Offline impact of transcranial focused ultrasound on cortical activation in primates
To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for r...
Gespeichert in:
| Veröffentlicht in: | eLife Jg. 8 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
eLife Sciences Publications Ltd
12.02.2019
eLife Sciences Publication eLife Sciences Publications, Ltd |
| Schlagworte: | |
| ISSN: | 2050-084X, 2050-084X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting ‘offline’ changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions – supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes.
Ultrasound is well known for making visible what is hidden, for example, when giving parents a glimpse of their child before birth. But researchers are now using these high-frequency sound waves – beyond the range of human hearing – for a wholly different purpose: to manipulate the activity of the brain. Conventional brain stimulation techniques use electric currents or magnetic fields to alter brain activity. These techniques, however, have limitations. They can only reach the surface of the brain and are not particularly precise. By contrast, beams of ultrasound can be focused at a millimetre scale, even deep within the brain. Ultrasound thus has the potential to provide new insights into how the brain works.
Most studies of ultrasound stimulation have looked at what happens to the brain during the stimulation itself. But could ultrasound also induce longer-lasting changes in brain activity? Changes that persist after the stimulation has ended would be valuable for research. They would also make it more likely that we could use ultrasound to treat brain disorders by changing brain activity.
Verhagen, Gallea et al. used a brain scanner to measure brain activity in macaque monkeys after ultrasound stimulation. The results showed that 40 seconds of repetitive ultrasound changed brain activity for up to two hours. Ultrasound caused the stimulated brain area to interact more selectively with the rest of the brain. Notably, only the stimulated area changed its activity in this way. This helps rule out the possibility that the changes reflect non-specific effects. If the monkeys had been able to hear the ultrasound, for example, it would have changed the activity of the parts of the brain related to hearing. Most important of all, the changes were reversible and did not harm the brain.
The results of Verhagen, Gallea et al. show that repetitive ultrasound can induce long-lasting alterations in brain activity. It can target areas deep within the brain, including those that are out of reach with other techniques. If this procedure also shows longer-lasting effects in people, it could yield valuable insights into the links between brain and behaviour. It could also help us develop new treatments for neurological and psychiatric disorders. |
|---|---|
| AbstractList | To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions - supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes. To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions - supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes.To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions - supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes. To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting ‘offline’ changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions – supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes. Ultrasound is well known for making visible what is hidden, for example, when giving parents a glimpse of their child before birth. But researchers are now using these high-frequency sound waves – beyond the range of human hearing – for a wholly different purpose: to manipulate the activity of the brain. Conventional brain stimulation techniques use electric currents or magnetic fields to alter brain activity. These techniques, however, have limitations. They can only reach the surface of the brain and are not particularly precise. By contrast, beams of ultrasound can be focused at a millimetre scale, even deep within the brain. Ultrasound thus has the potential to provide new insights into how the brain works. Most studies of ultrasound stimulation have looked at what happens to the brain during the stimulation itself. But could ultrasound also induce longer-lasting changes in brain activity? Changes that persist after the stimulation has ended would be valuable for research. They would also make it more likely that we could use ultrasound to treat brain disorders by changing brain activity. Verhagen, Gallea et al. used a brain scanner to measure brain activity in macaque monkeys after ultrasound stimulation. The results showed that 40 seconds of repetitive ultrasound changed brain activity for up to two hours. Ultrasound caused the stimulated brain area to interact more selectively with the rest of the brain. Notably, only the stimulated area changed its activity in this way. This helps rule out the possibility that the changes reflect non-specific effects. If the monkeys had been able to hear the ultrasound, for example, it would have changed the activity of the parts of the brain related to hearing. Most important of all, the changes were reversible and did not harm the brain. The results of Verhagen, Gallea et al. show that repetitive ultrasound can induce long-lasting alterations in brain activity. It can target areas deep within the brain, including those that are out of reach with other techniques. If this procedure also shows longer-lasting effects in people, it could yield valuable insights into the links between brain and behaviour. It could also help us develop new treatments for neurological and psychiatric disorders. To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting ‘offline’ changes. Here, we present a TUS protocol that modulates brain activation in macaques for more than one hour after 40 s of stimulation, while circumventing auditory confounds. Normally activity in brain areas reflects activity in interconnected regions but TUS caused stimulated areas to interact more selectively with the rest of the brain. In a within-subject design, we observe regionally specific TUS effects for two medial frontal brain regions – supplementary motor area and frontal polar cortex. Independently of these site-specific effects, TUS also induced signal changes in the meningeal compartment. TUS effects were temporary and not associated with microstructural changes. Ultrasound is well known for making visible what is hidden, for example, when giving parents a glimpse of their child before birth. But researchers are now using these high-frequency sound waves – beyond the range of human hearing – for a wholly different purpose: to manipulate the activity of the brain. Conventional brain stimulation techniques use electric currents or magnetic fields to alter brain activity. These techniques, however, have limitations. They can only reach the surface of the brain and are not particularly precise. By contrast, beams of ultrasound can be focused at a millimetre scale, even deep within the brain. Ultrasound thus has the potential to provide new insights into how the brain works. Most studies of ultrasound stimulation have looked at what happens to the brain during the stimulation itself. But could ultrasound also induce longer-lasting changes in brain activity? Changes that persist after the stimulation has ended would be valuable for research. They would also make it more likely that we could use ultrasound to treat brain disorders by changing brain activity. Verhagen, Gallea et al. used a brain scanner to measure brain activity in macaque monkeys after ultrasound stimulation. The results showed that 40 seconds of repetitive ultrasound changed brain activity for up to two hours. Ultrasound caused the stimulated brain area to interact more selectively with the rest of the brain. Notably, only the stimulated area changed its activity in this way. This helps rule out the possibility that the changes reflect non-specific effects. If the monkeys had been able to hear the ultrasound, for example, it would have changed the activity of the parts of the brain related to hearing. Most important of all, the changes were reversible and did not harm the brain. The results of Verhagen, Gallea et al. show that repetitive ultrasound can induce long-lasting alterations in brain activity. It can target areas deep within the brain, including those that are out of reach with other techniques. If this procedure also shows longer-lasting effects in people, it could yield valuable insights into the links between brain and behaviour. It could also help us develop new treatments for neurological and psychiatric disorders. |
| Author | Gallea, Cécile Krug, Kristine Constans, Charlotte Roumazeilles, Léa Lehericy, Stéphane Aubry, Jean-François Klein-Flügge, Miriam C Pouget, Pierre Santin, Mathieu Verhagen, Lennart Rushworth, Matthew FS Ahnine, Harry Folloni, Davide Jensen, Daria EA Mars, Rogier B Ahmed, Bashir Sallet, Jerome |
| Author_xml | – sequence: 1 givenname: Lennart orcidid: 0000-0003-3207-7929 surname: Verhagen fullname: Verhagen, Lennart organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 2 givenname: Cécile surname: Gallea fullname: Gallea, Cécile organization: Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France – sequence: 3 givenname: Davide orcidid: 0000-0003-1653-5969 surname: Folloni fullname: Folloni, Davide organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 4 givenname: Charlotte orcidid: 0000-0001-6378-9158 surname: Constans fullname: Constans, Charlotte organization: Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Paris, France – sequence: 5 givenname: Daria EA surname: Jensen fullname: Jensen, Daria EA organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 6 givenname: Harry surname: Ahnine fullname: Ahnine, Harry organization: Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France – sequence: 7 givenname: Léa surname: Roumazeilles fullname: Roumazeilles, Léa organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 8 givenname: Mathieu surname: Santin fullname: Santin, Mathieu organization: Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France – sequence: 9 givenname: Bashir surname: Ahmed fullname: Ahmed, Bashir organization: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom – sequence: 10 givenname: Stéphane surname: Lehericy fullname: Lehericy, Stéphane organization: Institute du Cerveau et de la Moelle épinière (ICM), Centre for NeuroImaging Research (CENIR), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France – sequence: 11 givenname: Miriam C orcidid: 0000-0002-5156-9833 surname: Klein-Flügge fullname: Klein-Flügge, Miriam C organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 12 givenname: Kristine orcidid: 0000-0001-7119-9350 surname: Krug fullname: Krug, Kristine organization: Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom – sequence: 13 givenname: Rogier B surname: Mars fullname: Mars, Rogier B organization: Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands – sequence: 14 givenname: Matthew FS surname: Rushworth fullname: Rushworth, Matthew FS organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom – sequence: 15 givenname: Pierre orcidid: 0000-0002-4721-7376 surname: Pouget fullname: Pouget, Pierre organization: Institute du Cerveau et de la Moelle épinière (ICM), UMRS 975 INSERM, CNRS 7225, UMPC, Paris, France – sequence: 16 givenname: Jean-François orcidid: 0000-0003-2644-3945 surname: Aubry fullname: Aubry, Jean-François organization: Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Paris, France – sequence: 17 givenname: Jerome orcidid: 0000-0002-7878-0209 surname: Sallet fullname: Sallet, Jerome organization: Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom, Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30747105$$D View this record in MEDLINE/PubMed https://hal.science/hal-04073656$$DView record in HAL |
| BookMark | eNptUk1r3DAQFSWhSdOcei-GXlrKJpKsD_sSCKFtAgu5JNCb0Mco0eKVtpa90H9f2ZuGZIkO0jDz5r0ZzXxABzFFQOgTwWeSc3YOy-DhjGHOyDt0TDHHC9yw3wcv7CN0mvMKlyNZ05D2PTqqiykJ5sfo7tb7LkSownqj7VAlXw29jtmWK-iu8smOGVw1dsWd0xhdlWJlUz8EW8IlJWz1EIovxGrTh7UeIH9Eh153GU6f3hN0__PH3dX1Ynn76-bqcrmwXPJhQYh3VGBvLdXUm9Y7Z5wESQ03Lalxa43xrNGuFO1kI4HXVBMjGLPMWUPrE3Sz43VJr9Ss3v9VSQc1O1L_oPRUaAcKGyEcIU0LUjPwzAipHXYtrZnnBEjhuthxbUazBmchloa7V6SvIzE8qoe0VaKWlDZTMd92BI97adeXSzX5MMOyFlxsJ7GvT2J9-jNCHtQ6ZAtdpyOkMStKmlowzlpRoF_2oKs09rF864QSbUMxncQ_v6z-Wf__oAvg-w5g-5RzD_4ZQrCaNknNm6TmTSposoe2YZjHXFoP3Zs5_wDJHczl |
| CitedBy_id | crossref_primary_10_1016_j_neuroimage_2019_116236 crossref_primary_10_1038_s41467_021_22743_7 crossref_primary_10_7554_eLife_47175 crossref_primary_10_1109_TMI_2020_3019087 crossref_primary_10_3389_fphy_2020_00150 crossref_primary_10_1002_jnr_25029 crossref_primary_10_3389_fnins_2021_620863 crossref_primary_10_1016_j_brs_2023_09_004 crossref_primary_10_3389_fpsyt_2023_1211566 crossref_primary_10_1038_s41380_025_03033_w crossref_primary_10_1371_journal_pone_0278865 crossref_primary_10_1016_j_fmre_2022_02_010 crossref_primary_10_1002_ana_26294 crossref_primary_10_1038_s41593_023_01500_7 crossref_primary_10_1038_s41467_024_48576_8 crossref_primary_10_1186_s12967_021_03222_5 crossref_primary_10_1371_journal_pone_0329748 crossref_primary_10_1371_journal_pone_0288654 crossref_primary_10_1016_j_heliyon_2023_e18482 crossref_primary_10_1038_s41598_021_85504_y crossref_primary_10_1146_annurev_pharmtox_010919_023253 crossref_primary_10_3390_biomedicines13010084 crossref_primary_10_3390_psychiatryint4030029 crossref_primary_10_1038_s41583_019_0149_x crossref_primary_10_1038_s41928_025_01420_3 crossref_primary_10_3389_fnins_2020_00445 crossref_primary_10_1016_j_clinph_2021_12_010 crossref_primary_10_1016_j_brs_2024_04_013 crossref_primary_10_1371_journal_pone_0224311 crossref_primary_10_1038_s41467_023_40998_0 crossref_primary_10_1016_j_brs_2025_05_134 crossref_primary_10_1038_s41598_022_20554_4 crossref_primary_10_1038_s41582_020_00418_z crossref_primary_10_1016_j_compbiomed_2025_111094 crossref_primary_10_1038_s41467_024_46461_y crossref_primary_10_1162_netn_a_00388 crossref_primary_10_1016_j_ultras_2021_106591 crossref_primary_10_1016_j_neuroimage_2021_118017 crossref_primary_10_1088_1741_2552_ad9406 crossref_primary_10_1002_advs_202002026 crossref_primary_10_1016_j_brain_2020_100014 crossref_primary_10_1016_j_cobeha_2024_101370 crossref_primary_10_1016_j_brs_2020_08_014 crossref_primary_10_1016_j_neuroimage_2024_120841 crossref_primary_10_1142_S1793545825500129 crossref_primary_10_1146_annurev_vision_030320_041223 crossref_primary_10_3390_ijms24032578 crossref_primary_10_1016_j_ultsonch_2023_106686 crossref_primary_10_1109_TBME_2021_3085170 crossref_primary_10_1371_journal_pbio_3001785 crossref_primary_10_1109_TBME_2023_3313987 crossref_primary_10_1016_j_brs_2019_07_024 crossref_primary_10_1073_pnas_2206828119 crossref_primary_10_1016_j_neuron_2024_07_002 crossref_primary_10_1002_adfm_201908999 crossref_primary_10_1016_j_cobeha_2024_101355 crossref_primary_10_1088_1741_2552_ad731c crossref_primary_10_1016_j_brs_2021_01_006 crossref_primary_10_1016_j_brs_2021_01_003 crossref_primary_10_1038_s41598_024_62562_6 crossref_primary_10_1016_j_brs_2025_08_014 crossref_primary_10_1016_j_neuron_2020_09_003 crossref_primary_10_21105_joss_08128 crossref_primary_10_1038_s42255_023_00804_z crossref_primary_10_1097_j_pain_0000000000003322 crossref_primary_10_3389_fneur_2019_00549 crossref_primary_10_3389_fnhum_2020_00066 crossref_primary_10_3390_ijms25115687 crossref_primary_10_7554_eLife_88762 crossref_primary_10_1016_j_brs_2024_06_005 crossref_primary_10_1016_j_clinph_2025_01_004 crossref_primary_10_1038_s41598_020_62265_8 crossref_primary_10_1007_s40120_022_00362_8 crossref_primary_10_1016_j_brs_2023_05_012 crossref_primary_10_1038_s41467_022_28205_y crossref_primary_10_1371_journal_pone_0267268 crossref_primary_10_7554_eLife_88762_3 crossref_primary_10_1016_j_brs_2021_12_005 crossref_primary_10_3389_fnhum_2020_00052 crossref_primary_10_3389_fnins_2022_1011699 crossref_primary_10_1016_j_neuron_2019_10_030 crossref_primary_10_1016_j_ultrasmedbio_2025_04_011 crossref_primary_10_1111_ejn_16676 crossref_primary_10_1016_j_brs_2025_04_008 crossref_primary_10_1109_TUFFC_2020_3005670 crossref_primary_10_1016_j_neuroimage_2021_118693 crossref_primary_10_1016_j_ultrasmedbio_2023_11_003 crossref_primary_10_1109_TUFFC_2020_2994877 crossref_primary_10_3389_fnhum_2022_872639 crossref_primary_10_1016_j_neuroimage_2024_120768 crossref_primary_10_3389_fnhum_2024_1392199 crossref_primary_10_1016_j_brs_2023_11_014 crossref_primary_10_1109_TUFFC_2020_3019932 crossref_primary_10_3389_fnhum_2024_1500502 crossref_primary_10_1038_s41598_024_81102_w crossref_primary_10_1109_TUFFC_2020_2968479 crossref_primary_10_1016_j_brs_2025_04_018 crossref_primary_10_1038_s42003_023_05629_w crossref_primary_10_1109_TBME_2020_3030892 crossref_primary_10_1016_j_pnpbp_2024_111244 crossref_primary_10_1038_s44172_023_00146_4 crossref_primary_10_1126_sciadv_ads1236 crossref_primary_10_1109_TBME_2024_3391383 crossref_primary_10_1038_s41386_024_01976_2 crossref_primary_10_1038_s41586_020_03115_5 crossref_primary_10_1016_j_brs_2020_02_017 crossref_primary_10_1176_appi_focus_20109 crossref_primary_10_1016_j_neuroimage_2021_118557 crossref_primary_10_1088_1741_2552_ad27ef crossref_primary_10_1016_j_brs_2024_05_003 crossref_primary_10_1063_5_0011837 crossref_primary_10_1016_j_brs_2022_05_004 crossref_primary_10_3390_mi15091106 crossref_primary_10_1038_s41467_024_49128_w crossref_primary_10_1016_j_plrev_2019_08_003 crossref_primary_10_1016_j_brs_2020_10_007 crossref_primary_10_1016_j_brs_2024_10_008 crossref_primary_10_1109_TNSRE_2022_3148877 crossref_primary_10_1038_s41386_021_01079_2 crossref_primary_10_3389_fnins_2021_761720 crossref_primary_10_1016_j_neuroimage_2021_118093 crossref_primary_10_3389_fnhum_2021_749162 crossref_primary_10_1111_pcn_13663 crossref_primary_10_1126_sciadv_ads6947 crossref_primary_10_1016_j_neuron_2023_09_035 crossref_primary_10_3389_fnins_2025_1595061 crossref_primary_10_1002_mrm_30562 crossref_primary_10_1088_1741_2552_abae8b crossref_primary_10_3389_fnhum_2025_1574721 crossref_primary_10_1038_s41598_021_98920_x crossref_primary_10_1113_JP285613 crossref_primary_10_1002_advs_201902583 crossref_primary_10_3389_fnins_2022_935283 crossref_primary_10_1038_s41593_019_0375_6 crossref_primary_10_1016_j_brs_2022_10_001 crossref_primary_10_1038_s41467_024_54564_9 crossref_primary_10_1126_science_adp7206 crossref_primary_10_1121_10_0038755 crossref_primary_10_1038_s41467_022_28040_1 crossref_primary_10_1007_s12311_019_01091_9 crossref_primary_10_1016_j_apacoust_2024_109995 crossref_primary_10_1016_j_brain_2021_100031 crossref_primary_10_1016_j_neubiorev_2021_10_040 crossref_primary_10_1126_science_add4836 crossref_primary_10_1002_mp_15358 crossref_primary_10_1016_j_neubiorev_2020_06_007 crossref_primary_10_1002_advs_202202345 crossref_primary_10_1016_j_brs_2023_04_012 crossref_primary_10_1038_s41598_024_61571_9 crossref_primary_10_1016_j_brs_2023_12_002 crossref_primary_10_1063_5_0208446 crossref_primary_10_1038_s41380_024_02509_5 crossref_primary_10_3390_brainsci12101277 crossref_primary_10_1016_j_brs_2022_09_012 crossref_primary_10_1038_s41467_025_57883_7 crossref_primary_10_1016_j_brs_2022_01_014 crossref_primary_10_1016_j_brs_2022_01_015 crossref_primary_10_1016_j_brs_2023_08_003 crossref_primary_10_1038_s41562_022_01434_3 crossref_primary_10_1109_TNSRE_2024_3351312 crossref_primary_10_1109_TUFFC_2025_3531971 crossref_primary_10_1088_1741_2552_acb014 crossref_primary_10_1038_s41551_025_01449_x crossref_primary_10_3390_brainsci12050611 crossref_primary_10_1016_j_neuron_2023_02_018 crossref_primary_10_1080_30652669_2025_2544249 crossref_primary_10_1016_j_brs_2023_08_011 crossref_primary_10_3390_brainsci11010084 crossref_primary_10_1073_pnas_2000759117 crossref_primary_10_1186_s13256_023_04194_4 crossref_primary_10_1016_j_eml_2021_101539 crossref_primary_10_1002_advs_202101934 crossref_primary_10_1016_j_ultras_2025_107692 crossref_primary_10_1038_s41598_019_51876_5 crossref_primary_10_1016_j_neuron_2021_08_032 crossref_primary_10_1161_STROKEAHA_124_046679 crossref_primary_10_1109_TIM_2021_3125978 crossref_primary_10_1016_j_brs_2022_12_005 crossref_primary_10_1016_j_brs_2022_12_003 crossref_primary_10_1088_1741_2552_ac889f crossref_primary_10_1182_blood_2023023718 crossref_primary_10_3390_brainsci14030218 crossref_primary_10_1016_j_brs_2024_04_005 crossref_primary_10_1038_s41467_024_46275_y crossref_primary_10_1002_advs_202302404 crossref_primary_10_7554_eLife_86190 crossref_primary_10_1016_j_neuron_2019_01_019 crossref_primary_10_3389_fnhum_2024_1412921 crossref_primary_10_1016_j_actbio_2019_07_041 crossref_primary_10_1016_j_brs_2022_01_002 crossref_primary_10_1016_j_brs_2023_01_1674 crossref_primary_10_1016_j_neuroimage_2025_121074 crossref_primary_10_3389_fphys_2020_01042 crossref_primary_10_1016_j_actbio_2022_07_034 crossref_primary_10_1016_j_crneur_2025_100148 crossref_primary_10_1016_j_isci_2023_108372 |
| Cites_doi | 10.1016/j.neuron.2018.05.009 10.1016/j.cub.2013.10.029 10.1523/JNEUROSCI.3902-04.2005 10.1073/pnas.0905314106 10.1002/cne.903360205 10.1121/1.2717409 10.1016/j.brs.2018.08.013 10.1007/s00702-017-1697-8 10.1016/j.neuroimage.2014.07.051 10.1016/j.neuroimage.2011.02.058 10.1073/pnas.0403743101 10.1523/JNEUROSCI.2419-07.2007 10.1016/j.neuroimage.2008.10.058 10.1016/0301-5629(79)90086-3 10.1073/pnas.1302956110 10.3171/2016.11.JNS16976 10.1162/jocn.1995.7.1.1 10.1523/JNEUROSCI.4903-14.2015 10.1016/j.neuron.2010.05.008 10.1038/srep34026 10.1073/pnas.1305062110 10.1152/jn.00508.2010 10.1002/cne.903410308 10.1523/JNEUROSCI.5102-10.2011 10.1093/cercor/bhx114 10.1101/336917 10.1038/s41467-017-01833-5 10.1073/pnas.1518785112 10.1016/j.cub.2017.11.001 10.1118/1.4812423 10.1016/j.neuroimage.2011.09.015 10.1146/annurev-neuro-071013-014048 10.1016/j.neuron.2004.12.033 10.1118/1.3668316 10.1006/nimg.2002.1132 10.1016/j.brs.2017.07.007 10.1016/j.neubiorev.2015.10.008 10.1016/j.conb.2018.04.011 10.1121/1.1529663 10.1038/nn.3422 10.1038/srep08743 10.1002/hbm.10062 10.1109/42.906424 10.1038/s41593-017-0054-4 10.1088/1361-6560/aaa15c 10.3171/2013.5.JNS122327 10.1016/j.neuroimage.2013.04.127 10.1109/TUFFC.2017.2651648 10.1016/j.neuron.2015.08.018 10.1016/j.neuron.2019.01.019 10.1038/nature05758 10.1093/cercor/bhw198 10.1016/j.neuron.2013.11.012 10.1016/j.neuron.2018.05.031 10.1016/S1361-8415(01)00036-6 10.1016/j.ultrasmedbio.2015.10.001 10.1016/j.neuron.2018.04.036 10.1097/WNR.0000000000000330 10.1371/journal.pone.0077115 10.1016/j.neuron.2007.04.021 10.1007/s40473-018-0156-7 10.1016/j.neuroimage.2014.01.060 10.1016/j.neuron.2007.10.015 10.1038/nprot.2011.371 10.1073/pnas.1608282113 10.1523/JNEUROSCI.1458-17.2018 10.1016/j.jneumeth.2007.03.024 10.1523/JNEUROSCI.5108-12.2013 10.1007/s004290000127 10.1073/pnas.1410767112 10.1088/1741-2560/13/3/031003 10.1038/nn.3620 10.1093/cercor/bhw248 10.1002/hbm.23981 10.1038/nrn893 10.1098/rstb.2014.0201 10.1088/0031-9155/56/15/003 10.1038/srep24170 10.1152/jappl.1948.1.2.93 10.1016/j.tins.2008.08.008 |
| ContentType | Journal Article |
| Copyright | 2019, Verhagen et al. 2019, Verhagen et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2019, Verhagen et al 2019 Verhagen et al |
| Copyright_xml | – notice: 2019, Verhagen et al. – notice: 2019, Verhagen et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2019, Verhagen et al 2019 Verhagen et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC 5PM DOA |
| DOI | 10.7554/eLife.40541 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_0b66d1189e7a4ef4b67ad0d9234f51e1 PMC6372282 oai:HAL:hal-04073656v1 30747105 10_7554_eLife_40541 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United Kingdom--UK France United States--US Paris France |
| GeographicLocations_xml | – name: United Kingdom--UK – name: Paris France – name: United States--US – name: France |
| GrantInformation_xml | – fundername: Medical Research Council grantid: G0600994 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H016902/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N019814/1 – fundername: Medical Research Council grantid: MR/P024955/1 – fundername: Medical Research Council grantid: G0902373 – fundername: ; – fundername: ; grantid: 105238/Z/14/Z – fundername: ; grantid: 105651/Z/14/Z – fundername: ; grantid: 103184/Z/13/Z – fundername: ; grantid: 203139/Z/16/Z – fundername: ; grantid: 452-13-015 – fundername: ; grantid: BB/N019814/1 – fundername: ; grantid: WT100973AIA – fundername: ; grantid: ANR-10-EQPX-15 – fundername: ; grantid: G0902373 |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RHI RNS RPM UKHRP ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 1XC 5PM |
| ID | FETCH-LOGICAL-c575t-11fd260fcc2a2fb9fddbd7e72b5b91309cbbf48ad819d787e532a1b644c4dcb23 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 215 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000458484100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:37:16 EDT 2025 Tue Nov 04 01:57:59 EST 2025 Tue Oct 14 20:09:50 EDT 2025 Fri Sep 05 10:16:13 EDT 2025 Tue Oct 07 07:07:10 EDT 2025 Mon Jul 21 05:36:16 EDT 2025 Tue Nov 18 21:25:43 EST 2025 Sat Nov 29 06:09:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | brain stimulation rhesus macaque connectivity neuroscience frontal lobe transcranial ultrasound stimulation resting-state fMRI neuroimaging |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 2019, Verhagen et al. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c575t-11fd260fcc2a2fb9fddbd7e72b5b91309cbbf48ad819d787e532a1b644c4dcb23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. These authors also contributed equally to this work. |
| ORCID | 0000-0002-4721-7376 0000-0003-2644-3945 0000-0003-1653-5969 0000-0001-6378-9158 0000-0002-7878-0209 0000-0003-3207-7929 0000-0002-5156-9833 0000-0001-7119-9350 0000-0002-5802-3518 0000-0001-8070-8794 |
| OpenAccessLink | https://www.proquest.com/docview/2186982022?pq-origsite=%requestingapplication% |
| PMID | 30747105 |
| PQID | 2186982022 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0b66d1189e7a4ef4b67ad0d9234f51e1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6372282 hal_primary_oai_HAL_hal_04073656v1 proquest_miscellaneous_2183645496 proquest_journals_2186982022 pubmed_primary_30747105 crossref_primary_10_7554_eLife_40541 crossref_citationtrail_10_7554_eLife_40541 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-12 |
| PublicationDateYYYYMMDD | 2019-02-12 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-12 day: 12 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2019 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publication eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publication – name: eLife Sciences Publications, Ltd |
| References | Kubanek (bib37) 2018; 38 Wang (bib83) 2015; 9 Petrides (bib60) 2007; 27 Shen (bib69) 2015; 112 Kim (bib34) 2015; 26 Munoz (bib51) 2018; 5 Reveley (bib66) 2017; 27 Huang (bib29) 2005; 45 Tufail (bib76) 2011; 6 Cox (bib12) 2007; 121 Folloni (bib19) 2019 Elias (bib18) 2013; 119 Lee (bib40) 2016; 42 Mars (bib49) 2016; 60 Krug (bib35) 2015; 370 Vincent (bib82) 2007; 447 Caspari (bib8) 2018; 28 Johansen-Berg (bib33) 2004; 101 Bestmann (bib6) 2017; 27 Pinton (bib61) 2012; 39 Yoo (bib87) 2011; 56 Lu (bib43) 1994; 341 Mars (bib48) 2013; 110 Dayan (bib14) 2013; 16 Airan (bib2) 2018; 98 Aubry (bib4) 2003; 113 Passingham (bib58) 2002; 3 Deffieux (bib15) 2013; 23 Van Essen (bib78) 2007; 56 Blackmore (bib7) 2018 Constans (bib11) 2018; 63 Geyer (bib24) 2000; 202 Galashan (bib22) 2011; 105 Wise (bib86) 2008; 31 Chau (bib9) 2015; 87 Fomenko (bib20) 2018; 11 Neubert (bib53) 2014; 81 Preuss (bib63) 1995; 7 Tufail (bib75) 2010; 66 Jenkinson (bib32) 2001; 5 Naor (bib52) 2016; 13 Smith (bib72) 2014; 101 Mars (bib47) 2011; 31 Tyler (bib77) 2018; 50 Duck (bib16) 2013 O'Shea (bib56) 2007; 54 Shen (bib70) 2015; 35 Verhagen (bib80) 2012 Bates (bib5) 1993; 336 Sato (bib68) 2018; 98 Legon (bib42) 2018; 39 Lee (bib39) 2016; 6 Galvan (bib23) 2018; 125 Margulies (bib44) 2009; 106 Pulkkinen (bib65) 2011; 56 Strick (bib74) 1998; 218 Wattiez (bib84) 2017; 10 Winkler (bib85) 2014; 92 Younan (bib88) 2013; 40 Legon (bib41) 2014; 17 Ghahremani (bib25) 2017; 27 Kubanek (bib36) 2016; 6 Papageorgiou (bib57) 2017; 8 Smith (bib71) 2002; 17 Dallapiazza (bib13) 2018; 128 Andersson (bib3) 2007 Jenkinson (bib31) 2012; 62 Pennes (bib59) 1948; 1 Glasser (bib26) 2013; 80 Margulies (bib45) 2016; 113 McLaren (bib50) 2009; 45 Lee (bib38) 2015; 5 Maris (bib46) 2007; 164 Sallet (bib67) 2013; 33 Fouragnan (bib21) 2019 Goss (bib27) 1979; 5 Ahnine (bib1) 2018 O'Reilly (bib55) 2013; 110 Polanía (bib62) 2018; 21 Prieto (bib64) 2013; 8 Dum (bib17) 2005; 25 Neubert (bib54) 2015; 112 Sternson (bib73) 2014; 37 Verhagen (bib81) 2019 Constans (bib10) 2017; 64 Guo (bib28) 2018; 98 Zhang (bib89) 2001; 20 Jenkinson (bib30) 2002; 17 Vanduffel (bib79) 2016 |
| References_xml | – volume: 98 start-page: 1031 year: 2018 ident: bib68 article-title: Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism publication-title: Neuron doi: 10.1016/j.neuron.2018.05.009 – volume: 23 start-page: 2430 year: 2013 ident: bib15 article-title: Low-intensity focused ultrasound modulates monkey visuomotor behavior publication-title: Current Biology doi: 10.1016/j.cub.2013.10.029 – volume: 25 start-page: 1375 year: 2005 ident: bib17 article-title: Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3902-04.2005 – volume: 106 start-page: 20069 year: 2009 ident: bib44 article-title: Precuneus shares intrinsic functional architecture in humans and monkeys publication-title: PNAS doi: 10.1073/pnas.0905314106 – volume: 336 start-page: 211 year: 1993 ident: bib5 article-title: Prefrontal connections of medial motor areas in the rhesus monkey publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.903360205 – volume: 121 start-page: 3453 year: 2007 ident: bib12 article-title: k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.2717409 – volume: 11 start-page: 1209 year: 2018 ident: bib20 article-title: Low-intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications publication-title: Brain Stimulation doi: 10.1016/j.brs.2018.08.013 – volume: 125 start-page: 547 year: 2018 ident: bib23 article-title: Advances in Optogenetic and chemogenetic methods to study brain circuits in non-human primates publication-title: Journal of Neural Transmission doi: 10.1007/s00702-017-1697-8 – year: 2019 ident: bib81 article-title: The MR Comparative Anatomy Toolbox (Mr Cat) – volume: 101 start-page: 738 year: 2014 ident: bib72 article-title: Group-PCA for very large fMRI datasets publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.051 – volume-title: Micro-, Meso- and Macro-Connectomics of the Brain year: 2016 ident: bib79 – volume: 9 year: 2015 ident: bib83 article-title: Thermal regulation of the Brain-An anatomical and physiological review for clinical neuroscientists publication-title: Frontiers in Neuroscience – volume-title: How to Grasp a Ripe Tomato year: 2012 ident: bib80 – volume: 56 start-page: 1267 year: 2011 ident: bib87 article-title: Focused ultrasound modulates region-specific brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.02.058 – volume: 101 start-page: 13335 year: 2004 ident: bib33 article-title: Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex publication-title: PNAS doi: 10.1073/pnas.0403743101 – volume: 27 start-page: 11573 year: 2007 ident: bib60 article-title: Efferent association pathways from the rostral prefrontal cortex in the macaque monkey publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.2419-07.2007 – volume: 45 start-page: 52 year: 2009 ident: bib50 article-title: A population-average MRI-based atlas collection of the rhesus macaque publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.10.058 – volume: 5 start-page: 181 year: 1979 ident: bib27 article-title: Ultrasonic absorption and attenuation in mammalian tissues publication-title: Ultrasound in Medicine & Biology doi: 10.1016/0301-5629(79)90086-3 – volume: 110 start-page: 10806 year: 2013 ident: bib48 article-title: Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex publication-title: PNAS doi: 10.1073/pnas.1302956110 – volume: 128 start-page: 875 year: 2018 ident: bib13 article-title: Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound publication-title: Journal of Neurosurgery doi: 10.3171/2016.11.JNS16976 – volume: 7 start-page: 1 year: 1995 ident: bib63 article-title: Do rats have prefrontal cortex? the rose-woolsey-akert program reconsidered publication-title: Journal of Cognitive Neuroscience doi: 10.1162/jocn.1995.7.1.1 – volume: 35 start-page: 5579 year: 2015 ident: bib70 article-title: Network structure shapes spontaneous functional connectivity dynamics publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.4903-14.2015 – volume: 66 start-page: 681 year: 2010 ident: bib75 article-title: Transcranial pulsed ultrasound stimulates intact brain circuits publication-title: Neuron doi: 10.1016/j.neuron.2010.05.008 – volume: 6 year: 2016 ident: bib39 article-title: Transcranial focused ultrasound stimulation of human primary visual cortex publication-title: Scientific Reports doi: 10.1038/srep34026 – volume: 110 start-page: 13982 year: 2013 ident: bib55 article-title: Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys publication-title: PNAS doi: 10.1073/pnas.1305062110 – volume: 105 start-page: 3092 year: 2011 ident: bib22 article-title: A new type of recording chamber with an easy-to-exchange microdrive array for chronic recordings in macaque monkeys publication-title: Journal of Neurophysiology doi: 10.1152/jn.00508.2010 – volume: 341 start-page: 375 year: 1994 ident: bib43 article-title: Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe publication-title: The Journal of Comparative Neurology doi: 10.1002/cne.903410308 – volume: 31 start-page: 4087 year: 2011 ident: bib47 article-title: Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5102-10.2011 – volume: 28 start-page: 2085 year: 2018 ident: bib8 article-title: Functional similarity of medial superior parietal areas for Shift-Selective attention signals in humans and monkeys publication-title: Cerebral Cortex doi: 10.1093/cercor/bhx114 – year: 2019 ident: bib21 article-title: The macaque anterior cingulate cortex translates counterfactual choice value into actual behavioral change publication-title: Nature Neuroscience doi: 10.1101/336917 – volume: 8 year: 2017 ident: bib57 article-title: Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task publication-title: Nature Communications doi: 10.1038/s41467-017-01833-5 – volume: 112 start-page: 14115 year: 2015 ident: bib69 article-title: Core concept: resting-state connectivity publication-title: PNAS doi: 10.1073/pnas.1518785112 – volume: 27 start-page: R1258 year: 2017 ident: bib6 article-title: Transcranial electrical stimulation publication-title: Current Biology doi: 10.1016/j.cub.2017.11.001 – volume: 40 year: 2013 ident: bib88 article-title: Influence of the pressure field distribution in transcranial ultrasonic neurostimulation publication-title: Medical Physics doi: 10.1118/1.4812423 – volume: 62 start-page: 782 year: 2012 ident: bib31 article-title: FSL publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.015 – volume-title: Physical Properties of Tissues: A Comprehensive Reference Book year: 2013 ident: bib16 – volume: 37 start-page: 387 year: 2014 ident: bib73 article-title: Chemogenetic tools to interrogate brain functions publication-title: Annual Review of Neuroscience doi: 10.1146/annurev-neuro-071013-014048 – volume: 45 start-page: 201 year: 2005 ident: bib29 article-title: Theta burst stimulation of the human motor cortex publication-title: Neuron doi: 10.1016/j.neuron.2004.12.033 – volume: 39 start-page: 299 year: 2012 ident: bib61 article-title: Attenuation, scattering, and absorption of ultrasound in the skull bone publication-title: Medical Physics doi: 10.1118/1.3668316 – volume: 17 start-page: 825 year: 2002 ident: bib30 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – volume: 10 start-page: 1024 year: 2017 ident: bib84 article-title: Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task publication-title: Brain Stimulation doi: 10.1016/j.brs.2017.07.007 – volume: 60 start-page: 90 year: 2016 ident: bib49 article-title: Comparing brains by matching connectivity profiles publication-title: Neuroscience & Biobehavioral Reviews doi: 10.1016/j.neubiorev.2015.10.008 – volume: 50 start-page: 222 year: 2018 ident: bib77 article-title: Ultrasonic modulation of neural circuit activity publication-title: Current Opinion in Neurobiology doi: 10.1016/j.conb.2018.04.011 – volume-title: FMRIB Technial Report TR07JA2 year: 2007 ident: bib3 – volume: 113 start-page: 84 year: 2003 ident: bib4 article-title: Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.1529663 – volume: 16 start-page: 838 year: 2013 ident: bib14 article-title: Noninvasive brain stimulation: from physiology to network dynamics and back publication-title: Nature Neuroscience doi: 10.1038/nn.3422 – volume: 5 year: 2015 ident: bib38 article-title: Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex publication-title: Scientific Reports doi: 10.1038/srep08743 – volume: 17 start-page: 143 year: 2002 ident: bib71 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping doi: 10.1002/hbm.10062 – volume: 20 start-page: 45 year: 2001 ident: bib89 article-title: Segmentation of brain MR images through a hidden markov random field model and the expectation-maximization algorithm publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.906424 – volume: 21 start-page: 174 year: 2018 ident: bib62 article-title: Studying and modifying brain function with non-invasive brain stimulation publication-title: Nature Neuroscience doi: 10.1038/s41593-017-0054-4 – volume: 63 year: 2018 ident: bib11 article-title: Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups publication-title: Physics in Medicine & Biology doi: 10.1088/1361-6560/aaa15c – volume: 119 start-page: 307 year: 2013 ident: bib18 article-title: A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and gamma knife radiosurgery lesions in swine thalamus publication-title: Journal of Neurosurgery doi: 10.3171/2013.5.JNS122327 – volume: 80 start-page: 105 year: 2013 ident: bib26 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 64 start-page: 717 year: 2017 ident: bib10 article-title: A 200-1380-kHz quadrifrequency focused ultrasound transducer for neurostimulation in rodents and primates: transcranial in vitro calibration and numerical study of the influence of skull cavity publication-title: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control doi: 10.1109/TUFFC.2017.2651648 – volume: 218 start-page: 64 year: 1998 ident: bib74 article-title: Motor areas on the medial wall of the hemisphere publication-title: Novartis Foundation Symposium – year: 2018 ident: bib7 article-title: Ultrasound neuromodulation; a review of results, mechanisms and safety publication-title: Ultrasound in Medicine & Biology – volume: 87 start-page: 1106 year: 2015 ident: bib9 article-title: Contrasting roles for orbitofrontal cortex and amygdala in credit assignment and learning in macaques publication-title: Neuron doi: 10.1016/j.neuron.2015.08.018 – year: 2019 ident: bib19 article-title: Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation publication-title: Neuron doi: 10.1016/j.neuron.2019.01.019 – volume: 447 start-page: 83 year: 2007 ident: bib82 article-title: Intrinsic functional architecture in the anaesthetized monkey brain publication-title: Nature doi: 10.1038/nature05758 – volume: 27 start-page: 3890 year: 2017 ident: bib25 article-title: Frontoparietal functional connectivity in the common marmoset publication-title: Cerebral Cortex doi: 10.1093/cercor/bhw198 – volume: 81 start-page: 700 year: 2014 ident: bib53 article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex publication-title: Neuron doi: 10.1016/j.neuron.2013.11.012 – volume: 98 start-page: 875 year: 2018 ident: bib2 article-title: Hearing out ultrasound neuromodulation publication-title: Neuron doi: 10.1016/j.neuron.2018.05.031 – volume: 5 start-page: 143 year: 2001 ident: bib32 article-title: A global optimisation method for robust affine registration of brain images publication-title: Medical Image Analysis doi: 10.1016/S1361-8415(01)00036-6 – volume: 42 start-page: 459 year: 2016 ident: bib40 article-title: Image-Guided focused Ultrasound-Mediated regional brain stimulation in sheep publication-title: Ultrasound in Medicine & Biology doi: 10.1016/j.ultrasmedbio.2015.10.001 – volume: 98 start-page: 1020 year: 2018 ident: bib28 article-title: Ultrasound produces extensive brain activation via a cochlear pathway publication-title: Neuron doi: 10.1016/j.neuron.2018.04.036 – volume: 26 start-page: 211 year: 2015 ident: bib34 article-title: Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound publication-title: NeuroReport doi: 10.1097/WNR.0000000000000330 – year: 2018 ident: bib1 article-title: Long-Lasting modulation of visuomotor activity by repetitive focused ultrasound stimulation of frontal CortexInternational society for therapeutic ultrasound – volume: 8 year: 2013 ident: bib64 article-title: Dynamic response of model lipid membranes to ultrasonic radiation force publication-title: PLoS ONE doi: 10.1371/journal.pone.0077115 – volume: 54 start-page: 479 year: 2007 ident: bib56 article-title: Functionally specific reorganization in human premotor cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.04.021 – volume: 5 start-page: 153 year: 2018 ident: bib51 article-title: Modulation of brain function and behavior by focused ultrasound publication-title: Current Behavioral Neuroscience Reports doi: 10.1007/s40473-018-0156-7 – volume: 92 start-page: 381 year: 2014 ident: bib85 article-title: Permutation inference for the general linear model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.01.060 – volume: 56 start-page: 209 year: 2007 ident: bib78 article-title: Surface-based and probabilistic atlases of primate cerebral cortex publication-title: Neuron doi: 10.1016/j.neuron.2007.10.015 – volume: 6 start-page: 1453 year: 2011 ident: bib76 article-title: Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound publication-title: Nature Protocols doi: 10.1038/nprot.2011.371 – volume: 113 start-page: 12574 year: 2016 ident: bib45 article-title: Situating the default-mode network along a principal gradient of macroscale cortical organization publication-title: PNAS doi: 10.1073/pnas.1608282113 – volume: 38 start-page: 3081 year: 2018 ident: bib37 article-title: Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1458-17.2018 – volume: 164 start-page: 177 year: 2007 ident: bib46 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 33 start-page: 12255 year: 2013 ident: bib67 article-title: The organization of dorsal frontal cortex in humans and macaques publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.5108-12.2013 – volume: 202 start-page: 443 year: 2000 ident: bib24 article-title: Functional neuroanatomy of the primate isocortical motor system publication-title: Anatomy and Embryology doi: 10.1007/s004290000127 – volume: 112 start-page: E2695 year: 2015 ident: bib54 article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex publication-title: PNAS doi: 10.1073/pnas.1410767112 – volume: 13 year: 2016 ident: bib52 article-title: Ultrasonic neuromodulation publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/13/3/031003 – volume: 17 start-page: 322 year: 2014 ident: bib41 article-title: Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans publication-title: Nature Neuroscience doi: 10.1038/nn.3620 – volume: 27 start-page: 4463 year: 2017 ident: bib66 article-title: Three-Dimensional digital template atlas of the macaque brain publication-title: Cerebral Cortex doi: 10.1093/cercor/bhw248 – volume: 39 start-page: 1995 year: 2018 ident: bib42 article-title: Neuromodulation with single-element transcranial focused ultrasound in human thalamus publication-title: Human Brain Mapping doi: 10.1002/hbm.23981 – volume: 3 start-page: 606 year: 2002 ident: bib58 article-title: The anatomical basis of functional localization in the cortex publication-title: Nature Reviews Neuroscience doi: 10.1038/nrn893 – volume: 370 year: 2015 ident: bib35 article-title: Understanding the brain by controlling neural activity publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2014.0201 – volume: 56 start-page: 4661 year: 2011 ident: bib65 article-title: Simulations and measurements of transcranial low-frequency ultrasound therapy: skull-base heating and effective area of treatment publication-title: Physics in Medicine and Biology doi: 10.1088/0031-9155/56/15/003 – volume: 6 year: 2016 ident: bib36 article-title: Ultrasound modulates ion channel currents publication-title: Scientific Reports doi: 10.1038/srep24170 – volume: 1 start-page: 93 year: 1948 ident: bib59 article-title: Analysis of tissue and arterial blood temperatures in the resting human forearm publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1948.1.2.93 – volume: 31 start-page: 599 year: 2008 ident: bib86 article-title: Forward frontal fields: phylogeny and fundamental function publication-title: Trends in Neurosciences doi: 10.1016/j.tins.2008.08.008 |
| SSID | ssj0000748819 |
| Score | 2.615362 |
| Snippet | To understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | Animals Auditory pathways Brain research brain stimulation Cerebral Cortex - physiology Cerebral Cortex - radiation effects Cognitive science connectivity Cortex (frontal) frontal lobe Macaca Magnetic Resonance Imaging Medical imaging Medical research Neuroimaging Neuromodulation Neuroscience NMR Nuclear magnetic resonance Protocol resting-state fMRI Supplementary motor area transcranial ultrasound stimulation Ultrasonic imaging Ultrasonography - methods Ultrasound |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFH4UacGLqLV1dFuieCpM3Umyk81xWyoeFutBwVvIT1yQGXF3Bf97X5Jx2bEFL17mkDxmhpeXvO8lee8DOKG15oiTZamHwZW4-vnSaFGXXo61C8ajz02JwlNxcTG-uZGXa1Rf8U5YLg-cFXc6NHXtEAVLLzT3gZtaaDd0iEt4GFU-BT5DIdeCqbQGCzTMSuaEPIEu89RPZ8H_RHjCq54LSpX60bHcxnuQ_4LM13cl15zP2TZsdaiRTPLf7sAH3-zCp8wj-fQZrv6GEOEiyTmPpA1kEX2QxQfaFwmtXc69I8s7bJ5HIiXSNgTjzrSRTWJuQ96ZJbOG3Mf6EwhA9-D67M_V7_Oyo0soLWKuRVlVwWF0EqylmgYjg3PGCS-oGRmJrkpaYwLHIUDFOJynfsSorgwCIsudNZR9gY2mbfw-EOqCriJblTaOCybHzHGGwUvNrA8jzQr48aJBZbta4pHS4k5hTBHVrZK6VVJ3AScr4ftcQuP_Yr_iUKxEYt3r1IDWoDprUG9ZQwHHOJC9d5xPpiq24WolGKLXRxQavIyz6mbsXCVuLoRDlBZwtOrGuRYPUHTj22WSiae2XNYFfM1msfoUi0wECFYLED2D6f1Lv6eZ3aZ63jUTFCPfg_dQwCFsIqSTZaKsGcDG4mHpv8FH-7iYzR--p0nyDMu9GfE priority: 102 providerName: Directory of Open Access Journals |
| Title | Offline impact of transcranial focused ultrasound on cortical activation in primates |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30747105 https://www.proquest.com/docview/2186982022 https://www.proquest.com/docview/2183645496 https://hal.science/hal-04073656 https://pubmed.ncbi.nlm.nih.gov/PMC6372282 https://doaj.org/article/0b66d1189e7a4ef4b67ad0d9234f51e1 |
| Volume | 8 |
| WOSCitedRecordID | wos000458484100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M7P dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYCtJe-B4ERmXQnpDCGseN4ye0oU1D6kqEhlSeIn-ySlPSNe0k_nvunLQQQLzw4gfnlDq9s3-_O9t3hByyTHHgyTJWI29jWP1crJXIYidzZb12gLnhovBETKf5bCaLLuDWdMcqN2tiWKhtbTBGfhRqJwFcMfZ-cRNj1SjcXe1KaOyQATCbBI90XbBiG2MBeMwB8dpreQKA88hN5t69A5LCkx4QhXz9AC9XeBryT6r5-4nJXyDo7MH_Dv4hud-RT3rcWssjcsdVj8m9thzl9yfk8pP3yDppe3WS1p6uEMoMNGCm1Ndm3ThL19fQ3WA9JlpXFNzXEA-neEWiDfDSeUUXmMYCeOxT8uXs9PLDedxVXYgNULdVnCTegpPjjWGKeS29tdoKJ5geawmIJ43WnoMm4Z-1MN3dOGUq0cCrDLdGs3Sf7FZ15Z4TyqxXCX670paLVOap5Sn4QFlqnB-rNCJvNyooTZeSHCtjXJfgmqC-yqCvMugrIodb4UWbiePvYieoy60Ips8OHfXyW9nNxnKks8yCayWdUNx5rjOh7MgC2eV-nDh4yRuwhN47zo8nJfbBoidSIMG3IHSwUXbZTfym_KnpiLzePoYpi_swqnL1Osjg5i-XWUSetXa1_akUCxoA542I6Flcbyz9J9X8KqQFz1LBwIF-8e9hvSR7wPlkHGraHJDd1XLtXpG75nY1b5ZDsiNmIrT5kAxOTqfF52EIUwzDzMJWQDsoPl4UX38AZOUu5Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VBQQX3g9DgQWVC5JpvN547QNC5VGlqgk9BKk3d580UmWHOCnqn-I3MrN-gAFx64FLDuuJs7G_nflmH_MRss0SyYEnZ6EcOROC97OhkiIJbZZK45SFmOsPCudiOk2PjrLDDfK9OwuD2yo7n-gdtak0zpHveO0kCFeMvVl8DVE1CldXOwmNBhYH9vwbpGz16_338H5fMLb3YfZuEraqAqEGarIKo8gZIPFOayaZU5kzRhlhBVNjlYFHz7RSjkNPIVYagLMdx0xGCniD5kYrLHQALv8Sx8piuFWQHfZzOhCOU_hWcwxQQKDesfnc2VdAing0CHxeHwDC2QnuvvyT2v6-Q_OXkLd34397WDfJ9ZZc091mNNwiG7a8Ta40cpvnd8jsk3PIqmlzNJRWjq4wVGv4gGFIXaXXtTV0fQrNNepN0aqkkJ77-X6KR0CaCWw6L-kCy3QAT79LPl_IX7pHNsuqtA8IZcbJCJ-1VIaLOEtjw2PI8ZJYWzeWcUBedq-80G3JdVT-OC0g9UJ8FB4fhcdHQLZ740VTaeTvZm8RO70Jlgf3DdXyS9F6m2KkksRA6phZIbl1XCVCmpEBMs_dOLJwk-eAvME9Jrt5gW3g1EUMJP8MjLY6cBWtY6uLn8gKyLP-MrgkXGeSpa3W3gYXt3mWBOR-g-P-p2IUbABOHxAxQPigL8Mr5fzElz1PYsFYyh7-u1tPydXJ7GNe5PvTg0fkGvDbLPT6PVtkc7Vc28fksj5bzevlEz92KTm-aPz_AI73h8s |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKSAuvB-GAgsqFySTeL3x2geECiVq1BByKFI5mX3SSJUd8ijqX-PXMbt-gAFx64FLDuuJs7G_nfn2MfMB7NJEMOTJWSgGVofo_UwoBU9Ck6VCW2kw5vpE4QmfTtPj42y2Bd-bXBh3rLLxid5R61K5NfK-107CcEVp39bHImb7o9eLr6FTkHI7rY2cRgWRQ3P-Dadvq1fjfXzXzykdvTt6exDWCgOhQpqyDqPIaiT0VikqqJWZ1VpqbjiVQ5mhd8-UlJZhrzFuaoS2GcZURBI5hGJaSVf0AN3_NlJyRnuwPRu_n31qV3gwOKf4vSopkGPY7pvJ3JqXSJFY1AmDXi0Ag9uJO4v5J9H9_bzmLwFwdP1_fnQ34FpNu8leNU5uwpYpbsHlSojz_DYcfbDW8W1SJY2S0pK1C-IKP3CAEluqzcposjnF5pVToiJlQXDi7ncCiEsOqZa2ybwgC1fAAxn8Hfh4IX_pLvSKsjD3gVBtReSeu5Ca8ThLY81inP0lsTJ2KOIAXjSvP1d1MXanCXKa46TMYSX3WMk9VgLYbY0XVQ2Sv5u9cThqTVzhcN9QLr_ktR_KBzJJNE4qM8MFM5bJhAs90EjzmR1GBm_yDFHYucfB3iR3bejueYz0_wyNdhqg5bXLW-U_URbA0_YyOiu3AyUKU268jdv2ZlkSwL0K0-1PxU7KAdl-ALyD9k5fuleK-YkviJ7EnNKUPvh3t57AFYR9PhlPDx_CVSS-WeiFfXagt15uzCO4pM7W89XycT2QCXy-6AHwA2wckhQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Offline+impact+of+transcranial+focused+ultrasound+on+cortical+activation+in+primates&rft.jtitle=eLife&rft.au=Verhagen%2C+Lennart&rft.au=Gallea%2C+C%C3%A9cile&rft.au=Folloni%2C+Davide&rft.au=Constans%2C+Charlotte&rft.date=2019-02-12&rft.eissn=2050-084X&rft.volume=8&rft_id=info:doi/10.7554%2FeLife.40541&rft_id=info%3Apmid%2F30747105&rft.externalDocID=30747105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |