm16S7qv2fGjxQOiD1wdTyR5W9sfxNPviHkA0rMMQ2Rqmg0BCi8tqXomCkFCq04oysRsiq_XrRXV-LmRl7_VuoLc8KiPHCcuI9WMw1xFG-8bpZ84TSTwoHT1JZxJ9qw-wLrycFUltsFlp_ydmI2V1CH7H_AGoWYsAp3lVUqzpYPo6DZ_8eZ9DfOGc6es2fkaSKN9CgOdo88csM-eXyZrsWfk_FkHGyUgaWo-ng_0X6gQO3opp_WYIl1h39i8-hpyMjC5NeNozmdkE7wXhhiP9EktDpRM2706p7ih1raYSEJGrVm1yv3gnw5O_18cl6mSgqlATp2VwKN81JIv-RcNlJLy2HpeQNAVFZ4y4CjQJjhpGuYkcva8mrRsUZzawUqi_v6JdkZxsG9JhTQ7KzumtYCHlZWWnvmbSdNi7IvThakzVOqTJIZx2oX31XOJ_umHsBQCIaKYBRkMVveRqmNLWyOEbW5P4plhwZwIZVcSP3LhQoiM-Yq_48KOyi8qN9iAJ9m28RZIhfZ0vogu5hKe8ekqiWABKy4qQvyfn4Mqx6vcvTgxjX2qVE4CLhtQV5F15znoK5aYMWtfPM_5uYteYLjjX9fHpAdcDT3juyazV0_rQ7DovsF4KQyVw priority: 102 providerName: Directory of Open Access Journals |
| Title | Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381192030690X https://dx.doi.org/10.1016/j.neuroimage.2020.117204 https://www.ncbi.nlm.nih.gov/pubmed/32745679 https://www.proquest.com/docview/2469522653 https://www.proquest.com/docview/2430374929 https://doaj.org/article/da0a13365fa5461ea098e6383d06e872 |
| Volume | 221 |
| WOSCitedRecordID | wos000600795000066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuwjthfcjsFRG4hqRR5PY4oDY1a440KpCgHqzHNtBQZDsNtui_ffM2E4rDqBKXHJIM5bdGY-_scffALwmirlEYaTKC4UBSpmbmNeJjjkRrVitMu6yKr9-rOZzvlyKRdhwG0Ja5egTnaM2vaY98jcZxnGEFYr83eVVTFWj6HQ1lNA4gCNiSchd6t5iR7qbTv1VuCKPeZqKkMnj87scX2T7E2ctRomZO73MQrm2cXlyLP5_rFJ_Q6FuNbq497_juA93Aw5l773hPIBbtnsId2bhpP0R9Gd9ZzyzLCMiyZuBtR1DtMg27bBGSSpl_Ite9w1zSV6UT7uxbMxQZAO2i2NsBxa4Wwem-41a3TDa-2U11aZgnr52vbKP4cvF-eezD3EozhBrRHjXMSLDRnDRTEscj1DC4IjSRqNuM8MbkyDswcjFClskWkxzU2ZpnRSqNIYTWXmTP4HDru_sM2BoILVRdVEZVUyNyJRqksbUQlfEJGNFBNWoE6kDczkV0PghxxS173KnTUnalF6bEaRbyUvP3rGHzCmpffs98W-7F_3qmwzTWRqVKIzuy6LBLpepVYngFl1ZbpLS8iqLQIxGI8crruiUsaF2jw683coGGOThzZ7SJ6PdyeCOBrkzughebX9GR0KnQ6qz_Zq-yYmLCOFyBE-9bW__gzyrEGhX4vm_G38Bx9QTf1XzBA7RhOxLuK031-2wmsBBtazck0_g6PR8vvg0cVsg-Jxls4mbu78B50VIRw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgGJE4L1sIIShUrbq74lBQb64TOygIkrLpbrV_it_ITJxkxQG0lx64JpmR43yeRzz-BuAFUcwFGjNVkWhMUNLI-CIPCl8Q0YotNBddVeWXSTabieNj-WkLfg1nYaiscrCJnaE2TUH_yF9xzOMoVkiit6c_feoaRburQwsNB4tDuzrHlK19c_ABv-9Lzvc-Hu3u-31XAb_A0OTMx5CmlEKWcYoKpZYGVYZlgYPiRpQGM3x0mqmVNgkKGUcm5WEeJDo1RhDLdhmh3ktwOcZMiFpFTPl0TfIbxu7oXRL5IgxlXznk6sk6fsrqB1oJzEp5t1vK-_Zwgzvsugb84RX_FvV23m_v5v82b7fgRh9ns3duYdyGLVvfgavTvpLgLjS7TW0ccy4josxVy6qaYTTMllW7QElq1XxOl5uSdUVsVC-8tGyowGQt6sU5rVrWc9O2rGiWer5i9G-b5dR7gzl63sXc3oPPF_K692G7bmr7EBgugNzoPMmMTmIjudZlUJpcFhkx5VjpQTZgQBU9Mzs1CPmuhhK8b2qNHkXoUQ49HoSj5KljJ9lA5j3BbHye-MW7C838q-rNlTI60GEUpUmJQ05DqwMpLJrqyASpFRn3QA4gVcMRXnQ6qKjaYACvR9k-zHPh24bSOwPOVW9uW7UGuQfPx9toKGn3S9e2WdAzEXEtYTrgwQO3lsY5iHiGiUQmH_1b-TO4tn80najJwezwMVynUbljqTuwjXCyT-BKsTyr2vnTzi4wOLnoBfUbH3Wc0A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgioufBcWChgJjlETZ5PYQghBy4qqZbUHQL0ZJ3ZQECRl091q_xq_jpnYyYoDaC89cE0yI8eZGc_Ez28AnhPFXKixUhWJxgIljU0g8rAIBBGt2EJz0aEqP59k06k4PZWzLfjVn4UhWGUfE7tAbZqC_pHvc6zjKFdI4v3SwyJmh5PXZz8D6iBFO619Ow1nIsd2dYHlW_vq6BC_9QvOJ-8-HrwPfIeBoMA05TzA9KaUQpbjFJVLLQ2qj8oCB8iNKA1W-7iAplbaJCzkODYpj_Iw0akxghi3yxj1XoGrGZGWd7DB2ZrwNxq7Y3hJHIgokh5F5LBlHVdl9QMjBlaovNs55b5VXL80dh0E_lgh_5YBdyvh5Ob_PIe34IbPv9kb5zC3YcvWd2Dng0cY3IXmoKmNY9RlRKC5allVM8yS2bJqFyhJLZwv6HJTsg7cRjjipWU9MpO1qBfnt2qZ56xtWdEs9XzF6J83y6knB3O0vYu5vQefLuV1d2G7bmr7ABg6Rm50nmRGJ2MjudZlWJpcFhkx6Fg5gqy3B1V4xnZqHPJd9dC8b2ptSYosSTlLGkE0SJ451pINZN6SyQ3PE-94d6GZf1U-jCmjQx3FcZqUOOQ0sjqUwmIIj02YWpHxEcjeYFV_tBcXI1RUbTCAl4OsT_9cWreh9F5v88qH4VatDX4Ez4bbGEBpV0zXtlnQMzFxMGGZMIL7zq-GOYh5hgVGJh_-W_lT2EE_UidH0-NHcJ0G5U6r7sE2WpN9DNeK5XnVzp90IYLBl8v2p9_8oqWh |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conduction+delays+in+the+visual+pathways+of+progressive+multiple+sclerosis+patients+covary+with+brain+structure&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Berman%2C+Shai&rft.au=Backner%2C+Yael&rft.au=Krupnik%2C+Ronnie&rft.au=Paul%2C+Friedemann&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=221&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117204&rft.externalDocID=S105381192030690X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |