Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility
The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families...
Saved in:
| Published in: | The New phytologist Vol. 200; no. 3; pp. 847 - 860 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
New Phytologist Trust
01.11.2013
Wiley Subscription Services, Inc |
| Subjects: | |
| ISSN: | 0028-646X, 1469-8137, 1469-8137 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known.
Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles.
The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition.
Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. |
|---|---|
| AbstractList | Summary
The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII‐28 receptor nor the extent of flgII‐28 recognition by different plant families is known.
Here, we tested the significance of flgII‐28 as a MAMP and the importance of allelic diversity in flg22 and flgII‐28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles.
The plant genotype and allelic diversity in flg22 and flgII‐28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII‐28 is restricted to a number of solanaceous species. Although the flgII‐28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII‐28 have FLS2‐dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII‐28, and tomato plants silenced for FLS2 are not altered in flgII‐28 recognition.
Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII‐28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2‐dependent virulence effect in Arabidopsis. Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae [increment]fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. [PUBLICATION ABSTRACT] The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII‐28 receptor nor the extent of flgII‐28 recognition by different plant families is known. Here, we tested the significance of flgII‐28 as a MAMP and the importance of allelic diversity in flg22 and flgII‐28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII‐28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII‐28 is restricted to a number of solanaceous species. Although the flgII‐28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII‐28 have FLS2‐dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII‐28, and tomato plants silenced for FLS2 are not altered in flgII‐28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII‐28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2‐dependent virulence effect in Arabidopsis. The bacterial flagellin (FliC) epitopes flg22 and flg II ‐28 are microbe‐associated molecular patterns ( MAMP s). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS 2, neither the flg II ‐28 receptor nor the extent of flg II ‐28 recognition by different plant families is known. Here, we tested the significance of flg II ‐28 as a MAMP and the importance of allelic diversity in flg22 and flg II ‐28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ∆ fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flg II ‐28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flg II ‐28 is restricted to a number of solanaceous species. Although the flg II ‐28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flg II ‐28 have FLS 2 ‐dependent effects on virulence. However, the expression of a tomato allele of FLS 2 does not confer to Nicotiana benthamiana the ability to detect flg II ‐28, and tomato plants silenced for FLS 2 are not altered in flg II ‐28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flg II ‐28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS 2 ‐dependent virulence effect in Arabidopsis. The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known.Here we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles.Plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response but not bacterial motility. Recognition of flgII-28 is restricted to a number of Solanaceous species. While the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28 and tomato plants silenced for FLS2 are not altered in flgII-28 recognition.Therefore, MAMP diversification is an effective pathogen virulence strategy and flgII-28 appears to be perceived by a yet unidentified receptor in the Solanaceae although it has an FLS2-dependent virulence effect in Arabidopsis. The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant–pathogen interactions using purified peptides and a Pseudomonas syringae ΔfliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis.The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae ∆fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant species via the pattern recognition receptor FLS2, neither the flgII-28 receptor nor the extent of flgII-28 recognition by different plant families is known. Here, we tested the significance of flgII-28 as a MAMP and the importance of allelic diversity in flg22 and flgII-28 in plant-pathogen interactions using purified peptides and a Pseudomonas syringae Delta fliC mutant complemented with different fliC alleles. The plant genotype and allelic diversity in flg22 and flgII-28 were found to significantly affect the plant immune response, but not bacterial motility. The recognition of flgII-28 is restricted to a number of solanaceous species. Although the flgII-28 peptide does not trigger any immune response in Arabidopsis, mutations in both flg22 and flgII-28 have FLS2-dependent effects on virulence. However, the expression of a tomato allele of FLS2 does not confer to Nicotiana benthamiana the ability to detect flgII-28, and tomato plants silenced for FLS2 are not altered in flgII-28 recognition. Therefore, MAMP diversification is an effective pathogen virulence strategy, and flgII-28 appears to be perceived by an as yet unidentified receptor in the Solanaceae, although it has an FLS2-dependent virulence effect in Arabidopsis. |
| Author | Delphine Chinchilla Georg Felix Boris A. Vinatzer Fumiko Taguchi Yuki Ichinose Sarah R. Hind Christopher R. Clarke Ryuji Miki Gregory B. Martin Scotland Leman |
| AuthorAffiliation | 3 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA 6 Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA 1 Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA 2 Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland 5 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia 7 Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany 4 Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan |
| AuthorAffiliation_xml | – name: 3 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA – name: 5 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; and Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia – name: 6 Department of Statistics, Virginia Tech, Blacksburg, VA 24061, USA – name: 7 Zentrum für Molekularbiologie der Pflanzen, University Tübingen, 72076, Germany – name: 1 Department of Plant Pathology, Physiology and Weed Sciences Latham Hall, Ag Quad Lane, Virginia Tech, Blacksburg, VA 24061, USA – name: 4 Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Okayama 700-8530, Japan – name: 2 Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Hebelstrasse 1, 4056 Basel, Switzerland |
| Author_xml | – sequence: 1 givenname: Christopher R. surname: Clarke fullname: Clarke, Christopher R. organization: Virginia Tech – sequence: 2 givenname: Delphine surname: Chinchilla fullname: Chinchilla, Delphine organization: University of Basel – sequence: 3 givenname: Sarah R. surname: Hind fullname: Hind, Sarah R. organization: Boyce Thompson Institute for Plant Research – sequence: 4 givenname: Fumiko surname: Taguchi fullname: Taguchi, Fumiko organization: Okayama University – sequence: 5 givenname: Ryuji surname: Miki fullname: Miki, Ryuji organization: Okayama University – sequence: 6 givenname: Yuki surname: Ichinose fullname: Ichinose, Yuki organization: Okayama University – sequence: 7 givenname: Gregory B. surname: Martin fullname: Martin, Gregory B. organization: King Abdulaziz University – sequence: 8 givenname: Scotland surname: Leman fullname: Leman, Scotland organization: Virginia Tech – sequence: 9 givenname: Georg surname: Felix fullname: Felix, Georg organization: University Tübingen – sequence: 10 givenname: Boris A. surname: Vinatzer fullname: Vinatzer, Boris A. organization: Virginia Tech |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23865782$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhSNURKeFBS-ALLGBRVr_JXE2SFUFFKmCLrpgZznOnRmPHDvYTkfzILwvns5MBRV_3vhK_s650vE5KY6cd1AULwk-I_mcu3F5RijH4kkxI7xuS0FYc1TMMKairHn99bg4iXGFMW6rmj4rjikTddUIOiu-X1gL1mh0p4JRyXiHjENp7VFvYjJOJ3QTYer94J2KKG6CcQsFaG7VAqzNLIwm-REiGnw_WZXylJaAYgrgFmmJ_ByNVrmEzDBMDlCAOHoXM9ZNCTmfUKd0grzdZotkrEmb58XTubIRXuzv0-L2w_vby6vy-svHT5cX16WumkqUVdd2PZ1jzdum7jpc4Tn0vCdEK0yrTnet6DHRWDPooWe61RznsWsr3VHM2Wnxbmc7Tt0AvQaXgrJyDGZQYSO9MvLXF2eWcuHvJGvahtRbgzd7g-C_TRCTHEzUORflwE9R0opymj-ANP9ECeeCEiJE9T8oy7YtbzP6-hG68lNwObO8mzAmBGd_pbIXqZu8eLv21c9pPMRwKEsGzneADj7GAHOpTbrvTA7HWEmw3NZR5jrK-zpmxdtHioPp79i9-9pY2PwZlJ9vrg6KcqdYxeTDg8LBelxukrd-kSssKcaSScEb9gO7jgME |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0157155 crossref_primary_10_3389_fpls_2015_00219 crossref_primary_10_1094_MPMI_11_14_0372_R crossref_primary_10_1007_s10327_024_01172_6 crossref_primary_10_1111_tpj_13808 crossref_primary_10_1016_j_pbi_2014_04_007 crossref_primary_10_1016_j_it_2014_05_004 crossref_primary_10_1016_j_ncrops_2024_100014 crossref_primary_10_1038_s41467_024_48108_4 crossref_primary_10_1111_mpp_12688 crossref_primary_10_1186_s12870_021_03200_5 crossref_primary_10_1105_tpc_15_00774 crossref_primary_10_1111_pbi_70255 crossref_primary_10_1128_JB_00576_17 crossref_primary_10_1146_annurev_phyto_080516_035623 crossref_primary_10_1186_s13059_016_0955_7 crossref_primary_10_1073_pnas_1403248111 crossref_primary_10_3390_microorganisms8060815 crossref_primary_10_3390_plants9040516 crossref_primary_10_1016_j_molp_2015_01_012 crossref_primary_10_1007_s13580_021_00415_1 crossref_primary_10_7717_peerj_2570 crossref_primary_10_1094_MPMI_34_6 crossref_primary_10_1186_gb_2013_14_12_r139 crossref_primary_10_1016_S2095_3119_18_62009_X crossref_primary_10_1094_MPMI_03_17_0056_R crossref_primary_10_1186_1746_4811_10_6 crossref_primary_10_3389_fpls_2022_1004184 crossref_primary_10_1093_plphys_kiae401 crossref_primary_10_1111_jipb_12123 crossref_primary_10_1111_mpp_12297 crossref_primary_10_1002_mbo3_1255 crossref_primary_10_1111_mpp_13300 crossref_primary_10_3389_fpls_2023_1176705 crossref_primary_10_1111_nph_15596 crossref_primary_10_1016_j_chom_2021_02_006 crossref_primary_10_1094_MPMI_07_20_0173_CR crossref_primary_10_1038_nplants_2016_128 crossref_primary_10_1146_annurev_phyto_082718_100008 crossref_primary_10_1016_j_chom_2021_02_008 crossref_primary_10_1111_mpp_12655 crossref_primary_10_3835_plantgenome2015_02_0006 crossref_primary_10_1038_s41467_020_17573_y crossref_primary_10_1371_journal_ppat_1004578 crossref_primary_10_1016_j_pbi_2017_04_011 crossref_primary_10_1094_MPMI_08_21_0211_R crossref_primary_10_1093_plphys_kiac577 crossref_primary_10_1094_MPMI_06_19_0164_R crossref_primary_10_3390_plants12030590 crossref_primary_10_1073_pnas_2121568119 crossref_primary_10_1371_journal_ppat_1004491 crossref_primary_10_1111_pbi_12874 crossref_primary_10_1038_nplants_2016_136 crossref_primary_10_1042_BCJ20190299 crossref_primary_10_1093_plcell_koaf109 crossref_primary_10_1111_mpp_12140 crossref_primary_10_1186_s40538_024_00714_6 crossref_primary_10_3390_agronomy8080134 crossref_primary_10_1007_s10327_022_01105_1 crossref_primary_10_1111_tpj_16502 crossref_primary_10_1186_s12864_016_2534_4 crossref_primary_10_1128_JB_00418_19 crossref_primary_10_1007_s10327_018_0779_2 crossref_primary_10_1094_PHYTO_09_22_0357_SA crossref_primary_10_1093_mp_sst145 crossref_primary_10_1094_MPMI_11_16_0247_R crossref_primary_10_1094_MPMI_35_2 crossref_primary_10_1371_journal_ppat_1004483 crossref_primary_10_1128_AEM_01798_15 crossref_primary_10_1038_nplants_2016_185 crossref_primary_10_1094_MPMI_04_17_0084_R crossref_primary_10_1007_s00122_017_2876_6 crossref_primary_10_3389_fpls_2014_00677 crossref_primary_10_1111_nph_13551 crossref_primary_10_1094_MPMI_01_18_0008_R crossref_primary_10_1016_j_tplants_2023_09_013 crossref_primary_10_1038_srep44905 crossref_primary_10_1111_mpp_13445 crossref_primary_10_1371_journal_pone_0106119 crossref_primary_10_1146_annurev_phyto_080614_120114 crossref_primary_10_1094_MPMI_02_22_0037_CR crossref_primary_10_1146_annurev_phyto_102313_045907 crossref_primary_10_1007_s11104_020_04495_3 crossref_primary_10_1371_journal_ppat_1005686 crossref_primary_10_1094_MPMI_11_17_0279_TA crossref_primary_10_1093_plphys_kiac312 crossref_primary_10_1128_spectrum_01099_22 crossref_primary_10_1186_s13059_014_0492_1 crossref_primary_10_3389_fmicb_2014_00141 |
| Cites_doi | 10.1016/S1097-2765(00)80265-8 10.1046/j.1365-313X.1999.00265.x 10.1111/1462‐2920.12113 10.1094/PHYTO-11-10-0318 10.1016/j.cub.2008.10.063 10.1016/j.chom.2011.10.013 10.1126/science.295.5560.1722 10.1016/j.cell.2006.02.008 10.1038/nbt.1613 10.1038/nature11119 10.1104/pp.110.157016 10.1038/35074106 10.1038/nature01830 10.1038/nature10394 10.1016/j.pbi.2007.04.021 10.3389/fpls.2012.00169 10.1074/jbc.M004796200 10.1073/pnas.1013031108 10.1146/annurev.arplant.57.032905.105346 10.1093/molbev/mss011 10.1016/j.chom.2008.05.017 10.1046/j.1365-313X.1999.00451.x 10.1093/pcp/pcg042 10.1016/j.pbi.2005.05.004 10.1007/s00438-003-0817-3 10.1094/MPMI-23-6-0715 10.1073/pnas.0705306104 10.1105/tpc.106.048801 10.1105/tpc.10.9.1561 10.1126/science.1215584 10.1371/journal.ppat.1002130 10.1038/nature05999 10.1105/tpc.105.036574 10.1007/s11103-007-9173-8 10.1111/j.1365-2958.2011.07571.x 10.1038/ni1253 10.1101/gad.366506 10.1371/journal.pone.0041056 10.1371/journal.ppat.1002132 10.1016/S0015-3796(82)80041-3 10.1105/tpc.111.093815 10.1105/tpc.105.037648 10.1016/j.mib.2010.12.005 10.1038/nature08794 10.1073/pnas.0502040102 10.1038/nature02485 10.1128/JB.185.22.6658-6665.2003 10.1016/j.cell.2006.06.054 10.1007/978-3-642-23044-8_9 10.1038/nature10510 10.1038/nature05286 10.1074/jbc.M102390200 10.1094/MPMI.2004.17.6.696 10.1007/978-0-387-71767-8_25 10.1016/j.cub.2007.12.020 10.1016/j.ejcb.2009.11.015 10.1073/pnas.64.4.1300 10.1073/pnas.1113893109 10.1046/j.1365-313X.1996.09030341.x 10.1016/j.syapm.2010.02.001 10.1046/j.1365-313X.2002.01394.x |
| ContentType | Journal Article |
| Copyright | 2013 New Phytologist Trust 2013 The Authors. New Phytologist © 2013 New Phytologist Trust 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. Copyright © 2013 New Phytologist Trust |
| Copyright_xml | – notice: 2013 New Phytologist Trust – notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust – notice: 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. – notice: Copyright © 2013 New Phytologist Trust |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QL 7T5 7T7 H94 7S9 L.6 5PM |
| DOI | 10.1111/nph.12408 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AIDS and Cancer Research Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1469-8137 |
| EndPage | 860 |
| ExternalDocumentID | PMC3797164 3097703671 23865782 10_1111_nph_12408 NPH12408 newphytologist.200.3.847 |
| Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIH funderid: R01‐GM078021 – fundername: NSF funderid: #0746501 – fundername: Swiss National Foundation funderid: 31003A_138255; IOS‐1025642 – fundername: NIGMS NIH HHS grantid: R01 GM078021 – fundername: NIGMS NIH HHS grantid: R01-GM078021 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZZTAW ~02 ~IA ~KM ~WT 31~ AASVR ABEFU ABEML ABGDZ ACQPF ADXHL AGHNM AS~ CAG COF GTFYD HF~ HGD HQ2 HTVGU LPU MVM NEJ RCA WHG YXE ZCG AAYXX ABUFD CITATION O8X CGR CUY CVF ECM EIF NPM XOL 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QL 7T5 7T7 H94 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5758-5b9bd2f0c4976bb050fed4d11ca025bcb98d01c0c3eded3c9c403edb95cb2043 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 99 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000325555400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0028-646X 1469-8137 |
| IngestDate | Tue Nov 04 01:45:44 EST 2025 Fri Sep 05 17:13:33 EDT 2025 Tue Oct 07 09:25:29 EDT 2025 Thu Oct 02 04:18:16 EDT 2025 Fri Jul 25 12:19:05 EDT 2025 Sun Jul 13 05:17:43 EDT 2025 Mon Jul 21 05:43:49 EDT 2025 Sat Nov 29 04:38:14 EST 2025 Tue Nov 18 21:56:26 EST 2025 Sun Sep 21 06:21:26 EDT 2025 Thu Jul 03 22:54:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | flgII-28 FLS2 flagellin pattern-triggered immunity (PTI) flg22 microbe-associated molecular pattern (MAMP) pathogen-associated molecular pattern (PAMP) |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 The Authors. New Phytologist © 2013 New Phytologist Trust. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5758-5b9bd2f0c4976bb050fed4d11ca025bcb98d01c0c3eded3c9c403edb95cb2043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | http://doi.org/10.1111/nph.12408 |
| PMID | 23865782 |
| PQID | 1441672115 |
| PQPubID | 2026848 |
| PageCount | 14 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3797164 proquest_miscellaneous_2524264617 proquest_miscellaneous_1448211885 proquest_miscellaneous_1443426949 proquest_journals_2513388439 proquest_journals_1441672115 pubmed_primary_23865782 crossref_citationtrail_10_1111_nph_12408 crossref_primary_10_1111_nph_12408 wiley_primary_10_1111_nph_12408_NPH12408 jstor_primary_newphytologist_200_3_847 |
| PublicationCentury | 2000 |
| PublicationDate | November 2013 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: November 2013 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Lancaster |
| PublicationTitle | The New phytologist |
| PublicationTitleAlternate | New Phytol |
| PublicationYear | 2013 |
| Publisher | New Phytologist Trust Wiley Subscription Services, Inc |
| Publisher_xml | – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
| References | 2007; 104 2011; 477 2012; 485 2000; 5 1954; 44 2010; 464 2011; 10 2011; 14 2008; 4 2010; 23 2001; 410 2006; 20 2000; 12 2005; 102 1999; 18 2010; 28 1982; 177 2010; 153 2012; 29 2007; 64 2006; 126 2012; 24 2012; 335 1998; 10 1996; 9 2006; 444 2003; 44 2006; 124 2010; 33 1991; 3 2007; 19 2012 2002; 31 2011; 80 2009; 60 2002; 295 2008; 18 2006; 18 2007b; 448 2000; 275 2004; 428 2007; 10 2011; 7 2012; 109 2010; 89 2001; 276 2011; 108 2003; 424 2007a 2004; 17 2005; 8 1969; 64 2005; 6 2013 2003; 269 2012; 7 2011; 101 2003; 185 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Dong X (e_1_2_6_23_1) 1991; 3 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 King EO (e_1_2_6_34_1) 1954; 44 e_1_2_6_60_1 e_1_2_6_9_1 Martin GB (e_1_2_6_38_1) 2012 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 Meindl T (e_1_2_6_41_1) 2000; 12 |
| References_xml | – volume: 18 start-page: 465 year: 2006 end-page: 476 article-title: The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception publication-title: Plant Cell – volume: 448 start-page: 497 year: 2007b end-page: 500 article-title: A flagellin‐induced complex of the receptor FLS2 and BAK1 initiates plant defence publication-title: Nature – volume: 20 start-page: 537 year: 2006 end-page: 542 article-title: Ligand‐induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis publication-title: Genes & Development – volume: 185 start-page: 6658 year: 2003 end-page: 6665 article-title: Flagellin glycosylation island in pv. and its role in host specificity publication-title: Journal of Bacteriology – volume: 335 start-page: 859 year: 2012 end-page: 864 article-title: Structural basis of TLR5‐Flagellin recognition and signaling publication-title: Science – volume: 18 start-page: 265 year: 1999 end-page: 276 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant Journal – volume: 444 start-page: 323 year: 2006 end-page: 329 article-title: The plant immune system publication-title: Nature – volume: 109 start-page: 4215 year: 2012 end-page: 4220 article-title: Identification of innate immunity elicitors using molecular signatures of natural selection publication-title: Proceedings of the National Academy of Sciences, USA – volume: 18 start-page: 1824 year: 2008 end-page: 1832 article-title: Plant pattern‐recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase avrptoB publication-title: Current Biology – start-page: 358 year: 2007a end-page: 371 – volume: 153 start-page: 1188 year: 2010 end-page: 1198 article-title: A prominent role of the Flagellin receptor FLS2 in mediating stomatal response to pv. tomato DC3000 in Arabidopsis publication-title: Plant Physiology – volume: 64 start-page: 1300 year: 1969 end-page: 1307 article-title: mutants defective in chemotaxis toward specific chemicals publication-title: Proceedings of the National Academy of Sciences, USA – volume: 7 start-page: e41056 year: 2012 article-title: Plant innate immunity induced by flagellin suppresses the hypersensitive response in non‐host plants elicited by e pv. publication-title: PLoS ONE – volume: 108 start-page: 2975 year: 2011 end-page: 2980 article-title: Genetic disassembly and combinatorial reassembly identify a minimal functional repertoire of type III effectors in publication-title: Proceedings of the National Academy of Sciences, USA – volume: 477 start-page: 596 year: 2011 end-page: 600 article-title: The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus publication-title: Nature – volume: 295 start-page: 1722 year: 2002 end-page: 1726 article-title: A functional screen for the Type III (Hrp) secretome of the plant pathogen publication-title: Science – volume: 60 start-page: 379 year: 2009 end-page: 406 article-title: A renaissance of elicitors: perception of microbe‐associated molecular patterns and danger signals by pattern‐recognition receptors publication-title: Annual Review of Plant Biology – volume: 23 start-page: 715 year: 2010 end-page: 726 article-title: Identification of genes involved in pathogen‐associated molecular pattern‐triggered immunity publication-title: Molecular Plant–Microbe Interactions – volume: 6 start-page: 973 year: 2005 end-page: 979 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nature Immunology – volume: 104 start-page: 12217 year: 2007 end-page: 12222 article-title: The receptor‐like kinase SERK3/BAK1 is a central regulator of innate immunity in plants publication-title: Proceedings of the National Academy of Sciences, USA – volume: 3 start-page: 61 year: 1991 end-page: 72 article-title: Induction of defense genes by virulent and avirulent strains and by a cloned avirulence gene publication-title: Plant Cell – volume: 12 start-page: 1783 year: 2000 end-page: 1794 article-title: The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept publication-title: Plant Cell – volume: 126 start-page: 969 year: 2006 end-page: 980 article-title: Plant stomata function in innate immunity against bacterial invasion publication-title: Cell – volume: 7 start-page: e1002132 year: 2011 article-title: Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 isolates publication-title: PLoS Pathogens – volume: 424 start-page: 643 year: 2003 end-page: 650 article-title: Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy publication-title: Nature – volume: 477 start-page: 592 year: 2011 end-page: 595 article-title: Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity publication-title: Nature – volume: 102 start-page: 9247 year: 2005 end-page: 9252 article-title: Evasion of Toll‐like receptor 5 by flagellated bacteria publication-title: Proceedings of the National Academy of Sciences, USA – volume: 10 start-page: 616 year: 2011 end-page: 626 article-title: Structural analysis of AvrPtoB bound to host BAK1 reveals two similar kinase‐interacting domains in a type III effector publication-title: Cell Host & Microbe – volume: 29 start-page: 1655 year: 2012 end-page: 1667 article-title: Flagellin perception varies quantitatively in and its relatives publication-title: Molecular Biology and Evolution – volume: 124 start-page: 803 year: 2006 end-page: 814 article-title: Host–microbe interactions: shaping the evolution of the plant immune response publication-title: Cell – year: 2013 article-title: Salmonella colonization activates the plant immune system and benefits from association with plant pathogenic bacteria publication-title: Environmental Microbiology – volume: 5 start-page: 1003 year: 2000 end-page: 1011 article-title: FLS2: an LRR receptor‐like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis publication-title: Molecular Cell – volume: 101 start-page: 847 year: 2011 end-page: 858 article-title: Multilocus sequence typing of sensu lato confirms previously described genomospecies and permits rapid identification of pv. and pv. causing bacterial leaf spot on parsley publication-title: Phytopathology – volume: 33 start-page: 105 year: 2010 end-page: 115 article-title: pv. pv. nov., and pv. (Cintas Koike and Bull, 2000) comb. nov., are members of the emended species (ex Sutic & Dowson 1959) Gardan, Shafik, Belouin, Brosch, Grimont & Grimont 1999 publication-title: Systematic and Applied Microbiology – volume: 18 start-page: 277 year: 1999 end-page: 284 article-title: A single locus determines sensitivity to bacterial flagellin in publication-title: Plant Journal – volume: 89 start-page: 200 year: 2010 end-page: 207 article-title: Regulation of cell behaviour by plant receptor kinases: pattern recognition receptors as prototypical models publication-title: European Journal of Cell Biology – start-page: 145 year: 2012 end-page: 172 – year: 2012 article-title: MAP kinase cascades in plant innate immunity publication-title: Frontiers in Plant Science – volume: 428 start-page: 764 year: 2004 end-page: 767 article-title: Bacterial disease resistance in Arabidopsis through flagellin perception publication-title: Nature – volume: 64 start-page: 539 year: 2007 end-page: 547 article-title: Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities publication-title: Plant Molecular Biology – volume: 44 start-page: 301 year: 1954 end-page: 307 article-title: Two simple media for the demonstration of pyocyanin and fluorescein publication-title: Journal of Laboratory Clinical Medicine – volume: 10 start-page: 335 year: 2007 end-page: 341 article-title: Microbe‐associated molecular patterns (MAMPs) probe plant immunity publication-title: Current Opinion in Plant Biology – volume: 276 start-page: 45669 year: 2001 end-page: 45676 article-title: Sensitivity of different ecotypes and mutants of toward the bacterial elicitor flagellin correlates with the presence of receptor‐binding sites publication-title: Journal of Biological Chemistry – volume: 31 start-page: 777 year: 2002 end-page: 786 article-title: Virus‐induced gene silencing in tomato publication-title: Plant Journal – volume: 44 start-page: 342 year: 2003 end-page: 349 article-title: Post‐translational modification of Flagellin determines the specificity of HR induction publication-title: Plant and Cell Physiology – volume: 18 start-page: 764 year: 2006 end-page: 779 article-title: Within‐species flagellin polymorphism in pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2‐dependent defenses publication-title: Plant Cell – volume: 19 start-page: 3297 year: 2007 end-page: 3313 article-title: Identification and mutational analysis of Arabidopsis FLS2 leucine‐rich repeat domain residues that contribute to flagellin perception publication-title: Plant Cell – volume: 14 start-page: 54 year: 2011 end-page: 61 article-title: Activation of plant pattern‐recognition receptors by bacteria publication-title: Current Opinion in Microbiology – volume: 9 start-page: 341 year: 1996 end-page: 356 article-title: Genetic characterization of five powdery mildew disease resistance loci in publication-title: Plant Journal – volume: 275 start-page: 32347 year: 2000 end-page: 32356 article-title: Flagellin from an incompatible strain of induces a resistance response in cultured rice cells publication-title: Journal of Biological Chemistry – volume: 177 start-page: 483 year: 1982 end-page: 499 article-title: Growth cycle of suspension cultures of and publication-title: Biochemie und Physiologie der Pflanzen – volume: 28 start-page: 365 year: 2010 end-page: 369 article-title: Interfamily transfer of a plant pattern‐recognition receptor confers broad‐spectrum bacterial resistance publication-title: Nature Biotechnology – volume: 18 start-page: 74 year: 2008 end-page: 80 article-title: effector AvrPto blocks innate immunity by targeting receptor kinases publication-title: Current Biology – volume: 269 start-page: 21 year: 2003 end-page: 30 article-title: The deltafliD mutant of e pv. which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non‐host tomato cells publication-title: Molecular Genetics and Genomics – volume: 80 start-page: 364 year: 2011 end-page: 377 article-title: AlgW regulates multiple virulence strategies publication-title: Molecular Microbiology – volume: 24 start-page: 3193 year: 2012 end-page: 3197 article-title: Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations publication-title: Plant Cell – volume: 464 start-page: 418 year: 2010 end-page: 422 article-title: Differential innate immune signalling via Ca sensor protein kinases publication-title: Nature – volume: 7 start-page: e1002130 year: 2011 article-title: The plant pathogen pv. is genetically monomorphic and under strong selection to evade tomato immunity publication-title: PLoS Pathogens – volume: 4 start-page: 17 year: 2008 end-page: 27 article-title: Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor‐signaling complexes and impede plant immunity publication-title: Cell Host & Microbe – volume: 410 start-page: 1099 year: 2001 end-page: 1103 article-title: The innate immune response to bacterial flagellin is mediated by Toll‐like receptor 5 publication-title: Nature – start-page: 123 year: 2012 end-page: 154 – volume: 10 start-page: 1561 year: 1998 end-page: 1570 article-title: The plant wound hormone systemin binds with the N‐terminal part to its receptor but needs the C‐terminal part to activate it publication-title: Plant Cell – volume: 17 start-page: 696 year: 2004 end-page: 706 article-title: Flagellin is not a major defense elicitor in cells or extracts applied to publication-title: Molecular Plant–Microbe Interactions – volume: 8 start-page: 353 year: 2005 end-page: 360 article-title: Plants and animals: a different taste for microbes? publication-title: Current Opinion in Plant Biology – volume: 485 start-page: 635 year: 2012 end-page: 641 article-title: The tomato genome sequence provides insights into fleshy fruit evolution publication-title: Nature – ident: e_1_2_6_27_1 doi: 10.1016/S1097-2765(00)80265-8 – ident: e_1_2_6_25_1 doi: 10.1046/j.1365-313X.1999.00265.x – ident: e_1_2_6_43_1 doi: 10.1111/1462‐2920.12113 – ident: e_1_2_6_11_1 doi: 10.1094/PHYTO-11-10-0318 – ident: e_1_2_6_26_1 doi: 10.1016/j.cub.2008.10.063 – ident: e_1_2_6_16_1 doi: 10.1016/j.chom.2011.10.013 – ident: e_1_2_6_29_1 doi: 10.1126/science.295.5560.1722 – start-page: 123 volume-title: Effectors in plant–microbe interactions year: 2012 ident: e_1_2_6_38_1 – ident: e_1_2_6_20_1 doi: 10.1016/j.cell.2006.02.008 – ident: e_1_2_6_36_1 doi: 10.1038/nbt.1613 – ident: e_1_2_6_21_1 doi: 10.1038/nature11119 – ident: e_1_2_6_63_1 doi: 10.1104/pp.110.157016 – ident: e_1_2_6_30_1 doi: 10.1038/35074106 – ident: e_1_2_6_61_1 doi: 10.1038/nature01830 – ident: e_1_2_6_35_1 doi: 10.1038/nature10394 – ident: e_1_2_6_8_1 doi: 10.1016/j.pbi.2007.04.021 – ident: e_1_2_6_47_1 doi: 10.3389/fpls.2012.00169 – ident: e_1_2_6_15_1 doi: 10.1074/jbc.M004796200 – ident: e_1_2_6_22_1 doi: 10.1073/pnas.1013031108 – ident: e_1_2_6_9_1 doi: 10.1146/annurev.arplant.57.032905.105346 – ident: e_1_2_6_58_1 doi: 10.1093/molbev/mss011 – ident: e_1_2_6_53_1 doi: 10.1016/j.chom.2008.05.017 – ident: e_1_2_6_28_1 doi: 10.1046/j.1365-313X.1999.00451.x – ident: e_1_2_6_56_1 doi: 10.1093/pcp/pcg042 – ident: e_1_2_6_65_1 doi: 10.1016/j.pbi.2005.05.004 – ident: e_1_2_6_54_1 doi: 10.1007/s00438-003-0817-3 – volume: 3 start-page: 61 year: 1991 ident: e_1_2_6_23_1 article-title: Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene publication-title: Plant Cell – ident: e_1_2_6_14_1 doi: 10.1094/MPMI-23-6-0715 – ident: e_1_2_6_32_1 doi: 10.1073/pnas.0705306104 – ident: e_1_2_6_24_1 doi: 10.1105/tpc.106.048801 – ident: e_1_2_6_40_1 doi: 10.1105/tpc.10.9.1561 – ident: e_1_2_6_62_1 doi: 10.1126/science.1215584 – ident: e_1_2_6_13_1 doi: 10.1371/journal.ppat.1002130 – ident: e_1_2_6_19_1 doi: 10.1038/nature05999 – ident: e_1_2_6_17_1 doi: 10.1105/tpc.105.036574 – ident: e_1_2_6_48_1 doi: 10.1007/s11103-007-9173-8 – ident: e_1_2_6_51_1 doi: 10.1111/j.1365-2958.2011.07571.x – ident: e_1_2_6_5_1 doi: 10.1038/ni1253 – ident: e_1_2_6_49_1 doi: 10.1101/gad.366506 – ident: e_1_2_6_59_1 doi: 10.1371/journal.pone.0041056 – ident: e_1_2_6_6_1 doi: 10.1371/journal.ppat.1002132 – volume: 44 start-page: 301 year: 1954 ident: e_1_2_6_34_1 article-title: Two simple media for the demonstration of pyocyanin and fluorescein publication-title: Journal of Laboratory Clinical Medicine – ident: e_1_2_6_45_1 doi: 10.1016/S0015-3796(82)80041-3 – ident: e_1_2_6_44_1 doi: 10.1105/tpc.111.093815 – ident: e_1_2_6_55_1 doi: 10.1105/tpc.105.037648 – ident: e_1_2_6_52_1 doi: 10.1016/j.mib.2010.12.005 – ident: e_1_2_6_10_1 doi: 10.1038/nature08794 – ident: e_1_2_6_4_1 doi: 10.1073/pnas.0502040102 – ident: e_1_2_6_66_1 doi: 10.1038/nature02485 – ident: e_1_2_6_57_1 doi: 10.1128/JB.185.22.6658-6665.2003 – ident: e_1_2_6_42_1 doi: 10.1016/j.cell.2006.06.054 – ident: e_1_2_6_50_1 doi: 10.1007/978-3-642-23044-8_9 – ident: e_1_2_6_64_1 doi: 10.1038/nature10510 – ident: e_1_2_6_33_1 doi: 10.1038/nature05286 – ident: e_1_2_6_7_1 doi: 10.1074/jbc.M102390200 – ident: e_1_2_6_46_1 doi: 10.1094/MPMI.2004.17.6.696 – ident: e_1_2_6_18_1 doi: 10.1007/978-0-387-71767-8_25 – ident: e_1_2_6_60_1 doi: 10.1016/j.cub.2007.12.020 – ident: e_1_2_6_3_1 doi: 10.1016/j.ejcb.2009.11.015 – ident: e_1_2_6_31_1 doi: 10.1073/pnas.64.4.1300 – ident: e_1_2_6_39_1 doi: 10.1073/pnas.1113893109 – volume: 12 start-page: 1783 year: 2000 ident: e_1_2_6_41_1 article-title: The bacterial elicitor flagellin activates its receptor in tomato cells according to the address–message concept publication-title: Plant Cell – ident: e_1_2_6_2_1 doi: 10.1046/j.1365-313X.1996.09030341.x – ident: e_1_2_6_12_1 doi: 10.1016/j.syapm.2010.02.001 – ident: e_1_2_6_37_1 doi: 10.1046/j.1365-313X.2002.01394.x |
| SSID | ssj0009562 |
| Score | 2.4436479 |
| Snippet | The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many plant... Summary The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many... The bacterial flagellin (FliC) epitopes flg22 and flg II ‐28 are microbe‐associated molecular patterns ( MAMP s). Although flg22 is recognized by many plant... Summary The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). Although flg22 is recognized by many... The bacterial flagellin (FliC) epitopes flg22 and flgII‐28 are microbe‐associated molecular patterns (MAMPs). Although flg22 is recognized by many plant... The bacterial flagellin (FliC) epitopes flg22 and flgII-28 are microbe-associated molecular patterns (MAMPs). While flg22 is recognized by many plant species... |
| SourceID | pubmedcentral proquest pubmed crossref wiley jstor |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 847 |
| SubjectTerms | Alleles allelic variation Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Bacteria bacterial motility Defence mechanisms Epitopes Flagellin Flagellin - genetics flg22 flgII‐28 FLS2 Gene Expression Regulation, Plant Genetic diversity Genotype Genotypes Host-Pathogen Interactions - genetics Immune response Immune system Immunity Infections Inoculation Lycopersicon esculentum microbe‐associated molecular pattern (MAMP) Motility mutants Mutation Nicotiana - genetics Nicotiana - metabolism Nicotiana - microbiology Nicotiana benthamiana Pathogens pathogen‐associated molecular pattern (PAMP) Pattern recognition Pattern recognition receptors pattern‐triggered immunity (PTI) Peptides Plant bacterial diseases Plant Diseases - genetics Plant immunity Plant Immunity - genetics Plant species Plants Protein Kinases - genetics Protein Kinases - metabolism Pseudomonas Pseudomonas syringae Pseudomonas syringae - genetics Pseudomonas syringae - pathogenicity Pseudomonas syringae - physiology Reactive oxygen species Receptors Solanaceae Solanaceae - genetics Solanaceae - metabolism Solanaceae - microbiology Solanum lycopersicum - genetics Solanum lycopersicum - metabolism Solanum lycopersicum - microbiology Tomatoes Virulence |
| Title | Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility |
| URI | https://www.jstor.org/stable/newphytologist.200.3.847 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.12408 https://www.ncbi.nlm.nih.gov/pubmed/23865782 https://www.proquest.com/docview/1441672115 https://www.proquest.com/docview/2513388439 https://www.proquest.com/docview/1443426949 https://www.proquest.com/docview/1448211885 https://www.proquest.com/docview/2524264617 https://pubmed.ncbi.nlm.nih.gov/PMC3797164 |
| Volume | 200 |
| WOSCitedRecordID | wos000325555400026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1469-8137 dateEnd: 20241212 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1469-8137 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009562 issn: 0028-646X databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4tyx648H4ElsoghLgEJc7LEaflUS3SqqrQAr1FseNsK4UkatJF-0P4v8w4D7Wii5C4WfLEScYz9jeJ5xuAV1wq3OhCZft5Htp-rENbKC5tlSp0PZmqwPwx_XYWzWZisYjnB_BuyIXp-CHGD27kGWa9JgdPZbPl5GW9fOsSQReuv65vnPL759kW4W7IBwZmfJhFzypEp3jGK3f2ou444j6g-ed5yW0cazai6Z3_eoW7cLvHn-ykM5h7cKDL-3D0vkKMePUAfp0UBY6p2CWG0GbO2Kpk7c-KZbQWlKpl80ZvsgqNN21Yc0VfBVPN8gKXJWL3ZrrGJaLWDftRZVQZDFsIMRmlpJQX7ZJVOasLnE22osQUzdbdGV0Uk5uWlVXLZMcfjQ9J5wQpSngI59NP5x9O7b5wg60Q_Qk7kLHMeO4oH8GOlE7g5DrzM9dVKUIsqWQsMsdVjvJ0pjNPxcp3sCnjQEnK1X0Eh2VV6ifAAhV6JnkWcQsxJ4ooDziOG0Yy9zQPLXgzzGCielJzqq1RJENwgzpOjI4teDmK1h2Txz6h18YMRgmMbdDcTSlh1DMV7Uy8BHd0C44HO0l6r28SCk5DCqmDvd2caukIgRDQghdjN7oz_aNJS11tzBCeyS7-u4zAmwgRXC_DA4N1EZ9a8Liz3vGdONV5RWRoQbRj16MAUY7v9pSrpaEexymgABvVbuz6ekUms_mpaTz9d9FncItTsRGT6XkMh-16o5_DkbpsV816AjeihZjAzY9fpl_PJsbZfwNrw1ro |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4t3ZXgwvsRWMAghLgEpUmcOhKX5VEVUaoKFdRbFDsOrRSSqEkX7Q_h_zLjPNSKLkLiZslTNxnP2N84nm8AXrhS4UYXKNtP08D2Qx3YQrnSVrFC15Ox4uaL6bfpaDYTy2U4P4I3XS5Mww_RH7iRZ5j1mhycDqR3vDwvV6-HxNB1BY59NCM-gOP3X8Zfpzuku4HbsTDjAy1bZiG6ydP_eG8_aq4kHgKbf96Z3MWyZjMa3_i_17gJ11sQys4aq7kFRzq_DSdvCwSKF3fg11mW4aCKnWMcbSaOrXNW_yxYQgtCrmo2r_Q2KdCC44pVF3Q0GGuWZrg2EcU30yWuE6Wu2I8iofJg2EKcySgvJf9er1iRsjLDKWVryk7RbNNc1EUxua1ZXtRMNiTS-JB0WZBChbuwGH9YvJvYbfUGWyEEFDaXoUzc1FE-Ih4pHe6kOvGT4VDFiLOkkqFInKFylKcTnXgqVL6DTRlyJSlh9x4M8iLXD4BxFXgmgxbBC9EnilHKXRw3GMnU025gwatuCiPVMptTgY0s6iIc1HFkdGzB8160bOg8Dgm9NHbQS2CAgzZv6gmjnqlyZ-RFuK1bcNoZStS6fhVRhBpQXM0PdrtUUEcIxIEWPOu70afpQ02c62JrhvBMivHfZQT-iRD8chmXG8CLINWC-4359u_kUrFXhIcWjPYMuxcg3vH9nny9MvzjOAUUZaPajWFfrshoNp-YxsN_F30KVyeLz9No-nH26RFcc6n6iEn9PIVBvdnqx3Cizut1tXnSevtvNxpdrA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-NbUJ74fsjMMAghHgJSp04TSReBqMaoqoqNFDfothxaKXMiZp0aH8I_y93Thq1okNIvFnyxUnOd_bvEt_vAF5zqXCjC5Ub5HnoBrEO3Uhx6apUoevJVAn7x_T7eDiZRLNZPN2D9-tcmJYfov_gRp5h12tycF1l-YaXm2r-bkAMXTfgIBBxiG55cPp19G28Qbob8jULMz7QrGMWopM8_cVb-1F7JHEX2PzzzOQmlrWb0ej2_73GHbjVgVB20lrNXdjT5h4cfigRKF7dh18nRYGDKnaJcbSdOLYwrPlZsowWBKMaNq31KivRgtOa1Vf0aTDVLC9wbSKKb6YrXCcqXbOLMqPyYNhCnMkoL8X8aOaszFlV4JSyBWWnaLZsD-qimFw1zJQNky2JND4kHRakUOEBnI8-nX88c7vqDa5CCBi5QsYy47mnAkQ8UnrCy3UWZIOBShFnSSXjKPMGylO-znTmq1gFHjZlLJSkhN2HsG9Kox8DEyr0bQYtgheiT4yGueA4bjiUua956MDb9RQmqmM2pwIbRbKOcFDHidWxA6960aql89gl9MbaQS-BAQ7avK0njHqmyp2Jn-C27sDx2lCSzvXrhCLUkOJqsbObU0GdKEIc6MDLvht9mn7UpEaXKzuEb1OM_y4T4U2iSFwvw4UFvAhSHXjUmm__TpyKvSI8dGC4Zdi9APGOb_eYxdzyj-MUUJSNareGfb0ik8n0zDae_LvoC7g5PR0l48-TL0_hiFPxEZv5eQz7zXKln8GhumwW9fJ55-y_ATyqXSc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allelic+variation+in+two+distinct+Pseudomonas+syringae+flagellin+epitopes+modulates+the+strength+of+plant+immune+responses+but+not+bacterial+motility&rft.jtitle=The+New+phytologist&rft.au=Clarke%2C+Christopher+R&rft.au=Chinchilla%2C+Delphine&rft.au=Hind%2C+Sarah+R&rft.au=Taguchi%2C+Fumiko&rft.date=2013-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1469-8137&rft.volume=200&rft.issue=3&rft.spage=847&rft_id=info:doi/10.1111%2Fnph.12408&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3097703671 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |