Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflection‐FTIR Spectroscopy Combined with Multivariate Analysis
Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightfor...
Uloženo v:
| Vydáno v: | ChemSusChem Ročník 12; číslo 6; s. 1139 - 1146 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
Wiley Subscription Services, Inc
21.03.2019
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.
One stop shop: The structural characterization of technical lignins is typically challenging, requiring extensive, high‐end instrumentation such as high‐field NMR spectrometers and gel permeation chromatography equipment. For routine analyses we show that attenuated total reflectance‐FTIR spectroscopy combined with chemometric approaches, especially partial least squares regression, can provide equivalent information on molecular weight and interunit abundances in a fraction of the time. |
|---|---|
| AbstractList | Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn , Mw ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process.Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn , Mw ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R2 Cal.>0.85) for molecular weight (Mn, Mw) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. One stop shop: The structural characterization of technical lignins is typically challenging, requiring extensive, high‐end instrumentation such as high‐field NMR spectrometers and gel permeation chromatography equipment. For routine analyses we show that attenuated total reflectance‐FTIR spectroscopy combined with chemometric approaches, especially partial least squares regression, can provide equivalent information on molecular weight and interunit abundances in a fraction of the time. Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R 2 Cal.>0.85) for molecular weight (M n, M w) and inter‐unit abundances (β‐O‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)‐FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel‐permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR‐FTIR spectroscopy. PLS models correlating the ATR‐FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination ( R 2 Cal.>0.85) for molecular weight ( M n , M w ) and inter‐unit abundances (β‐ O ‐4, β‐5 and β‐β), with low relative errors (6.2–14 %) as estimated from cross‐validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8–13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and variable chemical structure, which requires an extensive suite of analytical instruments to characterize. Here, we demonstrate that straightforward attenuated total reflection (ATR)-FTIR analysis combined with principle component analysis (PCA) and partial least squares (PLS) modelling can provide remarkable insight into the structure of technical lignins, giving quantitative results that are comparable to standard gel-permeation chromatography (GPC) and 2D heteronuclear single quantum coherence (HSQC) NMR methods. First, a calibration set of 54 different technical (fractionated) lignin samples, covering kraft, soda and organosolv processes, were prepared and analyzed using traditional GPC and NMR methods, as well as by readily accessible ATR-FTIR spectroscopy. PLS models correlating the ATR-FTIR spectra of the broad set of lignins with GPC and NMR measurements were found to have excellent coefficients of determination (R Cal.>0.85) for molecular weight (M , M ) and inter-unit abundances (β-O-4, β-5 and β-β), with low relative errors (6.2-14 %) as estimated from cross-validation results. PLS analysis of a second set of 28 samples containing exclusively (fractionated) kraft lignins showed further improved prediction ability, with relative errors of 3.8-13 %, and the resulting model could predict the structural characteristics of an independent validation set of lignins with good accuracy. The results highlight the potential utility of this methodology for streamlining and expediting the often complex and time consuming technical lignin characterization process. |
| Author | Lancefield, Christopher S. de Peinder, Peter Constant, Sandra Bruijnincx, Pieter C. A. |
| AuthorAffiliation | 1 Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands 3 Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands 2 VibSpec Haaftenlaan 28 4006 XL Tiel The Netherlands |
| AuthorAffiliation_xml | – name: 1 Inorganic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands – name: 2 VibSpec Haaftenlaan 28 4006 XL Tiel The Netherlands – name: 3 Organic Chemistry and Catalysis Debye Institute for Nanomaterials Science Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands |
| Author_xml | – sequence: 1 givenname: Christopher S. orcidid: 0000-0001-9134-5589 surname: Lancefield fullname: Lancefield, Christopher S. organization: Utrecht University – sequence: 2 givenname: Sandra surname: Constant fullname: Constant, Sandra organization: Utrecht University – sequence: 3 givenname: Peter surname: de Peinder fullname: de Peinder, Peter organization: VibSpec – sequence: 4 givenname: Pieter C. A. orcidid: 0000-0001-8134-0530 surname: Bruijnincx fullname: Bruijnincx, Pieter C. A. email: p.c.a.bruijnincx@uu.nl organization: Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30641616$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks1uEzEUhUeoiP7AliWyxIZNgu2Z8cQbpGhEoVIqpCYIdpbHcyfj4tjB9rSaHY_AM_BoPAmO0gaohFjZ1v3O0bnX9zQ7ss5Clj0neEowpq9VCGpKMZlhOsP8UXZCZqyYlKz4fHS45-Q4Ow3hGmOGOWNPsuMcs4Iwwk6yHwttv8g1oHkz2FZaBUjaFl06A2ow0qNPoNd9RHUvvVQRvA5Rq4Bch1agequVNGih11bbgJoRzWMEO8gILVq5mGpX0CWrqJ39-e37-eriCi236e1dUG47otptGm0Tfatjjy4HE_WN9DoZoLmVZgw6PM0ed9IEeHZ3nmUfz9-u6veTxYd3F_V8MVFlVfJJ2RWUdLKEBkucAzTAG15gWShgHSMdV7QqCwBJKWdVS7u8aBjPKcayrLhq87Pszd53OzQbaBXY6KURW6830o_CSS3-rljdi7W7ESyNuMIkGby6M_Du6wAhio0OCoyRFtwQBCUVz_MSE57Qlw_Qazf41PCO4kWFKWE4US_-THSIcv99CSj2gErzDB46oXSUu2GngNoIgsVuS8RuS8RhS5Js-kB27_xPAd8LbrWB8T-0qJfL-rf2FyKM1NU |
| CitedBy_id | crossref_primary_10_1016_j_seppur_2020_117395 crossref_primary_10_1007_s00449_024_03096_z crossref_primary_10_1016_j_conbuildmat_2022_129303 crossref_primary_10_1016_j_chemolab_2025_105467 crossref_primary_10_1016_j_chemosphere_2021_131798 crossref_primary_10_1002_cssc_201900480 crossref_primary_10_1007_s13399_021_02030_7 crossref_primary_10_1016_j_carbpol_2023_121452 crossref_primary_10_1080_01694243_2025_2509746 crossref_primary_10_1007_s10570_024_06261_5 crossref_primary_10_3390_ijms241512403 crossref_primary_10_1002_cssc_202301840 crossref_primary_10_1016_j_jaap_2021_105408 crossref_primary_10_1021_acssuschemeng_5c01598 crossref_primary_10_1002_cssc_202301464 crossref_primary_10_1002_cssc_202000989 crossref_primary_10_3389_fbioe_2022_994760 crossref_primary_10_1016_j_polymertesting_2023_108228 crossref_primary_10_1016_j_cej_2025_166264 crossref_primary_10_3390_app9112252 crossref_primary_10_1038_s41596_025_01139_7 crossref_primary_10_1016_j_seta_2025_104334 crossref_primary_10_1007_s13399_023_04580_4 crossref_primary_10_1002_cssc_202101853 crossref_primary_10_1016_j_pecs_2019_100788 crossref_primary_10_1016_j_foodres_2024_114091 crossref_primary_10_3389_fbioe_2021_767139 crossref_primary_10_1016_j_cej_2023_144823 crossref_primary_10_3390_polym17020214 crossref_primary_10_1016_j_cej_2023_141999 crossref_primary_10_1146_annurev_chembioeng_101121_084152 crossref_primary_10_1002_advs_202501259 crossref_primary_10_1016_j_apcato_2024_206953 crossref_primary_10_1002_cssc_202300978 crossref_primary_10_1016_j_psep_2024_01_063 crossref_primary_10_3390_molecules26040842 crossref_primary_10_1002_cssc_202001225 crossref_primary_10_1016_j_indcrop_2022_114696 crossref_primary_10_1016_j_jpba_2022_114649 crossref_primary_10_1002_cmtd_202100028 crossref_primary_10_1007_s13399_022_03508_8 crossref_primary_10_1039_C9RA10576J crossref_primary_10_1002_cmtd_202100041 crossref_primary_10_1002_cssc_202200326 crossref_primary_10_1016_j_ijbiomac_2025_147204 |
| Cites_doi | 10.1016/j.indcrop.2004.04.022 10.1002/rcm.1290090920 10.1016/j.indcrop.2014.09.019 10.1002/ange.201510351 10.1016/j.indcrop.2018.02.043 10.1039/C7CS00566K 10.1039/C4RA13113D 10.1002/mrc.1914 10.1515/HF.2007.074 10.1021/acs.chemrev.5b00345 10.1201/EBK1574444865-c6 10.1201/EBK1574444865-c5 10.1039/C7GC02023F 10.1039/C7GC01479A 10.1515/hfsg.1986.40.2.93 10.1021/acssuschemeng.6b00929 10.1016/j.indcrop.2017.05.013 10.1039/C5GC03043A 10.1016/j.jmr.2005.02.002 10.1007/s10086-015-1467-x 10.3390/s140813532 10.1016/S0960-8524(00)00024-9 10.1016/j.rser.2012.12.022 10.1201/EBK1574444865-c4 10.1016/j.indcrop.2015.12.048 10.1039/C8SC02000K 10.1016/j.indcrop.2003.10.008 10.1007/978-3-642-74065-7_7 10.1186/1746-4811-7-9 10.1016/j.reactfunctpolym.2014.09.017 10.1080/02773813.2016.1214732 10.1002/anie.201510351 10.1016/j.polymer.2015.12.010 10.1021/acssuschemeng.7b02575 10.1021/acs.chemrev.7b00588 10.1002/cssc.201800617 10.1002/bbb.1500 10.1039/C7TA01187C 10.1039/C7GC00195A 10.1021/acs.chemrev.5b00155 10.1002/cssc.201801177 10.1111/j.1365-313X.2009.03808.x 10.1016/j.apenergy.2012.12.019 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| DOI | 10.1002/cssc.201802809 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 1146 |
| ExternalDocumentID | PMC6563701 30641616 10_1002_cssc_201802809 CSSC201802809 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
| GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5759-5f421fa5eb0a03eebe9b940a4ce6f61f9c2754eea22967d2f34b693200a579cd3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 66 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461895100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Tue Nov 04 02:00:29 EST 2025 Sun Nov 09 14:03:27 EST 2025 Sat Nov 29 14:41:09 EST 2025 Mon Jul 21 06:02:44 EDT 2025 Tue Nov 18 20:59:45 EST 2025 Sat Nov 29 07:12:55 EST 2025 Wed Jan 22 16:25:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | biomass chemometrics lignin partial least squares modelling FTIR spectroscopy |
| Language | English |
| License | Attribution-NonCommercial 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5759-5f421fa5eb0a03eebe9b940a4ce6f61f9c2754eea22967d2f34b693200a579cd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9134-5589 0000-0001-8134-0530 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802809 |
| PMID | 30641616 |
| PQID | 2194702160 |
| PQPubID | 986333 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6563701 proquest_miscellaneous_2179335019 proquest_journals_2194702160 pubmed_primary_30641616 crossref_citationtrail_10_1002_cssc_201802809 crossref_primary_10_1002_cssc_201802809 wiley_primary_10_1002_cssc_201802809_CSSC201802809 |
| PublicationCentury | 2000 |
| PublicationDate | March 21, 2019 |
| PublicationDateYYYYMMDD | 2019-03-21 |
| PublicationDate_xml | – month: 03 year: 2019 text: March 21, 2019 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2017; 5 1995; 9 2004; 20 2015; 5 2005; 174 2013; 21 2010 2013; 104 2009 2014; 48 2005 1992 2014; 85 2016; 18 2014; 62 2016; 36 2014; 115 2011; 7 2018; 47 2016; 4 2009; 58 2018; 9 2016 2016; 55 128 1986; 40 2015; 115 2018; 116 2004; 19 2018; 118 2015; 61 2000; 74 2014; 14 2017; 19 2016; 83 2016; 116 2007; 61 2018; 11 2014; 8 2007; 45 2017; 107 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Lake M. A. (e_1_2_7_11_1) 2014; 48 e_1_2_7_7_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_28_1 Brunow G. (e_1_2_7_19_1) 2005 Kouisni L. (e_1_2_7_10_1) 2014; 115 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_2 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 55 128 start-page: 8164 8296 year: 2016 2016 end-page: 8215 8354 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – year: 2009 – start-page: 89 year: 2005 end-page: 99 – volume: 11 start-page: 1600 year: 2018 end-page: 1605 publication-title: ChemSusChem – volume: 5 start-page: 10640 year: 2017 end-page: 10648 publication-title: ACS Sustainable Chem. Eng. – volume: 11 start-page: 3259 year: 2018 end-page: 3268 publication-title: ChemSusChem – volume: 36 start-page: 432 year: 2016 end-page: 446 publication-title: J. Wood Chem. Technol. – volume: 74 start-page: 201 year: 2000 end-page: 212 publication-title: Bioresour. Technol. – volume: 107 start-page: 159 year: 2017 end-page: 171 publication-title: Ind. Crops Prod. – volume: 19 start-page: 271 year: 2004 end-page: 281 publication-title: Ind. Crops Prod. – volume: 4 start-page: 5167 year: 2016 end-page: 5180 publication-title: ACS Sustainable Chem. Eng. – volume: 83 start-page: 92 year: 2016 end-page: 100 publication-title: Polymer – volume: 7 start-page: 9 year: 2011 publication-title: Plant Methods – volume: 104 start-page: 801 year: 2013 end-page: 809 publication-title: Appl. Energy – volume: 115 start-page: 11559 year: 2015 end-page: 11624 publication-title: Chem. Rev. – volume: 62 start-page: 481 year: 2014 end-page: 490 publication-title: Ind. Crops Prod. – volume: 116 start-page: 116 year: 2018 end-page: 121 publication-title: Ind. Crops Prod. – volume: 19 start-page: 5131 year: 2017 end-page: 5143 publication-title: Green Chem. – volume: 45 start-page: 37 year: 2007 end-page: 45 publication-title: Magn. Reson. Chem. – volume: 9 start-page: 6348 year: 2018 end-page: 6360 publication-title: Chem. Sci. – volume: 40 start-page: 37 year: 1986 end-page: 44 publication-title: Holzforschung – start-page: 245 year: 2010 end-page: 266 – volume: 19 start-page: 4200 year: 2017 publication-title: Green Chem. – volume: 116 start-page: 2275 year: 2016 end-page: 2306 publication-title: Chem. Rev. – volume: 18 start-page: 2651 year: 2016 end-page: 2665 publication-title: Green Chem. – volume: 19 start-page: 2774 year: 2017 end-page: 2782 publication-title: Green Chem. – volume: 174 start-page: 237 year: 2005 end-page: 244 publication-title: J. Magn. Reson. – volume: 118 start-page: 614 year: 2018 end-page: 678 publication-title: Chem. Rev. – volume: 47 start-page: 852 year: 2018 end-page: 908 publication-title: Chem. Soc. Rev. – volume: 85 start-page: 78 year: 2014 end-page: 96 publication-title: React. Funct. Polym. – volume: 5 start-page: 4009 year: 2015 end-page: 4018 publication-title: RSC Adv. – volume: 115 start-page: 18 year: 2014 end-page: 22 publication-title: Pulp Pap. Can. – start-page: 103 year: 2010 end-page: 136 – volume: 21 start-page: 506 year: 2013 end-page: 523 publication-title: Renewable Sustainable Energy Rev. – volume: 61 start-page: 213 year: 2015 end-page: 220 publication-title: J. Wood Sci. – volume: 58 start-page: 706 year: 2009 end-page: 714 publication-title: Plant J. – volume: 48 start-page: 799 year: 2014 end-page: 804 publication-title: Cellul. Chem. Technol. – volume: 83 start-page: 155 year: 2016 end-page: 165 publication-title: Ind. Crops Prod. – volume: 20 start-page: 205 year: 2004 end-page: 218 publication-title: Ind. Crops Prod. – volume: 5 start-page: 12740 year: 2017 end-page: 12746 publication-title: J. Mater. Chem. A – volume: 61 start-page: 459 year: 2007 end-page: 468 publication-title: Holzforschung – volume: 8 start-page: 836 year: 2014 end-page: 856 publication-title: Biofuels Bioprod. Biorefin. – start-page: 83 year: 1992 end-page: 109 – start-page: 137 year: 2010 end-page: 244 – volume: 14 start-page: 13532 year: 2014 end-page: 13547 publication-title: Sensors – volume: 9 start-page: 815 year: 1995 end-page: 826 publication-title: Rapid Commun. Mass Spectrom. – ident: e_1_2_7_30_1 doi: 10.1016/j.indcrop.2004.04.022 – ident: e_1_2_7_21_1 doi: 10.1002/rcm.1290090920 – volume: 115 start-page: 18 year: 2014 ident: e_1_2_7_10_1 publication-title: Pulp Pap. Can. – ident: e_1_2_7_31_1 doi: 10.1016/j.indcrop.2014.09.019 – ident: e_1_2_7_8_2 doi: 10.1002/ange.201510351 – ident: e_1_2_7_39_1 doi: 10.1016/j.indcrop.2018.02.043 – ident: e_1_2_7_6_1 doi: 10.1039/C7CS00566K – volume: 48 start-page: 799 year: 2014 ident: e_1_2_7_11_1 publication-title: Cellul. Chem. Technol. – ident: e_1_2_7_28_1 doi: 10.1039/C4RA13113D – ident: e_1_2_7_48_1 doi: 10.1002/mrc.1914 – ident: e_1_2_7_43_1 doi: 10.1515/HF.2007.074 – ident: e_1_2_7_4_1 doi: 10.1021/acs.chemrev.5b00345 – ident: e_1_2_7_41_1 – ident: e_1_2_7_15_1 doi: 10.1201/EBK1574444865-c6 – ident: e_1_2_7_24_1 – ident: e_1_2_7_14_1 doi: 10.1201/EBK1574444865-c5 – ident: e_1_2_7_38_1 doi: 10.1039/C7GC02023F – ident: e_1_2_7_7_1 doi: 10.1039/C7GC01479A – ident: e_1_2_7_29_1 doi: 10.1515/hfsg.1986.40.2.93 – ident: e_1_2_7_22_1 doi: 10.1021/acssuschemeng.6b00929 – ident: e_1_2_7_32_1 doi: 10.1016/j.indcrop.2017.05.013 – ident: e_1_2_7_12_1 doi: 10.1039/C5GC03043A – ident: e_1_2_7_47_1 doi: 10.1016/j.jmr.2005.02.002 – ident: e_1_2_7_33_1 doi: 10.1007/s10086-015-1467-x – ident: e_1_2_7_34_1 doi: 10.3390/s140813532 – ident: e_1_2_7_37_1 doi: 10.1016/S0960-8524(00)00024-9 – ident: e_1_2_7_2_1 doi: 10.1016/j.rser.2012.12.022 – ident: e_1_2_7_16_1 doi: 10.1201/EBK1574444865-c4 – ident: e_1_2_7_26_1 doi: 10.1016/j.indcrop.2015.12.048 – ident: e_1_2_7_46_1 doi: 10.1039/C8SC02000K – ident: e_1_2_7_42_1 doi: 10.1016/j.indcrop.2003.10.008 – ident: e_1_2_7_17_1 doi: 10.1007/978-3-642-74065-7_7 – ident: e_1_2_7_36_1 doi: 10.1186/1746-4811-7-9 – ident: e_1_2_7_5_1 doi: 10.1016/j.reactfunctpolym.2014.09.017 – start-page: 89 volume-title: Biopolymers Online year: 2005 ident: e_1_2_7_19_1 – ident: e_1_2_7_45_1 doi: 10.1080/02773813.2016.1214732 – ident: e_1_2_7_8_1 doi: 10.1002/anie.201510351 – ident: e_1_2_7_27_1 doi: 10.1016/j.polymer.2015.12.010 – ident: e_1_2_7_25_1 doi: 10.1021/acssuschemeng.7b02575 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.7b00588 – ident: e_1_2_7_20_1 doi: 10.1002/cssc.201800617 – ident: e_1_2_7_23_1 doi: 10.1002/bbb.1500 – ident: e_1_2_7_40_1 doi: 10.1039/C7TA01187C – ident: e_1_2_7_13_1 doi: 10.1039/C7GC00195A – ident: e_1_2_7_3_1 doi: 10.1021/acs.chemrev.5b00155 – ident: e_1_2_7_44_1 doi: 10.1002/cssc.201801177 – ident: e_1_2_7_9_1 – ident: e_1_2_7_18_1 doi: 10.1111/j.1365-313X.2009.03808.x – ident: e_1_2_7_35_1 doi: 10.1016/j.apenergy.2012.12.019 |
| SSID | ssj0060966 |
| Score | 2.499926 |
| Snippet | Lignin is an attractive material for the production of renewable chemicals, materials and energy. However, utilization is hampered by its highly complex and... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1139 |
| SubjectTerms | biomass chemometrics Coherence Fourier transforms FTIR spectroscopy Infrared spectroscopy Lignin Mathematical models Molecular weight Multivariate analysis NMR Nuclear magnetic resonance Organic chemistry partial least squares modelling Principal components analysis Quantum phenomena Reflection Spectrum analysis Streamlining |
| Title | Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflection‐FTIR Spectroscopy Combined with Multivariate Analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802809 https://www.ncbi.nlm.nih.gov/pubmed/30641616 https://www.proquest.com/docview/2194702160 https://www.proquest.com/docview/2179335019 https://pubmed.ncbi.nlm.nih.gov/PMC6563701 |
| Volume | 12 |
| WOSCitedRecordID | wos000461895100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ditQwFA6yK-iN_z_VdYkgeFW2TdJkcjlUB4VxWWZmce5K0iY6sHSW7czC3vkIPoOP5pN4TjqtWxYR9Ka05CRtk5OTLz_nO4S88SwrvbZ4zq_UseDCxYZnOpaJ8pYbr4UPjsJTdXw8Wi71yTUv_pYfol9ww54R7DV2cGObo9-koWXTIAUhMpiN0INvP025Qr1m4qSzxRIAevAvGkkRZ5KnHW1jwo6G-YfD0g2sefPI5HUoG8aiyf3__4sH5N4Oh9JxqzgPyS1XPyJ38i7822PyA2epYGzo2KKzCOgGNXVFP3XhdOnnsKhK8yHjM117GpbrsfHpdPWlXtUNtVd0vAF0vgVkW9HFGhA_nTl_Fs6B1T-_fZ8sPs7o_DyE5EFHmSsKhgom7SCNK8U0-AlfwrweCqAdkcoTcjp5v8g_xLuADnGJcUDjzAuWepM5m5iEO9AfbbVIjCid9DL1umQqE84ZxrRUFfNcWAkAM0lMpnRZ8adkr17X7jmhNs2sqTKN-Eoo7q0DqGJxk9hqn6ZVROKuPYtyx3aOQTfOipanmRVY80Vf8xF528uftzwff5Q86NSj2PX3pgC7LxTAJZlE5HWfDC2G2y-mdustyoAtxH1cKOJZq039q3AeCNhbRkQN9KwXQBbwYUq9-hrYwAGQc5WkEWFBz_7y9UU-n-f904t_yfSS3IV7jQfxWHpA9jYXW_eK3C4vN6vm4jD0P7iq5eiQ7L-bTU6nvwBzVzgl |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datswFBYjHXQ3-_9x120aDHZlasuSHF0Gb6FlbhhJynpnLFvqAsUpdVLoXR9hz7BH25PsHPlnM2UMxi5jHyuJ_en409E53yHknWWisEpjnl-hfB5x4-eRUL4MYquj3CpuXaFwGs9m49NT9bnNJsRamEYfog-44cxw_honOAakD36phhZ1jRqEKGE2xhK-HQ5YEiOy82E-PUk7dyyBo7sSo7HkvpBR2Ck3BuxgOMLwzXSLbt7OmvydzbrX0fTBf_gjD8n9lovSSQOeR-SOqR6T3aRrAfeEfMeVKjgcOtFYMAL4oHlV0uOupS794gKrNBmqPtO1pS5kjwCg6eqsWlU11dd0sgGGvgV2W9LlGlg_nRt77nLBqh8336bLozldXLi2PFgsc03BWcHCHawxWkxdrfAVrO1hANqJqTwlJ9OPy-TQb5s6-AX2AvWF5Sy0uTA6yIPIAIaUVjzIeWGklaFVBYsFNyZnTMm4ZDbiWgLJDIJcxKooo2dkVK0r84JQHQqdl0Ihx-JxZLUBuqJxo1grG4alR_zugWZFq3iOjTfOs0armWV457P-znvkfW9_0Wh9_NFyv8NH1s75OgPfz2OgTDLwyNv-NDwx3ILJK7Peog34Q9zLhSGeN3DqvwrXgsC_pUfiAdB6A1QCH56pVl-dIjiQ8igOQo8wB7S__PosWSyS_tPev1z0huweLo_TLD2afXpJ7sFxhYl5LNwno83l1rwid4urzaq-fN1Ox59gJDsa |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwELbQgmAv_MMGFjASEqdoE8d26mMVqFhRqmpbxN4iO7Gh0iqtNu1Ke-MReAYejSdhxvmBaIWQEMckYyexx-PP9sw3hLxyTBROGfTzK1TIE25DnQgVyih1JtFOcecDhafpbDY6PVXz1psQY2Eafoh-ww1HhrfXOMDtpnRHv1hDi7pGDkKkMBthCN91LsDQIrkzn3fGWAJC9wFGI8lDIZO4422M2NGw_HBeugI2r_pM_o5l_WQ0ufMffuMuud0iUTpuVOceuWar--RW1iWAe0C-4zoVzA0dGwwXAe2guirphy6hLv3kt1VpNuR8pmtH_YY9dj-drj5Xq6qm5pKOt4DPd4BtS7pcA-anJ9adeU-w6sfXb5Pl8QldbHxSHgyVuaRgqmDZDtK4V0x9pPAFrOyhAtpRqTwkHydvl9m7sE3pEBaYCTQUjrPYaWFNpKPEggYpo3ikeWGlk7FTBUsFt1YzpmRaMpdwIwFiRpEWqSrK5BHZq9aVPSDUxMLoUihEWDxNnLEAVgweExvl4rgMSNh1aF60fOeYduMsb5iaWY4tn_ctH5DXvfymYfr4o-Rhpx95O-LrHCw_TwEwySggL_vH0GN4AKMru96hDFhDPMmFKh436tS_CleCgL5lQNKBovUCyAM-fFKtvng-cIDkSRrFAWFe0f7y9Xm2WGT91ZN_KfSC3Jy_meTT49n7p2Qfbiv0ymPxIdnbnu_sM3KjuNiu6vPnfiz-BA70OQM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linkage+Abundance+and+Molecular+Weight+Characteristics+of+Technical+Lignins+by+Attenuated+Total+Reflection%E2%80%90FTIR+Spectroscopy+Combined+with+Multivariate+Analysis&rft.jtitle=ChemSusChem&rft.au=Lancefield%2C+Christopher+S.&rft.au=Constant%2C+Sandra&rft.au=de+Peinder%2C+Peter&rft.au=Bruijnincx%2C+Pieter+C.+A.&rft.date=2019-03-21&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=12&rft.issue=6&rft.spage=1139&rft.epage=1146&rft_id=info:doi/10.1002%2Fcssc.201802809&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cssc_201802809 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |