Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflection‐FTIR Spectroscopy Combined with Multivariate Analysis

Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightfor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ChemSusChem Ročník 12; číslo 6; s. 1139 - 1146
Hlavní autoři: Lancefield, Christopher S., Constant, Sandra, de Peinder, Peter, Bruijnincx, Pieter C. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany Wiley Subscription Services, Inc 21.03.2019
John Wiley and Sons Inc
Témata:
ISSN:1864-5631, 1864-564X, 1864-564X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. One stop shop: The structural characterization of technical lignins is typically challenging, requiring extensive, high‐end instrumentation such as high‐field NMR spectrometers and gel permeation chromatography equipment. For routine analyses we show that attenuated total reflectance‐FTIR spectroscopy combined with chemometric approaches, especially partial least squares regression, can provide equivalent information on molecular weight and interunit abundances in a fraction of the time.
AbstractList Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn , Mw ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn , Mw ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. One stop shop: The structural characterization of technical lignins is typically challenging, requiring extensive, high‐end instrumentation such as high‐field NMR spectrometers and gel permeation chromatography equipment. For routine analyses we show that attenuated total reflectance‐FTIR spectroscopy combined with chemometric approaches, especially partial least squares regression, can provide equivalent information on molecular weight and interunit abundances in a fraction of the time.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R 2 Cal.>0.85) for molecular weight (M n, M w) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination ( R 2 Cal.>0.85) for molecular weight ( M n , M w ) and inter‐unit abundances (β‐ O ‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R Cal.>0.85) for molecular weight (M , M ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
Author Lancefield, Christopher S.
de Peinder, Peter
Constant, Sandra
Bruijnincx, Pieter C. A.
AuthorAffiliation 1 Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
3 Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
2 VibSpec Haaftenlaan 28 4006 XL Tiel The Netherlands
AuthorAffiliation_xml – name: 1 Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
– name: 2 VibSpec Haaftenlaan 28 4006 XL Tiel The Netherlands
– name: 3 Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
Author_xml – sequence: 1
  givenname: Christopher S.
  orcidid: 0000-0001-9134-5589
  surname: Lancefield
  fullname: Lancefield, Christopher S.
  organization: Utrecht University
– sequence: 2
  givenname: Sandra
  surname: Constant
  fullname: Constant, Sandra
  organization: Utrecht University
– sequence: 3
  givenname: Peter
  surname: de Peinder
  fullname: de Peinder, Peter
  organization: VibSpec
– sequence: 4
  givenname: Pieter C. A.
  orcidid: 0000-0001-8134-0530
  surname: Bruijnincx
  fullname: Bruijnincx, Pieter C. A.
  email: p.c.a.bruijnincx@uu.nl
  organization: Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30641616$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiP7AliWyxIZNgu2Z8cQbpGhEoVIqpCYIdpbHcyfj4tjB9rSaHY_AM_BoPAmO0gaohFjZ1v3O0bnX9zQ7ss5Clj0neEowpq9VCGpKMZlhOsP8UXZCZqyYlKz4fHS45-Q4Ow3hGmOGOWNPsuMcs4Iwwk6yHwttv8g1oHkz2FZaBUjaFl06A2ow0qNPoNd9RHUvvVQRvA5Rq4Bch1agequVNGih11bbgJoRzWMEO8gILVq5mGpX0CWrqJ39-e37-eriCi236e1dUG47otptGm0Tfatjjy4HE_WN9DoZoLmVZgw6PM0ed9IEeHZ3nmUfz9-u6veTxYd3F_V8MVFlVfJJ2RWUdLKEBkucAzTAG15gWShgHSMdV7QqCwBJKWdVS7u8aBjPKcayrLhq87Pszd53OzQbaBXY6KURW6830o_CSS3-rljdi7W7ESyNuMIkGby6M_Du6wAhio0OCoyRFtwQBCUVz_MSE57Qlw_Qazf41PCO4kWFKWE4US_-THSIcv99CSj2gErzDB46oXSUu2GngNoIgsVuS8RuS8RhS5Js-kB27_xPAd8LbrWB8T-0qJfL-rf2FyKM1NU
CitedBy_id crossref_primary_10_1016_j_seppur_2020_117395
crossref_primary_10_1007_s00449_024_03096_z
crossref_primary_10_1016_j_conbuildmat_2022_129303
crossref_primary_10_1016_j_chemolab_2025_105467
crossref_primary_10_1016_j_chemosphere_2021_131798
crossref_primary_10_1002_cssc_201900480
crossref_primary_10_1007_s13399_021_02030_7
crossref_primary_10_1016_j_carbpol_2023_121452
crossref_primary_10_1080_01694243_2025_2509746
crossref_primary_10_1007_s10570_024_06261_5
crossref_primary_10_3390_ijms241512403
crossref_primary_10_1002_cssc_202301840
crossref_primary_10_1016_j_jaap_2021_105408
crossref_primary_10_1021_acssuschemeng_5c01598
crossref_primary_10_1002_cssc_202301464
crossref_primary_10_1002_cssc_202000989
crossref_primary_10_3389_fbioe_2022_994760
crossref_primary_10_1016_j_polymertesting_2023_108228
crossref_primary_10_1016_j_cej_2025_166264
crossref_primary_10_3390_app9112252
crossref_primary_10_1038_s41596_025_01139_7
crossref_primary_10_1016_j_seta_2025_104334
crossref_primary_10_1007_s13399_023_04580_4
crossref_primary_10_1002_cssc_202101853
crossref_primary_10_1016_j_pecs_2019_100788
crossref_primary_10_1016_j_foodres_2024_114091
crossref_primary_10_3389_fbioe_2021_767139
crossref_primary_10_1016_j_cej_2023_144823
crossref_primary_10_3390_polym17020214
crossref_primary_10_1016_j_cej_2023_141999
crossref_primary_10_1146_annurev_chembioeng_101121_084152
crossref_primary_10_1002_advs_202501259
crossref_primary_10_1016_j_apcato_2024_206953
crossref_primary_10_1002_cssc_202300978
crossref_primary_10_1016_j_psep_2024_01_063
crossref_primary_10_3390_molecules26040842
crossref_primary_10_1002_cssc_202001225
crossref_primary_10_1016_j_indcrop_2022_114696
crossref_primary_10_1016_j_jpba_2022_114649
crossref_primary_10_1002_cmtd_202100028
crossref_primary_10_1007_s13399_022_03508_8
crossref_primary_10_1039_C9RA10576J
crossref_primary_10_1002_cmtd_202100041
crossref_primary_10_1002_cssc_202200326
crossref_primary_10_1016_j_ijbiomac_2025_147204
Cites_doi 10.1016/j.indcrop.2004.04.022
10.1002/rcm.1290090920
10.1016/j.indcrop.2014.09.019
10.1002/ange.201510351
10.1016/j.indcrop.2018.02.043
10.1039/C7CS00566K
10.1039/C4RA13113D
10.1002/mrc.1914
10.1515/HF.2007.074
10.1021/acs.chemrev.5b00345
10.1201/EBK1574444865-c6
10.1201/EBK1574444865-c5
10.1039/C7GC02023F
10.1039/C7GC01479A
10.1515/hfsg.1986.40.2.93
10.1021/acssuschemeng.6b00929
10.1016/j.indcrop.2017.05.013
10.1039/C5GC03043A
10.1016/j.jmr.2005.02.002
10.1007/s10086-015-1467-x
10.3390/s140813532
10.1016/S0960-8524(00)00024-9
10.1016/j.rser.2012.12.022
10.1201/EBK1574444865-c4
10.1016/j.indcrop.2015.12.048
10.1039/C8SC02000K
10.1016/j.indcrop.2003.10.008
10.1007/978-3-642-74065-7_7
10.1186/1746-4811-7-9
10.1016/j.reactfunctpolym.2014.09.017
10.1080/02773813.2016.1214732
10.1002/anie.201510351
10.1016/j.polymer.2015.12.010
10.1021/acssuschemeng.7b02575
10.1021/acs.chemrev.7b00588
10.1002/cssc.201800617
10.1002/bbb.1500
10.1039/C7TA01187C
10.1039/C7GC00195A
10.1021/acs.chemrev.5b00155
10.1002/cssc.201801177
10.1111/j.1365-313X.2009.03808.x
10.1016/j.apenergy.2012.12.019
ContentType Journal Article
Copyright 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/cssc.201802809
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database


CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 1146
ExternalDocumentID PMC6563701
30641616
10_1002_cssc_201802809
CSSC201802809
Genre article
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c5759-5f421fa5eb0a03eebe9b940a4ce6f61f9c2754eea22967d2f34b693200a579cd3
IEDL.DBID 24P
ISICitedReferencesCount 66
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461895100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Tue Nov 04 02:00:29 EST 2025
Sun Nov 09 14:03:27 EST 2025
Sat Nov 29 14:41:09 EST 2025
Mon Jul 21 06:02:44 EDT 2025
Tue Nov 18 20:59:45 EST 2025
Sat Nov 29 07:12:55 EST 2025
Wed Jan 22 16:25:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords biomass
chemometrics
lignin
partial least squares modelling
FTIR spectroscopy
Language English
License Attribution-NonCommercial
2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5759-5f421fa5eb0a03eebe9b940a4ce6f61f9c2754eea22967d2f34b693200a579cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9134-5589
0000-0001-8134-0530
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802809
PMID 30641616
PQID 2194702160
PQPubID 986333
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6563701
proquest_miscellaneous_2179335019
proquest_journals_2194702160
pubmed_primary_30641616
crossref_citationtrail_10_1002_cssc_201802809
crossref_primary_10_1002_cssc_201802809
wiley_primary_10_1002_cssc_201802809_CSSC201802809
PublicationCentury 2000
PublicationDate March 21, 2019
PublicationDateYYYYMMDD 2019-03-21
PublicationDate_xml – month: 03
  year: 2019
  text: March 21, 2019
  day: 21
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2017; 5
1995; 9
2004; 20
2015; 5
2005; 174
2013; 21
2010
2013; 104
2009
2014; 48
2005
1992
2014; 85
2016; 18
2014; 62
2016; 36
2014; 115
2011; 7
2018; 47
2016; 4
2009; 58
2018; 9
2016 2016; 55 128
1986; 40
2015; 115
2018; 116
2004; 19
2018; 118
2015; 61
2000; 74
2014; 14
2017; 19
2016; 83
2016; 116
2007; 61
2018; 11
2014; 8
2007; 45
2017; 107
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Lake M. A. (e_1_2_7_11_1) 2014; 48
e_1_2_7_7_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_28_1
Brunow G. (e_1_2_7_19_1) 2005
Kouisni L. (e_1_2_7_10_1) 2014; 115
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_2
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 55 128
  start-page: 8164 8296
  year: 2016 2016
  end-page: 8215 8354
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– year: 2009
– start-page: 89
  year: 2005
  end-page: 99
– volume: 11
  start-page: 1600
  year: 2018
  end-page: 1605
  publication-title: ChemSusChem
– volume: 5
  start-page: 10640
  year: 2017
  end-page: 10648
  publication-title: ACS Sustainable Chem. Eng.
– volume: 11
  start-page: 3259
  year: 2018
  end-page: 3268
  publication-title: ChemSusChem
– volume: 36
  start-page: 432
  year: 2016
  end-page: 446
  publication-title: J. Wood Chem. Technol.
– volume: 74
  start-page: 201
  year: 2000
  end-page: 212
  publication-title: Bioresour. Technol.
– volume: 107
  start-page: 159
  year: 2017
  end-page: 171
  publication-title: Ind. Crops Prod.
– volume: 19
  start-page: 271
  year: 2004
  end-page: 281
  publication-title: Ind. Crops Prod.
– volume: 4
  start-page: 5167
  year: 2016
  end-page: 5180
  publication-title: ACS Sustainable Chem. Eng.
– volume: 83
  start-page: 92
  year: 2016
  end-page: 100
  publication-title: Polymer
– volume: 7
  start-page: 9
  year: 2011
  publication-title: Plant Methods
– volume: 104
  start-page: 801
  year: 2013
  end-page: 809
  publication-title: Appl. Energy
– volume: 115
  start-page: 11559
  year: 2015
  end-page: 11624
  publication-title: Chem. Rev.
– volume: 62
  start-page: 481
  year: 2014
  end-page: 490
  publication-title: Ind. Crops Prod.
– volume: 116
  start-page: 116
  year: 2018
  end-page: 121
  publication-title: Ind. Crops Prod.
– volume: 19
  start-page: 5131
  year: 2017
  end-page: 5143
  publication-title: Green Chem.
– volume: 45
  start-page: 37
  year: 2007
  end-page: 45
  publication-title: Magn. Reson. Chem.
– volume: 9
  start-page: 6348
  year: 2018
  end-page: 6360
  publication-title: Chem. Sci.
– volume: 40
  start-page: 37
  year: 1986
  end-page: 44
  publication-title: Holzforschung
– start-page: 245
  year: 2010
  end-page: 266
– volume: 19
  start-page: 4200
  year: 2017
  publication-title: Green Chem.
– volume: 116
  start-page: 2275
  year: 2016
  end-page: 2306
  publication-title: Chem. Rev.
– volume: 18
  start-page: 2651
  year: 2016
  end-page: 2665
  publication-title: Green Chem.
– volume: 19
  start-page: 2774
  year: 2017
  end-page: 2782
  publication-title: Green Chem.
– volume: 174
  start-page: 237
  year: 2005
  end-page: 244
  publication-title: J. Magn. Reson.
– volume: 118
  start-page: 614
  year: 2018
  end-page: 678
  publication-title: Chem. Rev.
– volume: 47
  start-page: 852
  year: 2018
  end-page: 908
  publication-title: Chem. Soc. Rev.
– volume: 85
  start-page: 78
  year: 2014
  end-page: 96
  publication-title: React. Funct. Polym.
– volume: 5
  start-page: 4009
  year: 2015
  end-page: 4018
  publication-title: RSC Adv.
– volume: 115
  start-page: 18
  year: 2014
  end-page: 22
  publication-title: Pulp Pap. Can.
– start-page: 103
  year: 2010
  end-page: 136
– volume: 21
  start-page: 506
  year: 2013
  end-page: 523
  publication-title: Renewable Sustainable Energy Rev.
– volume: 61
  start-page: 213
  year: 2015
  end-page: 220
  publication-title: J. Wood Sci.
– volume: 58
  start-page: 706
  year: 2009
  end-page: 714
  publication-title: Plant J.
– volume: 48
  start-page: 799
  year: 2014
  end-page: 804
  publication-title: Cellul. Chem. Technol.
– volume: 83
  start-page: 155
  year: 2016
  end-page: 165
  publication-title: Ind. Crops Prod.
– volume: 20
  start-page: 205
  year: 2004
  end-page: 218
  publication-title: Ind. Crops Prod.
– volume: 5
  start-page: 12740
  year: 2017
  end-page: 12746
  publication-title: J. Mater. Chem. A
– volume: 61
  start-page: 459
  year: 2007
  end-page: 468
  publication-title: Holzforschung
– volume: 8
  start-page: 836
  year: 2014
  end-page: 856
  publication-title: Biofuels Bioprod. Biorefin.
– start-page: 83
  year: 1992
  end-page: 109
– start-page: 137
  year: 2010
  end-page: 244
– volume: 14
  start-page: 13532
  year: 2014
  end-page: 13547
  publication-title: Sensors
– volume: 9
  start-page: 815
  year: 1995
  end-page: 826
  publication-title: Rapid Commun. Mass Spectrom.
– ident: e_1_2_7_30_1
  doi: 10.1016/j.indcrop.2004.04.022
– ident: e_1_2_7_21_1
  doi: 10.1002/rcm.1290090920
– volume: 115
  start-page: 18
  year: 2014
  ident: e_1_2_7_10_1
  publication-title: Pulp Pap. Can.
– ident: e_1_2_7_31_1
  doi: 10.1016/j.indcrop.2014.09.019
– ident: e_1_2_7_8_2
  doi: 10.1002/ange.201510351
– ident: e_1_2_7_39_1
  doi: 10.1016/j.indcrop.2018.02.043
– ident: e_1_2_7_6_1
  doi: 10.1039/C7CS00566K
– volume: 48
  start-page: 799
  year: 2014
  ident: e_1_2_7_11_1
  publication-title: Cellul. Chem. Technol.
– ident: e_1_2_7_28_1
  doi: 10.1039/C4RA13113D
– ident: e_1_2_7_48_1
  doi: 10.1002/mrc.1914
– ident: e_1_2_7_43_1
  doi: 10.1515/HF.2007.074
– ident: e_1_2_7_4_1
  doi: 10.1021/acs.chemrev.5b00345
– ident: e_1_2_7_41_1
– ident: e_1_2_7_15_1
  doi: 10.1201/EBK1574444865-c6
– ident: e_1_2_7_24_1
– ident: e_1_2_7_14_1
  doi: 10.1201/EBK1574444865-c5
– ident: e_1_2_7_38_1
  doi: 10.1039/C7GC02023F
– ident: e_1_2_7_7_1
  doi: 10.1039/C7GC01479A
– ident: e_1_2_7_29_1
  doi: 10.1515/hfsg.1986.40.2.93
– ident: e_1_2_7_22_1
  doi: 10.1021/acssuschemeng.6b00929
– ident: e_1_2_7_32_1
  doi: 10.1016/j.indcrop.2017.05.013
– ident: e_1_2_7_12_1
  doi: 10.1039/C5GC03043A
– ident: e_1_2_7_47_1
  doi: 10.1016/j.jmr.2005.02.002
– ident: e_1_2_7_33_1
  doi: 10.1007/s10086-015-1467-x
– ident: e_1_2_7_34_1
  doi: 10.3390/s140813532
– ident: e_1_2_7_37_1
  doi: 10.1016/S0960-8524(00)00024-9
– ident: e_1_2_7_2_1
  doi: 10.1016/j.rser.2012.12.022
– ident: e_1_2_7_16_1
  doi: 10.1201/EBK1574444865-c4
– ident: e_1_2_7_26_1
  doi: 10.1016/j.indcrop.2015.12.048
– ident: e_1_2_7_46_1
  doi: 10.1039/C8SC02000K
– ident: e_1_2_7_42_1
  doi: 10.1016/j.indcrop.2003.10.008
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-642-74065-7_7
– ident: e_1_2_7_36_1
  doi: 10.1186/1746-4811-7-9
– ident: e_1_2_7_5_1
  doi: 10.1016/j.reactfunctpolym.2014.09.017
– start-page: 89
  volume-title: Biopolymers Online
  year: 2005
  ident: e_1_2_7_19_1
– ident: e_1_2_7_45_1
  doi: 10.1080/02773813.2016.1214732
– ident: e_1_2_7_8_1
  doi: 10.1002/anie.201510351
– ident: e_1_2_7_27_1
  doi: 10.1016/j.polymer.2015.12.010
– ident: e_1_2_7_25_1
  doi: 10.1021/acssuschemeng.7b02575
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.7b00588
– ident: e_1_2_7_20_1
  doi: 10.1002/cssc.201800617
– ident: e_1_2_7_23_1
  doi: 10.1002/bbb.1500
– ident: e_1_2_7_40_1
  doi: 10.1039/C7TA01187C
– ident: e_1_2_7_13_1
  doi: 10.1039/C7GC00195A
– ident: e_1_2_7_3_1
  doi: 10.1021/acs.chemrev.5b00155
– ident: e_1_2_7_44_1
  doi: 10.1002/cssc.201801177
– ident: e_1_2_7_9_1
– ident: e_1_2_7_18_1
  doi: 10.1111/j.1365-313X.2009.03808.x
– ident: e_1_2_7_35_1
  doi: 10.1016/j.apenergy.2012.12.019
SSID ssj0060966
Score 2.499926
Snippet Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1139
SubjectTerms biomass
chemometrics
Coherence
Fourier transforms
FTIR spectroscopy
Infrared spectroscopy
Lignin
Mathematical models
Molecular weight
Multivariate analysis
NMR
Nuclear magnetic resonance
Organic chemistry
partial least squares modelling
Principal components analysis
Quantum phenomena
Reflection
Spectrum analysis
Streamlining
Title Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflection‐FTIR Spectroscopy Combined with Multivariate Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802809
https://www.ncbi.nlm.nih.gov/pubmed/30641616
https://www.proquest.com/docview/2194702160
https://www.proquest.com/docview/2179335019
https://pubmed.ncbi.nlm.nih.gov/PMC6563701
Volume 12
WOSCitedRecordID wos000461895100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFA6yK-iN_z_VdYkgeFW2TdJkcjlUB4VxWWZmce5K0iY6sHSW7czC3vkIPoOP5pN4TjqtWxYR9Ka05CRtk5OTLz_nO4S88SwrvbZ4zq_UseDCxYZnOpaJ8pYbr4UPjsJTdXw8Wi71yTUv_pYfol9ww54R7DV2cGObo9-koWXTIAUhMpiN0INvP025Qr1m4qSzxRIAevAvGkkRZ5KnHW1jwo6G-YfD0g2sefPI5HUoG8aiyf3__4sH5N4Oh9JxqzgPyS1XPyJ38i7822PyA2epYGzo2KKzCOgGNXVFP3XhdOnnsKhK8yHjM117GpbrsfHpdPWlXtUNtVd0vAF0vgVkW9HFGhA_nTl_Fs6B1T-_fZ8sPs7o_DyE5EFHmSsKhgom7SCNK8U0-AlfwrweCqAdkcoTcjp5v8g_xLuADnGJcUDjzAuWepM5m5iEO9AfbbVIjCid9DL1umQqE84ZxrRUFfNcWAkAM0lMpnRZ8adkr17X7jmhNs2sqTKN-Eoo7q0DqGJxk9hqn6ZVROKuPYtyx3aOQTfOipanmRVY80Vf8xF528uftzwff5Q86NSj2PX3pgC7LxTAJZlE5HWfDC2G2y-mdustyoAtxH1cKOJZq039q3AeCNhbRkQN9KwXQBbwYUq9-hrYwAGQc5WkEWFBz_7y9UU-n-f904t_yfSS3IV7jQfxWHpA9jYXW_eK3C4vN6vm4jD0P7iq5eiQ7L-bTU6nvwBzVzgl
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datswFBYjHXQ3-_9x120aDHZlasuSHF0Gb6FlbhhJynpnLFvqAsUpdVLoXR9hz7BH25PsHPlnM2UMxi5jHyuJ_en409E53yHknWWisEpjnl-hfB5x4-eRUL4MYquj3CpuXaFwGs9m49NT9bnNJsRamEYfog-44cxw_honOAakD36phhZ1jRqEKGE2xhK-HQ5YEiOy82E-PUk7dyyBo7sSo7HkvpBR2Ck3BuxgOMLwzXSLbt7OmvydzbrX0fTBf_gjD8n9lovSSQOeR-SOqR6T3aRrAfeEfMeVKjgcOtFYMAL4oHlV0uOupS794gKrNBmqPtO1pS5kjwCg6eqsWlU11dd0sgGGvgV2W9LlGlg_nRt77nLBqh8336bLozldXLi2PFgsc03BWcHCHawxWkxdrfAVrO1hANqJqTwlJ9OPy-TQb5s6-AX2AvWF5Sy0uTA6yIPIAIaUVjzIeWGklaFVBYsFNyZnTMm4ZDbiWgLJDIJcxKooo2dkVK0r84JQHQqdl0Ihx-JxZLUBuqJxo1grG4alR_zugWZFq3iOjTfOs0armWV457P-znvkfW9_0Wh9_NFyv8NH1s75OgPfz2OgTDLwyNv-NDwx3ILJK7Peog34Q9zLhSGeN3DqvwrXgsC_pUfiAdB6A1QCH56pVl-dIjiQ8igOQo8wB7S__PosWSyS_tPev1z0huweLo_TLD2afXpJ7sFxhYl5LNwno83l1rwid4urzaq-fN1Ox59gJDsa
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQgmAv_MMGFjASEqdoE8d26mMVqFhRqmpbxN4iO7Gh0iqtNu1Ke-MReAYejSdhxvmBaIWQEMckYyexx-PP9sw3hLxyTBROGfTzK1TIE25DnQgVyih1JtFOcecDhafpbDY6PVXz1psQY2Eafoh-ww1HhrfXOMDtpnRHv1hDi7pGDkKkMBthCN91LsDQIrkzn3fGWAJC9wFGI8lDIZO4422M2NGw_HBeugI2r_pM_o5l_WQ0ufMffuMuud0iUTpuVOceuWar--RW1iWAe0C-4zoVzA0dGwwXAe2guirphy6hLv3kt1VpNuR8pmtH_YY9dj-drj5Xq6qm5pKOt4DPd4BtS7pcA-anJ9adeU-w6sfXb5Pl8QldbHxSHgyVuaRgqmDZDtK4V0x9pPAFrOyhAtpRqTwkHydvl9m7sE3pEBaYCTQUjrPYaWFNpKPEggYpo3ikeWGlk7FTBUsFt1YzpmRaMpdwIwFiRpEWqSrK5BHZq9aVPSDUxMLoUihEWDxNnLEAVgweExvl4rgMSNh1aF60fOeYduMsb5iaWY4tn_ctH5DXvfymYfr4o-Rhpx95O-LrHCw_TwEwySggL_vH0GN4AKMru96hDFhDPMmFKh436tS_CleCgL5lQNKBovUCyAM-fFKtvng-cIDkSRrFAWFe0f7y9Xm2WGT91ZN_KfSC3Jy_meTT49n7p2Qfbiv0ymPxIdnbnu_sM3KjuNiu6vPnfiz-BA70OQM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+Abundance+and+Molecular+Weight+Characteristics+of+Technical+Lignins+by+Attenuated+Total+Reflection%E2%80%90FTIR+Spectroscopy+Combined+with+Multivariate+Analysis&rft.jtitle=ChemSusChem&rft.au=Lancefield%2C+Christopher+S.&rft.au=Constant%2C+Sandra&rft.au=de+Peinder%2C+Peter&rft.au=Bruijnincx%2C+Pieter+C.+A.&rft.date=2019-03-21&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=12&rft.issue=6&rft.spage=1139&rft.epage=1146&rft_id=info:doi/10.1002%2Fcssc.201802809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201802809
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon