Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure

In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:NeuroImage (Orlando, Fla.) Ročník 221; s. 117204
Hlavní autori: Berman, Shai, Backner, Yael, Krupnik, Ronnie, Paul, Friedemann, Petrou, Panayiota, Karussis, Dimitrios, Levin, Netta, Mezer, Aviv A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Inc 01.11.2020
Elsevier Limited
Elsevier
Predmet:
ISSN:1053-8119, 1095-9572, 1095-9572
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
AbstractList In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR).Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated.Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency.In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR).Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated.Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency.In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
ArticleNumber 117204
Author Berman, Shai
Backner, Yael
Krupnik, Ronnie
Paul, Friedemann
Karussis, Dimitrios
Levin, Netta
Petrou, Panayiota
Mezer, Aviv A.
Author_xml – sequence: 1
  givenname: Shai
  orcidid: 0000-0001-9047-9200
  surname: Berman
  fullname: Berman, Shai
  email: shai.berman@mail.huji.ac.il
  organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
– sequence: 2
  givenname: Yael
  orcidid: 0000-0003-2118-223X
  surname: Backner
  fullname: Backner, Yael
  organization: fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
– sequence: 3
  givenname: Ronnie
  surname: Krupnik
  fullname: Krupnik, Ronnie
  organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
– sequence: 4
  givenname: Friedemann
  surname: Paul
  fullname: Paul, Friedemann
  organization: NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
– sequence: 5
  givenname: Panayiota
  surname: Petrou
  fullname: Petrou, Panayiota
  organization: The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
– sequence: 6
  givenname: Dimitrios
  surname: Karussis
  fullname: Karussis, Dimitrios
  organization: The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
– sequence: 7
  givenname: Netta
  surname: Levin
  fullname: Levin, Netta
  organization: fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
– sequence: 8
  givenname: Aviv A.
  surname: Mezer
  fullname: Mezer, Aviv A.
  organization: Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32745679$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhleoiH7AX0CWuHBJ8Mfaa18QENFSqRIXOFuOPZs4OOtge1Pl3-MlpUg55bTW6PGznnnnurkY4gBNgwieE0zEh818gDFFvzUrmFNMa5l0FLcvmiuCFZ8p3tGL6czZTBKiLpvrnDcYY0Va-aq5ZLRruejUVRMXcXCjLT4OyEEwh4z8gMoa0N7n0QS0M2X9OJVjj3YprhLk7PeAtmMofhcAZRsgxezzhHoYSkY27k06oEdf1miZTBXmkupPxgSvm5e9CRnePH1vmp-3X38svs0evt_dLz4_zCzveJkRRXslVd8KobgyygnOSG-pFNTJ3mHFOkkFKODYqpY5QckScyOck7ijqmc3zf3R66LZ6F2qo0oHHY3XfwsxrbRJxde3a2ewIYwJ3hveCgIGKwmCSeawANnR6np_dNX-f4-Qi976bCEEM0Acs6Ytw6xrFVUVfXeCbuKYhtpppWorlNZGKvX2iRqXW3DPz_sXSwXkEbB1sjlB_4wQrKcN0Bv9fwP0tAH6uAH16seTq9YXM-VbahLhHMGXowBqPHsPSWdbY7XgfAJb6vz8OZJPJxIb_OCtCb_gcJ7iD_IP6SQ
CitedBy_id crossref_primary_10_1016_j_clinph_2024_02_020
crossref_primary_10_1016_j_msard_2022_104255
crossref_primary_10_1002_hbm_25654
crossref_primary_10_1016_j_msard_2022_104116
crossref_primary_10_3389_fnins_2021_692599
crossref_primary_10_1007_s00429_021_02358_w
crossref_primary_10_1212_NXI_0000000000200092
crossref_primary_10_3389_fnagi_2021_701322
crossref_primary_10_1016_S1474_4422_21_00179_4
crossref_primary_10_3390_diagnostics15101189
crossref_primary_10_3390_ijms24054375
crossref_primary_10_3390_s21196343
crossref_primary_10_1002_hbm_25744
crossref_primary_10_1136_jnnp_2023_331183
crossref_primary_10_1212_WNL_0000000000209952
Cites_doi 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
10.1097/WCO.0000000000000222
10.1016/S1053-8119(03)00336-7
10.1016/S1474-4422(13)70259-X
10.1212/WNL.0000000000000522
10.1016/j.nicl.2017.12.010
10.1016/j.mri.2016.12.001
10.1089/brain.2011.0071
10.1038/nm.3390
10.1016/j.neuroimage.2016.06.002
10.1016/j.neuroimage.2018.06.060
10.1167/8.10.12
10.1002/mrm.21732
10.1007/s003300050789
10.1523/ENEURO.0545-19.2020
10.1016/j.neuroimage.2019.116186
10.1016/S1474-4422(17)30278-8
10.1371/journal.pone.0049790
10.1016/S0140-6736(08)61620-7
10.1002/mrm.1278
10.1371/journal.pone.0102546
10.1007/s00330-014-3358-8
10.1016/j.neuroimage.2019.03.025
10.1055/s-0036-1579692
10.1007/s13167-017-0102-x
10.1177/1352458514538110
10.1002/ana.22005
10.1002/ana.22366
10.1016/j.nicl.2018.05.004
10.1016/S1474-4422(06)70573-7
10.1038/s41467-019-11319-1
10.1002/mrm.21577
10.1016/j.neuroimage.2012.03.072
10.1212/NXI.0000000000000449
10.1177/1352458511431076
10.1212/NXI.0000000000000399
10.1136/bjo.71.8.602
10.1177/1352458514551452
10.1002/mrm.10308
10.1016/j.neuroimage.2017.06.009
10.1002/nbm.783
10.3389/fneur.2019.00455
10.1080/14737175.2019.1559051
10.1038/ncomms5932
10.1212/WNL.0b013e3182a1aa3e
10.1212/WNL.0b013e31821f4602
10.1007/s12031-007-0029-0
10.1212/NXI.0000000000000135
10.1097/WNO.0000000000000634
10.1016/j.neuroimage.2014.02.026
10.1002/nbm.787
10.1038/nn.3045
10.1016/j.neuroimage.2017.06.076
10.1136/bmj.4.5893.661
10.1002/hbm.23264
10.1002/mrm.22497
10.1016/j.clinph.2006.01.014
10.1167/iovs.14-14571
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier Inc.
Copyright Elsevier Limited Nov 1, 2020
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Nov 1, 2020
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
DOA
DOI 10.1016/j.neuroimage.2020.117204
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Psychology
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_da0a13365fa5461ea098e6383d06e872
32745679
10_1016_j_neuroimage_2020_117204
S105381192030690X
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
9DU
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFFHD
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFLBG
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ID FETCH-LOGICAL-c575t-192f989f466959a9d6531fc2862d8fd0937826e9e50c943d621b05a6dd80729f3
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600795000066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Oct 14 18:57:17 EDT 2025
Thu Oct 02 10:49:21 EDT 2025
Tue Oct 07 06:47:44 EDT 2025
Mon Jul 21 05:48:51 EDT 2025
Sat Nov 29 07:05:31 EST 2025
Tue Nov 18 21:49:47 EST 2025
Fri Feb 23 02:41:27 EST 2024
Tue Oct 14 19:39:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c575t-192f989f466959a9d6531fc2862d8fd0937826e9e50c943d621b05a6dd80729f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2118-223X
0000-0001-9047-9200
OpenAccessLink https://doaj.org/article/da0a13365fa5461ea098e6383d06e872
PMID 32745679
PQID 2469522653
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_da0a13365fa5461ea098e6383d06e872
proquest_miscellaneous_2430374929
proquest_journals_2469522653
pubmed_primary_32745679
crossref_primary_10_1016_j_neuroimage_2020_117204
crossref_citationtrail_10_1016_j_neuroimage_2020_117204
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2020_117204
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2020_117204
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2020
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Berman, West, Does, Yeatman, Mezer (bib0014) 2018; 182
Galetta, Villoslada, Levin, Shindler, Ishikawa, Parr, Balcer (bib0021) 2015; 2
Horsfield, Jones (bib0024) 2002; 15
Nitz, Reimer (bib0035) 1999
Yeatman, Dougherty, Myall, Wandell, Feldman (bib0056) 2012; 7
Yeatman, Wandell, Mezer (bib3045) 2014; 5
Backner, Petrou, Glick-Shames, Raz, Zimmermann, Jost, Levin (bib0008) 2019; 10
Klistorner, Wang, Yiannikas, Parratt, Dwyer, Barton, Barnett (bib0027) 2018; 17
Gregori, Pro, Bombelli, La Riccia, Accornero (bib1045) 2006; 117
Weiskopf, Mohammadi, Lutti, Callaghan (bib0055) 2015; 28
Reese, Heid, Weisskoff, Wedeen (bib0044) 2003; 49
Basser, Pajevic, Pierpaoli, Duda, Aldroubi (bib0012) 2000; 44
Dadar, Maranzano, Misquitta, Anor, Fonov, Tartaglia, Collins (bib0017) 2017; 157
Drakesmith, Harms, Rudrapatna, Parker, Evans, Jones (bib0018) 2019; 203
Talman, Bisker, Sackel, Long, Galetta, Ratchford, Balcer (bib0053) 2010
Schurr, Duan, Norcia, Ogawa, Yeatman, Mezer (bib2045) 2018; 181
Stikov, Perry, Mezer, Rykhlevskaia, Wandell, Pauly, Dougherty (bib0051) 2012; 29
Kuchling, Backner, Oertel, Raz, Bellmann-Strobl, Ruprecht, Scheel (bib0028) 2018; 19
Raz, Dotan, Benoliel, Chokron, Ben-Hur, Levin (bib0043) 2011; 76
Basser, Jones (bib0011) 2002; 15
Schippling, Balk, Costello, Albrecht, Balcer, Calabresi, Petzold (bib0046) 2015; 21
Klistorner, Sriram, Vootakuru, Wang, Barnett, Garrick, Yiannikas (bib0026) 2014; 82
Sanders, Volkers, Van der Poel, Van Lith (bib0045) 1987; 71
Sled, Pike (bib0049) 2001; 46
Andersson, Skare, Ashburner (bib0003) 2003; 20
Assaf, Blumenfeld‐Katzir (bib0004) 2008; 59
Mezer, Yeatman, Stikov, Kay, Cho, Dougherty, Wandell (bib0034) 2013; 19
Filo, Shtangel, Salamon, Kol, Weisinger, Shifman, Mezer (bib0019) 2019; 10
Alexander, Hurley, Samsonov, Adluru, Hosseinbor, Mossahebi, Field (bib0001) 2011
Sherbondy, Dougherty, Napel, Wandell (bib0047) 2008; 8
Kaden, Kelm, Carson, Does, Alexander (bib0025) 2016; 139
Takemura, Yuasa, Amano (bib59) 2020
Avants, Tustison, Song (bib0006) 2009
Raz, Chokron, Ben-Hur, Levin (bib0042) 2013; 81
Alshowaeir, Yiannikas, Garrick, Parratt, Barnett, Graham, Klistorner (bib0002) 2014; 55
Halliday, McDonald, Mushin (bib0022) 1973; 4
Backner, Levin (bib0007) 2018; 38
Sinnecker, Oberwahrenbrock, Metz, Zimmermann, Pfueller, Harms, Wuerfel (bib0048) 2015; 25
Sriram, Wang, Yiannikas, Garrick, Barnett, Parratt, Klistorner (bib0050) 2014; 9
Compston, Coles (bib0015) 2008
Costello (bib0016) 2016; 36
Balcer, Miller, Reingold, Cohen (bib0009) 2015
Zhang, Schneider, Wheeler-Kingshott, Alexander (bib0058) 2012; 61
Zatorre, Fields, Johansen-Berg (bib0057) 2012; 15
Frohman, Costello, Zivadinov, Stuve, Conger, Winslow, Balcer (bib0020) 2006
Stüber, Morawski, Schäfer, Labadie, Wähnert, Leuze, Turner (bib0052) 2014; 93
Mezer, Rokem, Berman, Hastie, Wandell (bib0033) 2016; 37
Meyers, Kolind, MacKay (bib0031) 2017; 37
Pawlitzki, Neumann, Kaufmann, Heidel, Stadler, Sweeney-Reed, Schreiber (bib0038) 2017; 4
Oertel, Zimmermann, Brandt, Paul (bib0037) 2019; 19
Oberwahrenbrock, Traber, Lukas, Gabilondo, Nolan, Songster, Schippling (bib0036) 2018; 5
Polman, Reingold, Banwell, Clanet, Cohen, Filippi, Wolinsky (bib0040) 2011; 69
Helms, Dathe, Kallenberg, Dechent (bib0023) 2008; 60
Langdon, Amato, Boringa, Brochet, Foley, Fredrikson, Benedict (bib0030) 2012; 18
Berman, Filo, Mezer (bib0013) 2019; 195
Assaf, Pasternak (bib0005) 2008; 34
Toosy, Mason, Miller (bib0054) 2014, January
Kuchling, Brandt, Paul, Scheel (bib0029) 2017; 8
Petzold, Balcer, Calabresi, Costello, Frohman, Frohman, Zimmermann (bib0039) 2017; 16
Raz, Bick, Ben-Hur, Levin (bib0041) 2015; 21
Barral, Gudmundson, Stikov, Etezadi-Amoli, Stoica, Nishimura (bib0010) 2010; 64
Talman (10.1016/j.neuroimage.2020.117204_bib0053) 2010
Sinnecker (10.1016/j.neuroimage.2020.117204_bib0048) 2015; 25
Alshowaeir (10.1016/j.neuroimage.2020.117204_bib0002) 2014; 55
Mezer (10.1016/j.neuroimage.2020.117204_bib0034) 2013; 19
Costello (10.1016/j.neuroimage.2020.117204_bib0016) 2016; 36
Avants (10.1016/j.neuroimage.2020.117204_bib0006) 2009
Toosy (10.1016/j.neuroimage.2020.117204_bib0054) 2014
Berman (10.1016/j.neuroimage.2020.117204_bib0014) 2018; 182
Balcer (10.1016/j.neuroimage.2020.117204_bib0009) 2015
Assaf (10.1016/j.neuroimage.2020.117204_bib0004) 2008; 59
Polman (10.1016/j.neuroimage.2020.117204_bib0040) 2011; 69
Takemura (10.1016/j.neuroimage.2020.117204_bib59) 2020
Galetta (10.1016/j.neuroimage.2020.117204_bib0021) 2015; 2
Schippling (10.1016/j.neuroimage.2020.117204_bib0046) 2015; 21
Reese (10.1016/j.neuroimage.2020.117204_bib0044) 2003; 49
Andersson (10.1016/j.neuroimage.2020.117204_bib0003) 2003; 20
Raz (10.1016/j.neuroimage.2020.117204_bib0043) 2011; 76
Basser (10.1016/j.neuroimage.2020.117204_bib0012) 2000; 44
Alexander (10.1016/j.neuroimage.2020.117204_bib0001) 2011
Meyers (10.1016/j.neuroimage.2020.117204_bib0031) 2017; 37
Halliday (10.1016/j.neuroimage.2020.117204_bib0022) 1973; 4
Pawlitzki (10.1016/j.neuroimage.2020.117204_bib0038) 2017; 4
Helms (10.1016/j.neuroimage.2020.117204_bib0023) 2008; 60
Weiskopf (10.1016/j.neuroimage.2020.117204_bib0055) 2015; 28
Raz (10.1016/j.neuroimage.2020.117204_bib0041) 2015; 21
Backner (10.1016/j.neuroimage.2020.117204_bib0008) 2019; 10
Backner (10.1016/j.neuroimage.2020.117204_bib0007) 2018; 38
Sanders (10.1016/j.neuroimage.2020.117204_bib0045) 1987; 71
Schurr (10.1016/j.neuroimage.2020.117204_bib2045) 2018; 181
Mezer (10.1016/j.neuroimage.2020.117204_bib0033) 2016; 37
Yeatman (10.1016/j.neuroimage.2020.117204_bib3045) 2014; 5
Nitz (10.1016/j.neuroimage.2020.117204_bib0035) 1999
Gregori (10.1016/j.neuroimage.2020.117204_bib1045) 2006; 117
Klistorner (10.1016/j.neuroimage.2020.117204_bib0026) 2014; 82
Oertel (10.1016/j.neuroimage.2020.117204_bib0037) 2019; 19
Barral (10.1016/j.neuroimage.2020.117204_bib0010) 2010; 64
Petzold (10.1016/j.neuroimage.2020.117204_bib0039) 2017; 16
Klistorner (10.1016/j.neuroimage.2020.117204_bib0027) 2018; 17
Frohman (10.1016/j.neuroimage.2020.117204_bib0020) 2006
Dadar (10.1016/j.neuroimage.2020.117204_bib0017) 2017; 157
Sriram (10.1016/j.neuroimage.2020.117204_bib0050) 2014; 9
Basser (10.1016/j.neuroimage.2020.117204_bib0011) 2002; 15
Berman (10.1016/j.neuroimage.2020.117204_bib0013) 2019; 195
Stikov (10.1016/j.neuroimage.2020.117204_bib0051) 2012; 29
Kuchling (10.1016/j.neuroimage.2020.117204_bib0029) 2017; 8
Zatorre (10.1016/j.neuroimage.2020.117204_bib0057) 2012; 15
Kaden (10.1016/j.neuroimage.2020.117204_bib0025) 2016; 139
Sherbondy (10.1016/j.neuroimage.2020.117204_bib0047) 2008; 8
Kuchling (10.1016/j.neuroimage.2020.117204_bib0028) 2018; 19
Oberwahrenbrock (10.1016/j.neuroimage.2020.117204_bib0036) 2018; 5
Raz (10.1016/j.neuroimage.2020.117204_bib0042) 2013; 81
Langdon (10.1016/j.neuroimage.2020.117204_bib0030) 2012; 18
Sled (10.1016/j.neuroimage.2020.117204_bib0049) 2001; 46
Drakesmith (10.1016/j.neuroimage.2020.117204_bib0018) 2019; 203
Zhang (10.1016/j.neuroimage.2020.117204_bib0058) 2012; 61
Compston (10.1016/j.neuroimage.2020.117204_bib0015) 2008
Horsfield (10.1016/j.neuroimage.2020.117204_bib0024) 2002; 15
Yeatman (10.1016/j.neuroimage.2020.117204_bib0056) 2012; 7
Filo (10.1016/j.neuroimage.2020.117204_bib0019) 2019; 10
Stüber (10.1016/j.neuroimage.2020.117204_bib0052) 2014; 93
Assaf (10.1016/j.neuroimage.2020.117204_bib0005) 2008; 34
References_xml – volume: 37
  start-page: 3623
  year: 2016
  end-page: 3635
  ident: bib0033
  article-title: Evaluating quantitative proton-density-mapping methods
  publication-title: Hum Brain Mapp.
– volume: 7
  year: 2012
  ident: bib0056
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS ONE
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0003
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– start-page: 1
  year: 2009
  end-page: 35
  ident: bib0006
  article-title: Advanced Normalization Tools (ANTS)
  publication-title: Insight J.
– year: 2014, January
  ident: bib0054
  article-title: Optic neuritis
  publication-title: Lancet Neurol.
– volume: 55
  start-page: 3758
  year: 2014
  end-page: 3764
  ident: bib0002
  article-title: Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 81
  start-page: 702
  year: 2013
  end-page: 709
  ident: bib0042
  article-title: Temporal reorganization to overcome monocular demyelination
  publication-title: Neurology
– volume: 4
  start-page: 661
  year: 1973
  end-page: 664
  ident: bib0022
  article-title: Visual evoked response in diagnosis of multiple sclerosis
  publication-title: Br. Med. J.
– volume: 38
  start-page: 85
  year: 2018
  end-page: 90
  ident: bib0007
  article-title: Keep your eyes wide open: on visual- and vision-related measurements to better understand multiple sclerosis pathophysiology
  publication-title: J. Neuro-Ophthalmol.
– year: 2010
  ident: bib0053
  article-title: Longitudinal study of vision and retinal nerve fiber layer thickness in MS
  publication-title: Ann. Neurol.
– volume: 82
  start-page: 2165
  year: 2014
  end-page: 2172
  ident: bib0026
  article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions
  publication-title: Neurology
– volume: 64
  start-page: 1057
  year: 2010
  end-page: 1067
  ident: bib0010
  article-title: A robust methodology for in vivo T1 mapping
  publication-title: Magn. Reson. Med.
– volume: 182
  start-page: 304
  year: 2018
  end-page: 313
  ident: bib0014
  article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex
  publication-title: Neuroimage
– volume: 117
  start-page: 1154
  year: 2006
  end-page: 1157
  ident: bib1045
  article-title: Vep latency: sex and head size
  publication-title: Clin. Neurophysiol.
– volume: 69
  start-page: 292
  year: 2011
  end-page: 302
  ident: bib0040
  article-title: Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria
  publication-title: Ann. Neurol.
– volume: 17
  start-page: 1028
  year: 2018
  end-page: 1035
  ident: bib0027
  article-title: Evidence of progressive tissue loss in the core of chronic MS lesions: a longitudinal DTI study
  publication-title: NeuroImage: Clin.
– volume: 18
  start-page: 891
  year: 2012
  end-page: 898
  ident: bib0030
  article-title: Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS)
  publication-title: Multiple Scler. J.
– volume: 195
  start-page: 128
  year: 2019
  end-page: 139
  ident: bib0013
  article-title: Modeling conduction delays in the corpus callosum using MRI-measured g-ratio
  publication-title: Neuroimage
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  ident: bib0004
  article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI‏
  publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.
– volume: 60
  start-page: 1396
  year: 2008
  end-page: 1407
  ident: bib0023
  article-title: High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T 1 relaxation obtained from 3D FLASH MRI
  publication-title: Magn. Reson. Med.
– volume: 49
  start-page: 177
  year: 2003
  end-page: 182
  ident: bib0044
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn Reson Med
– volume: 2
  year: 2015
  ident: bib0021
  article-title: Acute optic neuritis: unmet clinical needs and model for new therapies
  publication-title: Neurol. Neuroimmunol. NeuroInflamm.
– volume: 5
  year: 2014
  ident: bib3045
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
– volume: 157
  start-page: 233
  year: 2017
  end-page: 249
  ident: bib0017
  article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging
  publication-title: Neuroimage
– volume: 19
  start-page: 1667
  year: 2013
  end-page: 1672
  ident: bib0034
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat. Med.
– volume: 21
  start-page: 562
  year: 2015
  end-page: 571
  ident: bib0041
  article-title: Focal demyelinative damage and neighboring white matter integrity: an optic neuritis study
  publication-title: Mult. Scler.
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  ident: bib0058
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
– volume: 15
  start-page: 456
  year: 2002
  end-page: 467
  ident: bib0011
  article-title: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review
  publication-title: NMR Biomed.
– volume: 15
  start-page: 528
  year: 2012
  end-page: 536
  ident: bib0057
  article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning
  publication-title: Nat. Neurosci.
– volume: 8
  start-page: 279
  year: 2017
  end-page: 294
  ident: bib0029
  article-title: Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system
  publication-title: EPMA J.
– volume: 76
  start-page: 2103
  year: 2011
  end-page: 2111
  ident: bib0043
  article-title: Sustained motion perception deficit following optic neuritis: behavioral and cortical evidence
  publication-title: Neurology
– volume: 46
  start-page: 923
  year: 2001
  end-page: 931
  ident: bib0049
  article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI
  publication-title: Magn. Reson. Med.
– volume: 10
  year: 2019
  ident: bib0008
  article-title: Vision and vision-related measures in progressive multiple sclerosis
  publication-title: Front. Neurol.
– volume: 37
  start-page: 187
  year: 2017
  end-page: 194
  ident: bib0031
  article-title: Simultaneous measurement of total water content and myelin water fraction in brain at 3T using a T2 relaxation based method
  publication-title: Magn. Reson. Imaging
– volume: 9
  year: 2014
  ident: bib0050
  article-title: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients
  publication-title: PLoS ONE
– volume: 10
  year: 2019
  ident: bib0019
  article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI
  publication-title: Nat. Commun.
– volume: 36
  start-page: 185
  year: 2016
  end-page: 195
  ident: bib0016
  article-title: Vision disturbances in multiple sclerosis
  publication-title: Semin. Neurol.
– volume: 15
  start-page: 570
  year: 2002
  end-page: 577
  ident: bib0024
  article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review
  publication-title: NMR Biomed.
– volume: 34
  start-page: 51
  year: 2008
  end-page: 61
  ident: bib0005
  article-title: Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a Review
  publication-title: J. Mol. Neurosci.
– volume: 25
  start-page: 122
  year: 2015
  end-page: 131
  ident: bib0048
  article-title: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study
  publication-title: Eur. Radiol.
– volume: 21
  start-page: 163
  year: 2015
  end-page: 170
  ident: bib0046
  article-title: Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria
  publication-title: Mult. Scler.
– year: 2011
  ident: bib0001
  article-title: Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains
  publication-title: Brain Connect.
– year: 2015
  ident: bib0009
  article-title: Vision and vision-related outcome measures in multiple sclerosis
  publication-title: Brain
– year: 1999
  ident: bib0035
  article-title: Contrast mechanisms in MR imaging
  publication-title: Eur. Radiol.
– volume: 44
  start-page: 625
  year: 2000
  end-page: 632
  ident: bib0012
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
– volume: 8
  year: 2008
  ident: bib0047
  article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography
  publication-title: J Vis
– volume: 139
  start-page: 346
  year: 2016
  end-page: 359
  ident: bib0025
  article-title: Multi-compartment microscopic diffusion imaging
  publication-title: Neuroimage
– volume: 28
  start-page: 313
  year: 2015
  end-page: 322
  ident: bib0055
  article-title: Advances in MRI-based computational neuroanatomy
  publication-title: Curr. Opin. Neurol.
– volume: 93
  start-page: 95
  year: 2014
  end-page: 106
  ident: bib0052
  article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast
  publication-title: Neuroimage
– year: 2006
  ident: bib0020
  article-title: Optical coherence tomography in multiple sclerosis
  publication-title: Lancet Neurol.
– volume: 4
  year: 2017
  ident: bib0038
  article-title: Loss of corticospinal tract integrity in early MS disease stages
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
– volume: 29
  start-page: 997
  year: 2012
  end-page: 1003
  ident: bib0051
  article-title: Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure
  publication-title: Neuroimage
– volume: 203
  year: 2019
  ident: bib0018
  article-title: Estimating axon conduction velocity in vivo from microstructural MRI
  publication-title: Neuroimage
– volume: 16
  start-page: 797
  year: 2017
  end-page: 812
  ident: bib0039
  article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
– volume: 19
  start-page: 538
  year: 2018
  end-page: 550
  ident: bib0028
  article-title: Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system
  publication-title: Neuroimage Clin.
– year: 2008
  ident: bib0015
  article-title: Multiple sclerosis
  publication-title: Lancet
– volume: 5
  year: 2018
  ident: bib0036
  article-title: Multicenter reliability of semiautomatic retinal layer segmentation using OCT
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
– year: 2020
  ident: bib59
  article-title: Predicting neural response latency of the human early visual cortex from MRI-based tissue measurements of the optic radiation
  publication-title: eNeuro
– volume: 19
  start-page: 31
  year: 2019
  end-page: 43
  ident: bib0037
  article-title: Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis
  publication-title: Expert Rev. Neurother.
– volume: 71
  start-page: 602
  year: 1987
  end-page: 608
  ident: bib0045
  article-title: Visual function and pattern visual evoked response in optic neuritis
  publication-title: Br. J. Ophthalmol.
– volume: 181
  start-page: 645
  year: 2018
  end-page: 658
  ident: bib2045
  article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation
  publication-title: Neuroimage
– volume: 44
  start-page: 625
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2020.117204_bib0012
  article-title: In vivo fiber tractography using DT-MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
– volume: 28
  start-page: 313
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0055
  article-title: Advances in MRI-based computational neuroanatomy
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000222
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117204_bib0003
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– start-page: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2020.117204_bib0006
  article-title: Advanced Normalization Tools (ANTS)
  publication-title: Insight J.
– year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib0054
  article-title: Optic neuritis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(13)70259-X
– volume: 82
  start-page: 2165
  issue: 24
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib0026
  article-title: Axonal loss of retinal neurons in multiple sclerosis associated with optic radiation lesions
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000000522
– volume: 17
  start-page: 1028
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib0027
  article-title: Evidence of progressive tissue loss in the core of chronic MS lesions: a longitudinal DTI study
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2017.12.010
– volume: 37
  start-page: 187
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117204_bib0031
  article-title: Simultaneous measurement of total water content and myelin water fraction in brain at 3T using a T2 relaxation based method
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2016.12.001
– year: 2011
  ident: 10.1016/j.neuroimage.2020.117204_bib0001
  article-title: Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0071
– volume: 19
  start-page: 1667
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117204_bib0034
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm.3390
– volume: 139
  start-page: 346
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117204_bib0025
  article-title: Multi-compartment microscopic diffusion imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.002
– volume: 181
  start-page: 645
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib2045
  article-title: Tractography optimization using quantitative T1 mapping in the human optic radiation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.06.060
– volume: 8
  issue: 10
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117204_bib0047
  article-title: Identifying the human optic radiation using diffusion imaging and fiber tractography
  publication-title: J Vis
  doi: 10.1167/8.10.12
– volume: 60
  start-page: 1396
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117204_bib0023
  article-title: High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T 1 relaxation obtained from 3D FLASH MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21732
– year: 1999
  ident: 10.1016/j.neuroimage.2020.117204_bib0035
  article-title: Contrast mechanisms in MR imaging
  publication-title: Eur. Radiol.
  doi: 10.1007/s003300050789
– year: 2020
  ident: 10.1016/j.neuroimage.2020.117204_bib59
  article-title: Predicting neural response latency of the human early visual cortex from MRI-based tissue measurements of the optic radiation
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0545-19.2020
– volume: 29
  start-page: 997
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117204_bib0051
  article-title: Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure
  publication-title: Neuroimage
– year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0009
  article-title: Vision and vision-related outcome measures in multiple sclerosis
– volume: 203
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117204_bib0018
  article-title: Estimating axon conduction velocity in vivo from microstructural MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116186
– volume: 16
  start-page: 797
  issue: 10
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117204_bib0039
  article-title: Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(17)30278-8
– volume: 7
  issue: 11
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117204_bib0056
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049790
– year: 2008
  ident: 10.1016/j.neuroimage.2020.117204_bib0015
  article-title: Multiple sclerosis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61620-7
– volume: 46
  start-page: 923
  issue: 5
  year: 2001
  ident: 10.1016/j.neuroimage.2020.117204_bib0049
  article-title: Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1278
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib0050
  article-title: Relationship between optical coherence tomography and electrophysiology of the visual pathway in non-optic neuritis eyes of multiple sclerosis patients
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0102546
– volume: 25
  start-page: 122
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0048
  article-title: Optic radiation damage in multiple sclerosis is associated with visual dysfunction and retinal thinning – an ultrahigh-field MR pilot study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-014-3358-8
– volume: 195
  start-page: 128
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117204_bib0013
  article-title: Modeling conduction delays in the corpus callosum using MRI-measured g-ratio
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.03.025
– volume: 36
  start-page: 185
  issue: 2
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117204_bib0016
  article-title: Vision disturbances in multiple sclerosis
  publication-title: Semin. Neurol.
  doi: 10.1055/s-0036-1579692
– volume: 8
  start-page: 279
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117204_bib0029
  article-title: Diffusion tensor imaging for multilevel assessment of the visual pathway: possibilities for personalized outcome prediction in autoimmune disorders of the central nervous system
  publication-title: EPMA J.
  doi: 10.1007/s13167-017-0102-x
– volume: 21
  start-page: 163
  issue: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0046
  article-title: Quality control for retinal OCT in multiple sclerosis: validation of the OSCAR-IB criteria
  publication-title: Mult. Scler.
  doi: 10.1177/1352458514538110
– year: 2010
  ident: 10.1016/j.neuroimage.2020.117204_bib0053
  article-title: Longitudinal study of vision and retinal nerve fiber layer thickness in MS
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22005
– volume: 69
  start-page: 292
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117204_bib0040
  article-title: Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.22366
– volume: 19
  start-page: 538
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib0028
  article-title: Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2018.05.004
– year: 2006
  ident: 10.1016/j.neuroimage.2020.117204_bib0020
  article-title: Optical coherence tomography in multiple sclerosis
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(06)70573-7
– volume: 10
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117204_bib0019
  article-title: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11319-1
– volume: 59
  start-page: 1347
  issue: 6
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117204_bib0004
  article-title: AxCaliber: a method for measuring axon diameter distribution from diffusion MRI‏
  publication-title: Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med.
  doi: 10.1002/mrm.21577
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117204_bib0058
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.03.072
– volume: 5
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib0036
  article-title: Multicenter reliability of semiautomatic retinal layer segmentation using OCT
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000449
– volume: 18
  start-page: 891
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117204_bib0030
  article-title: Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS)
  publication-title: Multiple Scler. J.
  doi: 10.1177/1352458511431076
– volume: 4
  issue: 6
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117204_bib0038
  article-title: Loss of corticospinal tract integrity in early MS disease stages
  publication-title: Neurol. Neuroimmunol. Neuroinflamm.
  doi: 10.1212/NXI.0000000000000399
– volume: 71
  start-page: 602
  issue: 8
  year: 1987
  ident: 10.1016/j.neuroimage.2020.117204_bib0045
  article-title: Visual function and pattern visual evoked response in optic neuritis
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjo.71.8.602
– volume: 21
  start-page: 562
  issue: 5
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0041
  article-title: Focal demyelinative damage and neighboring white matter integrity: an optic neuritis study
  publication-title: Mult. Scler.
  doi: 10.1177/1352458514551452
– volume: 49
  start-page: 177
  issue: 1
  year: 2003
  ident: 10.1016/j.neuroimage.2020.117204_bib0044
  article-title: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.10308
– volume: 157
  start-page: 233
  year: 2017
  ident: 10.1016/j.neuroimage.2020.117204_bib0017
  article-title: Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.009
– volume: 15
  start-page: 456
  issue: 7–8
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117204_bib0011
  article-title: Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.783
– volume: 10
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117204_bib0008
  article-title: Vision and vision-related measures in progressive multiple sclerosis
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00455
– volume: 19
  start-page: 31
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2020.117204_bib0037
  article-title: Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis
  publication-title: Expert Rev. Neurother.
  doi: 10.1080/14737175.2019.1559051
– volume: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib3045
  article-title: Lifespan maturation and degeneration of human brain white matter
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5932
– volume: 81
  start-page: 702
  issue: 8
  year: 2013
  ident: 10.1016/j.neuroimage.2020.117204_bib0042
  article-title: Temporal reorganization to overcome monocular demyelination
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182a1aa3e
– volume: 76
  start-page: 2103
  issue: 24
  year: 2011
  ident: 10.1016/j.neuroimage.2020.117204_bib0043
  article-title: Sustained motion perception deficit following optic neuritis: behavioral and cortical evidence
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e31821f4602
– volume: 34
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2020.117204_bib0005
  article-title: Diffusion Tensor Imaging (DTI)-based white matter mapping in brain research: a Review
  publication-title: J. Mol. Neurosci.
  doi: 10.1007/s12031-007-0029-0
– volume: 2
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2020.117204_bib0021
  article-title: Acute optic neuritis: unmet clinical needs and model for new therapies
  publication-title: Neurol. Neuroimmunol. NeuroInflamm.
  doi: 10.1212/NXI.0000000000000135
– volume: 38
  start-page: 85
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib0007
  article-title: Keep your eyes wide open: on visual- and vision-related measurements to better understand multiple sclerosis pathophysiology
  publication-title: J. Neuro-Ophthalmol.
  doi: 10.1097/WNO.0000000000000634
– volume: 93
  start-page: 95
  issue: P1
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib0052
  article-title: Myelin and iron concentration in the human brain: a quantitative study of MRI contrast
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.02.026
– volume: 15
  start-page: 570
  issue: 7–8
  year: 2002
  ident: 10.1016/j.neuroimage.2020.117204_bib0024
  article-title: Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases - a review
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.787
– volume: 15
  start-page: 528
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2020.117204_bib0057
  article-title: Plasticity in gray and white: neuroimaging changes in brain structure during learning
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3045
– volume: 182
  start-page: 304
  year: 2018
  ident: 10.1016/j.neuroimage.2020.117204_bib0014
  article-title: Evaluating g-ratio weighted changes in the corpus callosum as a function of age and sex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.076
– volume: 4
  start-page: 661
  issue: 5893
  year: 1973
  ident: 10.1016/j.neuroimage.2020.117204_bib0022
  article-title: Visual evoked response in diagnosis of multiple sclerosis
  publication-title: Br. Med. J.
  doi: 10.1136/bmj.4.5893.661
– volume: 37
  start-page: 3623
  issue: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2020.117204_bib0033
  article-title: Evaluating quantitative proton-density-mapping methods
  publication-title: Hum Brain Mapp.
  doi: 10.1002/hbm.23264
– volume: 64
  start-page: 1057
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2020.117204_bib0010
  article-title: A robust methodology for in vivo T1 mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22497
– volume: 117
  start-page: 1154
  issue: 5
  year: 2006
  ident: 10.1016/j.neuroimage.2020.117204_bib1045
  article-title: Vep latency: sex and head size
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.01.014
– volume: 55
  start-page: 3758
  issue: 6
  year: 2014
  ident: 10.1016/j.neuroimage.2020.117204_bib0002
  article-title: Latency of multifocal visual evoked potentials in nonoptic neuritis eyes of multiple sclerosis patients associated with optic radiation lesions
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.14-14571
SSID ssj0009148
Score 2.429041
Snippet In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117204
SubjectTerms Adult
Cell therapy
Central nervous system
Demyelinating diseases
Demyelination
Diffusion Magnetic Resonance Imaging
Disease
Evoked Potentials, Visual - physiology
Female
Humans
Latency
Longitudinal Studies
Magnetic Resonance Imaging
Male
Middle Aged
Multiple sclerosis
Multiple Sclerosis, Chronic Progressive - diagnostic imaging
Multiple Sclerosis, Chronic Progressive - pathology
Multiple Sclerosis, Chronic Progressive - physiopathology
Myelin
Neural Conduction - physiology
Neuritis
Neurological complications
Optic nerve
Optic neuritis
Patients
Retina
Retina - diagnostic imaging
Retina - pathology
Retina - physiopathology
Stem cells
Substantia alba
Tomography, Optical Coherence
Visual evoked potentials
Visual pathways
Visual Pathways - diagnostic imaging
Visual Pathways - pathology
Visual Pathways - physiopathology
Visual system
White Matter - diagnostic imaging
White Matter - pathology
White Matter - physiopathology
Young adults
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSEuiJZXoFRG4hrhTTaOLU5t1aqHtuoBUG-W44cUBEm16S7qv2fGjxQOiD1wdTyR5W9sfxNPviHkA0rMMQ2Rqmg0BCi8tqXomCkFCq04oysRsiq_XrRXV-LmRl7_VuoLc8KiPHCcuI9WMw1xFG-8bpZ84TSTwoHT1JZxJ9qw-wLrycFUltsFlp_ydmI2V1CH7H_AGoWYsAp3lVUqzpYPo6DZ_8eZ9DfOGc6es2fkaSKN9CgOdo88csM-eXyZrsWfk_FkHGyUgaWo-ng_0X6gQO3opp_WYIl1h39i8-hpyMjC5NeNozmdkE7wXhhiP9EktDpRM2706p7ih1raYSEJGrVm1yv3gnw5O_18cl6mSgqlATp2VwKN81JIv-RcNlJLy2HpeQNAVFZ4y4CjQJjhpGuYkcva8mrRsUZzawUqi_v6JdkZxsG9JhTQ7KzumtYCHlZWWnvmbSdNi7IvThakzVOqTJIZx2oX31XOJ_umHsBQCIaKYBRkMVveRqmNLWyOEbW5P4plhwZwIZVcSP3LhQoiM-Yq_48KOyi8qN9iAJ9m28RZIhfZ0vogu5hKe8ekqiWABKy4qQvyfn4Mqx6vcvTgxjX2qVE4CLhtQV5F15znoK5aYMWtfPM_5uYteYLjjX9fHpAdcDT3juyazV0_rQ7DovsF4KQyVw
  priority: 102
  providerName: Directory of Open Access Journals
Title Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381192030690X
https://dx.doi.org/10.1016/j.neuroimage.2020.117204
https://www.ncbi.nlm.nih.gov/pubmed/32745679
https://www.proquest.com/docview/2469522653
https://www.proquest.com/docview/2430374929
https://doaj.org/article/da0a13365fa5461ea098e6383d06e872
Volume 221
WOSCitedRecordID wos000600795000066&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251009
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuwjthfcjsFRG4hqRR5PY4oDY1a440KpCgHqzHNtBQZDsNtui_ffM2E4rDqBKXHJIM5bdGY-_scffALwmirlEYaTKC4UBSpmbmNeJjjkRrVitMu6yKr9-rOZzvlyKRdhwG0Ja5egTnaM2vaY98jcZxnGEFYr83eVVTFWj6HQ1lNA4gCNiSchd6t5iR7qbTv1VuCKPeZqKkMnj87scX2T7E2ctRomZO73MQrm2cXlyLP5_rFJ_Q6FuNbq497_juA93Aw5l773hPIBbtnsId2bhpP0R9Gd9ZzyzLCMiyZuBtR1DtMg27bBGSSpl_Ite9w1zSV6UT7uxbMxQZAO2i2NsBxa4Wwem-41a3TDa-2U11aZgnr52vbKP4cvF-eezD3EozhBrRHjXMSLDRnDRTEscj1DC4IjSRqNuM8MbkyDswcjFClskWkxzU2ZpnRSqNIYTWXmTP4HDru_sM2BoILVRdVEZVUyNyJRqksbUQlfEJGNFBNWoE6kDczkV0PghxxS173KnTUnalF6bEaRbyUvP3rGHzCmpffs98W-7F_3qmwzTWRqVKIzuy6LBLpepVYngFl1ZbpLS8iqLQIxGI8crruiUsaF2jw683coGGOThzZ7SJ6PdyeCOBrkzughebX9GR0KnQ6qz_Zq-yYmLCOFyBE-9bW__gzyrEGhX4vm_G38Bx9QTf1XzBA7RhOxLuK031-2wmsBBtazck0_g6PR8vvg0cVsg-Jxls4mbu78B50VIRw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL70eggJHgGJE4L1sIIShUrbq74lBQb64TOygIkrLpbrV_it_ITJxkxQG0lx64JpmR43yeRzz-BuAFUcwFGjNVkWhMUNLI-CIPCl8Q0YotNBddVeWXSTabieNj-WkLfg1nYaiscrCJnaE2TUH_yF9xzOMoVkiit6c_feoaRburQwsNB4tDuzrHlK19c_ABv-9Lzvc-Hu3u-31XAb_A0OTMx5CmlEKWcYoKpZYGVYZlgYPiRpQGM3x0mqmVNgkKGUcm5WEeJDo1RhDLdhmh3ktwOcZMiFpFTPl0TfIbxu7oXRL5IgxlXznk6sk6fsrqB1oJzEp5t1vK-_Zwgzvsugb84RX_FvV23m_v5v82b7fgRh9ns3duYdyGLVvfgavTvpLgLjS7TW0ccy4josxVy6qaYTTMllW7QElq1XxOl5uSdUVsVC-8tGyowGQt6sU5rVrWc9O2rGiWer5i9G-b5dR7gzl63sXc3oPPF_K692G7bmr7EBgugNzoPMmMTmIjudZlUJpcFhkx5VjpQTZgQBU9Mzs1CPmuhhK8b2qNHkXoUQ49HoSj5KljJ9lA5j3BbHye-MW7C838q-rNlTI60GEUpUmJQ05DqwMpLJrqyASpFRn3QA4gVcMRXnQ6qKjaYACvR9k-zHPh24bSOwPOVW9uW7UGuQfPx9toKGn3S9e2WdAzEXEtYTrgwQO3lsY5iHiGiUQmH_1b-TO4tn80najJwezwMVynUbljqTuwjXCyT-BKsTyr2vnTzi4wOLnoBfUbH3Wc0A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VgioufBcWChgJjlETZ5PYQghBy4qqZbUHQL0ZJ3ZQECRl091q_xq_jpnYyYoDaC89cE0yI8eZGc_Ez28AnhPFXKixUhWJxgIljU0g8rAIBBGt2EJz0aEqP59k06k4PZWzLfjVn4UhWGUfE7tAbZqC_pHvc6zjKFdI4v3SwyJmh5PXZz8D6iBFO619Ow1nIsd2dYHlW_vq6BC_9QvOJ-8-HrwPfIeBoMA05TzA9KaUQpbjFJVLLQ2qj8oCB8iNKA1W-7iAplbaJCzkODYpj_Iw0akxghi3yxj1XoGrGZGWd7DB2ZrwNxq7Y3hJHIgokh5F5LBlHVdl9QMjBlaovNs55b5VXL80dh0E_lgh_5YBdyvh5Ob_PIe34IbPv9kb5zC3YcvWd2Dng0cY3IXmoKmNY9RlRKC5allVM8yS2bJqFyhJLZwv6HJTsg7cRjjipWU9MpO1qBfnt2qZ56xtWdEs9XzF6J83y6knB3O0vYu5vQefLuV1d2G7bmr7ABg6Rm50nmRGJ2MjudZlWJpcFhkx6Fg5gqy3B1V4xnZqHPJd9dC8b2ptSYosSTlLGkE0SJ451pINZN6SyQ3PE-94d6GZf1U-jCmjQx3FcZqUOOQ0sjqUwmIIj02YWpHxEcjeYFV_tBcXI1RUbTCAl4OsT_9cWreh9F5v88qH4VatDX4Ez4bbGEBpV0zXtlnQMzFxMGGZMIL7zq-GOYh5hgVGJh_-W_lT2EE_UidH0-NHcJ0G5U6r7sE2WpN9DNeK5XnVzp90IYLBl8v2p9_8oqWh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conduction+delays+in+the+visual+pathways+of+progressive+multiple+sclerosis+patients+covary+with+brain+structure&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Berman%2C+Shai&rft.au=Backner%2C+Yael&rft.au=Krupnik%2C+Ronnie&rft.au=Paul%2C+Friedemann&rft.date=2020-11-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=221&rft_id=info:doi/10.1016%2Fj.neuroimage.2020.117204&rft.externalDocID=S105381192030690X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon