A study on giant panda recognition based on images of a large proportion of captive pandas

As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecology and evolution Ročník 10; číslo 7; s. 3561 - 3573
Hlavní autoři: Chen, Peng, Swarup, Pranjal, Matkowski, Wojciech Michal, Kong, Adams Wai Kin, Han, Su, Zhang, Zhihe, Rong, Hou
Médium: Journal Article
Jazyk:angličtina
Vydáno: England John Wiley & Sons, Inc 01.04.2020
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2045-7758, 2045-7758
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behaviour. This noninvasive approach that leverages on deep learning is much more cost‐effective than the approaches used in the previous panda surveys.
AbstractList Abstract As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image-based panda face recognition method.In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost-effective than the approaches used in the previous panda surveys.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method. In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established. The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behaviour. This noninvasive approach that leverages on deep learning is much more cost‐effective than the approaches used in the previous panda surveys.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image‐based panda face recognition method.In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost‐effective than the approaches used in the previous panda surveys. This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behaviour. This noninvasive approach that leverages on deep learning is much more cost‐effective than the approaches used in the previous panda surveys.
As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image-based panda face recognition method.In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost-effective than the approaches used in the previous panda surveys.As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda conservation and reproduction, offering the promising outcome of maintaining the population size of pandas. To evaluate the effectiveness of conservation and management strategies, recognizing individual pandas is critical. However, it remains a challenging task because the existing methods, such as traditional tracking method, discrimination method based on footprint identification, and molecular biology method, are invasive, inaccurate, expensive, or challenging to perform. The advances of imaging technologies have led to the wide applications of digital images and videos in panda conservation and management, which makes it possible for individual panda recognition in a noninvasive manner by using image-based panda face recognition method.In recent years, deep learning has achieved great success in the field of computer vision and pattern recognition. For panda face recognition, a fully automatic deep learning algorithm which consists of a sequence of deep neural networks (DNNs) used for panda face detection, segmentation, alignment, and identity prediction is developed in this study. To develop and evaluate the algorithm, the largest panda image dataset containing 6,441 images from 218 different pandas, which is 39.78% of captive pandas in the world, is established.The algorithm achieved 96.27% accuracy in panda recognition and 100% accuracy in detection.This study shows that panda faces can be used for panda recognition. It enables the use of the cameras installed in their habitat for monitoring their population and behavior. This noninvasive approach is much more cost-effective than the approaches used in the previous panda surveys.
Author Swarup, Pranjal
Matkowski, Wojciech Michal
Han, Su
Chen, Peng
Zhang, Zhihe
Rong, Hou
Kong, Adams Wai Kin
AuthorAffiliation 3 Sichuan Academy of Giant Panda Chengdu China
5 College of Computer Science Sichuan Normal University Chengdu China
4 School of Computer Science and Engineering Nanyang Technological University Singapore City Singapore
2 Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife Chengdu China
1 Chengdu Research Base of Giant Panda Breeding Chengdu China
AuthorAffiliation_xml – name: 2 Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife Chengdu China
– name: 1 Chengdu Research Base of Giant Panda Breeding Chengdu China
– name: 4 School of Computer Science and Engineering Nanyang Technological University Singapore City Singapore
– name: 3 Sichuan Academy of Giant Panda Chengdu China
– name: 5 College of Computer Science Sichuan Normal University Chengdu China
Author_xml – sequence: 1
  givenname: Peng
  surname: Chen
  fullname: Chen, Peng
  organization: Sichuan Academy of Giant Panda
– sequence: 2
  givenname: Pranjal
  orcidid: 0000-0002-1766-7413
  surname: Swarup
  fullname: Swarup, Pranjal
  email: pswarup@ntu.edu.sg
  organization: Nanyang Technological University
– sequence: 3
  givenname: Wojciech Michal
  surname: Matkowski
  fullname: Matkowski, Wojciech Michal
  organization: Nanyang Technological University
– sequence: 4
  givenname: Adams Wai Kin
  surname: Kong
  fullname: Kong, Adams Wai Kin
  organization: Nanyang Technological University
– sequence: 5
  givenname: Su
  surname: Han
  fullname: Han, Su
  organization: Sichuan Normal University
– sequence: 6
  givenname: Zhihe
  surname: Zhang
  fullname: Zhang, Zhihe
  email: zzh@panda.org.cn
  organization: Sichuan Academy of Giant Panda
– sequence: 7
  givenname: Hou
  surname: Rong
  fullname: Rong, Hou
  organization: Sichuan Academy of Giant Panda
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32274009$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1r3DAQhkVJadI0h_6BYuilPWyiD-vrUgjLNgkEesmpFyHLY1eLV3Ilb8L--8q7aUgCrUBIjJ55eUcz79FRiAEQ-kjwOcGYXoADdi4Ip2_QCcU1X0jJ1dGz-zE6y3mNyxKY1li-Q8eMUlljrE_Qz8sqT9t2V8VQ9d6GqRptaG2VwMU--MmXeGMztDPgN7aHXMWustVgUw_VmOIY054qUWfHyd_DQSJ_QG87O2Q4ezxP0d331d3yenH74-pmeXm7cFxyulB102orLNPQtR1RjkKnGVAmlWtdq7iUwkkBuK6d6IR0WinVEKsEb6zk7BTdHGTbaNdmTMVk2plovdkHYuqNLQ7dAIbzUrjuOqEZrwlnSmJR15Q2WILFdNb6dtAat80GWgdhSnZ4IfryJfhfpo_3RpK6NEMUgS-PAin-3kKezMZnB8NgA8RtNpQV80RjrQv6-RW6jtsUyk8VSmOKSdmF-vTc0ZOVvx0swNcD4FLMOUH3hBBs5gEx84CYeUAKe_GKdX6yc_dKMX74X8aDH2D3b2mzWq7YPuMPa2LJnA
CitedBy_id crossref_primary_10_3390_s21186109
crossref_primary_10_1111_2041_210X_14181
crossref_primary_10_1016_j_eswa_2024_126206
crossref_primary_10_3390_s22208015
crossref_primary_10_1016_j_ecoinf_2024_102950
crossref_primary_10_1002_ece3_8851
crossref_primary_10_1002_ece3_9507
crossref_primary_10_1016_j_ecoinf_2024_102797
crossref_primary_10_3390_ani14152247
crossref_primary_10_1016_j_eswa_2022_119431
crossref_primary_10_1111_1365_2656_14139
crossref_primary_10_1038_s41598_023_49522_2
crossref_primary_10_1038_s41598_025_89075_0
crossref_primary_10_1016_j_ecoinf_2022_101874
crossref_primary_10_1016_j_ecoinf_2023_102225
crossref_primary_10_1016_j_ecoinf_2023_102388
crossref_primary_10_1002_ecs2_70012
crossref_primary_10_1016_j_ecoinf_2022_101892
crossref_primary_10_1016_j_eswa_2025_128466
crossref_primary_10_1111_2041_210X_13577
crossref_primary_10_1007_s42991_021_00223_1
crossref_primary_10_1038_s41598_025_07040_3
crossref_primary_10_5187_jast_2025_e4
crossref_primary_10_1111_2041_210X_14044
crossref_primary_10_1016_j_compag_2021_106675
crossref_primary_10_3390_ani12131711
crossref_primary_10_1007_s11263_024_02006_w
crossref_primary_10_1002_ece3_6840
crossref_primary_10_1093_icb_icab107
crossref_primary_10_3390_s23187928
crossref_primary_10_1007_s42991_021_00168_5
crossref_primary_10_1016_j_ecoinf_2025_103379
crossref_primary_10_3390_fishes7050219
crossref_primary_10_1007_s10344_021_01549_4
crossref_primary_10_1093_icb_icae127
crossref_primary_10_1111_2041_210X_13901
crossref_primary_10_1109_TIM_2022_3232093
crossref_primary_10_1016_j_neucom_2024_127640
crossref_primary_10_1038_s41598_023_40814_1
crossref_primary_10_1038_s41598_022_11842_0
crossref_primary_10_1002_zoo_70008
crossref_primary_10_1007_s42991_021_00215_1
crossref_primary_10_1038_s41598_021_02506_6
crossref_primary_10_1186_s40850_024_00195_y
Cites_doi 10.1371/journal.pone.0159738
10.1111/j.1365-294X.2005.02577.x
10.1038/nature14539
10.1016/j.compind.2018.02.016
10.1126/sciadv.aaw0736
10.1038/s41598-019-44565-w
10.1109/CVPR.2016.90
10.1109/CVPR.2009.5206848
10.1049/iet-bmt.2016.0017
10.1007/978-3-319-46448-0_2
10.1109/ICCV.2017.74
10.1109/ICIP.2019.8803125
10.1109/ICCV.2015.169
10.1111/2041-210X.13099
10.1073/pnas.1719367115
10.2192/08PER010.1
10.1109/CISP.2012.6469668
10.1109/ICCPS.2012.6384309
10.1016/j.cub.2006.05.042
10.1111/j.1365-2664.2010.01851.x
10.1109/ICCV.2017.322
10.1111/2041-210X.13133
10.1109/TIP.2010.2099126
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2016.91
10.1109/CVPR.2015.7298965
10.1007/978-3-319-24574-4_28
10.1007/s004420050400
10.1111/jzo.12377
10.1007/978-3-319-71273-4_3
10.1007/978-3-319-45886-1_5
10.1109/BTAS.2018.8698538
10.1111/j.1469-1795.2008.00179.x
10.1109/CISP.2012.6469751
10.1016/j.biocon.2005.09.025
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd.
2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd.
– notice: 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7SN
7SS
7ST
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1002/ece3.6152
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agricultural Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed


MEDLINE - Academic
Agricultural Science Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Forestry
DocumentTitleAlternate CHEN et al
EISSN 2045-7758
EndPage 3573
ExternalDocumentID oai_doaj_org_article_553229ff6935415387064422b07ea025
PMC7141006
32274009
10_1002_ece3_6152
ECE36152
Genre article
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  funderid: 2018JY0096
– fundername: Panda International Foundation of the National Forestry Administration, China
  funderid: AD1417; CM1422
– fundername: National Natural Science Foundation of China
  funderid: 31300306
– fundername: Chengdu Research Base of Giant Panda Breeding
  funderid: CPB2018‐01; CPB2018‐02
– fundername: Chengdu Giant Panda Breeding Research Foundation
  funderid: 2014‐02; 2014‐05
– fundername: Chengdu Giant Panda Breeding Research Foundation
  grantid: 2014‐02; 2014‐05
– fundername: Panda International Foundation of the National Forestry Administration, China
  grantid: AD1417; CM1422
– fundername: Sichuan Science and Technology Program
  grantid: 2018JY0096
– fundername: National Natural Science Foundation of China
  grantid: 31300306
– fundername: Chengdu Research Base of Giant Panda Breeding
  grantid: CPB2018‐01; CPB2018‐02
GroupedDBID 0R~
1OC
24P
53G
5VS
7X2
8-0
8-1
8FE
8FH
AAFWJ
AAHBH
AAHHS
AAZKR
ACCFJ
ACCMX
ACGFO
ACPRK
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEUYN
AFKRA
AFRAH
AIAGR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ATCPS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
D-8
D-9
DIK
EBS
ECGQY
EJD
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEP
ITC
KQ8
LK8
M0K
M48
M7P
M~E
OK1
PIMPY
PROAC
RNS
ROL
RPM
SUPJJ
WIN
AAMMB
AAYXX
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
PQGLB
NPM
3V.
7SN
7SS
7ST
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c5752-84bd9a6a39efdf18c2ef93e2378cdcd85776c76e044c6f67c9888b1a865ba753
IEDL.DBID M7P
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524417200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-7758
IngestDate Fri Oct 03 12:34:55 EDT 2025
Tue Nov 04 01:46:42 EST 2025
Fri Sep 05 13:54:56 EDT 2025
Mon Sep 29 17:10:40 EDT 2025
Wed Feb 19 02:11:46 EST 2025
Sat Nov 29 04:31:22 EST 2025
Tue Nov 18 20:58:08 EST 2025
Wed Jan 22 16:33:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords population estimation
giant panda
individual identification
panda face recognition
Language English
License Attribution
2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5752-84bd9a6a39efdf18c2ef93e2378cdcd85776c76e044c6f67c9888b1a865ba753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Chen and Swarup contributed equally to this work.
ORCID 0000-0002-1766-7413
OpenAccessLink https://www.proquest.com/docview/2390201020?pq-origsite=%requestingapplication%
PMID 32274009
PQID 2390201020
PQPubID 2034651
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_553229ff6935415387064422b07ea025
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7141006
proquest_miscellaneous_2388819099
proquest_journals_2390201020
pubmed_primary_32274009
crossref_primary_10_1002_ece3_6152
crossref_citationtrail_10_1002_ece3_6152
wiley_primary_10_1002_ece3_6152_ECE36152
PublicationCentury 2000
PublicationDate April 2020
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
– name: Hoboken
PublicationTitle Ecology and evolution
PublicationTitleAlternate Ecol Evol
PublicationYear 2020
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2019; 9
2019; 5
2009; 20
2012
2015; 521
2019; 10
2006; 16
2009
2016; 300
2007
2006
2008; 11
2015b
1998; 113
2016; 11
2016; 6
2010; 20
2010; 47
1990
2015a
2018; 115
2019
2018
2017
2012b
2016
2012a
2015
2014
2018; 98
2006; 128
2005; 14
Burghardt T. (e_1_2_10_2_1) 2007
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
State Forestry Administration (e_1_2_10_37_1) 2006
People's Daily Online (e_1_2_10_27_1) 2018
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
Jaderberg M. (e_1_2_10_15_1) 2015
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
State Forestry Administration (e_1_2_10_39_1) 2015
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
McNeely J. A. (e_1_2_10_23_1) 1990
State Forestry Administration (e_1_2_10_38_1) 2015
e_1_2_10_29_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – start-page: 234
  year: 2015
  end-page: 241
– volume: 14
  start-page: 1991
  issue: 7
  year: 2005
  end-page: 2005
  article-title: A new method for estimating the size of small populations from genetic mark–recapture data
  publication-title: Molecular Ecology
– volume: 300
  start-page: 247
  issue: 4
  year: 2016
  end-page: 256
  article-title: Individual identification of wild giant pandas from camera trap photos–a systematic and hierarchical approach
  publication-title: Journal of Zoology
– volume: 5
  start-page: eaaw0736
  issue: 9
  year: 2019
  article-title: Chimpanzee face recognition from videos in the wild using deep learning
  publication-title: Science Advances
– start-page: 779
  year: 2016
  end-page: 788
– start-page: 1
  year: 2018
  end-page: 10
– volume: 98
  start-page: 145
  year: 2018
  end-page: 152
  article-title: Towards on‐farm pig face recognition using convolutional neural networks
  publication-title: Computers in Industry
– start-page: 21
  year: 2016
  end-page: 37
– start-page: 2961
  year: 2017
  end-page: 2969
– volume: 11
  start-page: 182
  issue: 3
  year: 2008
  end-page: 184
  article-title: Design, evaluate, refine: Camera trap studies for elusive species
  publication-title: Animal Conservation
– volume: 128
  start-page: 158
  issue: 2
  year: 2006
  end-page: 168
  article-title: An evaluation of field and non‐invasive genetic methods to estimate brown bear ( ) population size
  publication-title: Biological Conservation
– start-page: 770
  year: 2016
  end-page: 778
– year: 2007
– volume: 10
  start-page: 80
  issue: 1
  year: 2019
  end-page: 91
  article-title: Identifying animal species in camera trap images using deep learning and citizen science
  publication-title: Methods in Ecology and Evolution
– start-page: 27
  year: 2017
  end-page: 38
– start-page: 248
  year: 2009
  end-page: 255
– start-page: 1680
  year: 2019
  end-page: 1684
– start-page: 51
  year: 2016
  end-page: 63
– volume: 11
  issue: 8
  year: 2016
  article-title: Role of new nature reserve in assisting endangered species conservation‐case study of giant pandas in the northern Qionglai Mountains, China
  publication-title: PLoS ONE
– start-page: 3431
  year: 2015
  end-page: 3440
– volume: 16
  start-page: R451
  issue: 12
  year: 2006
  end-page: R452
  article-title: Molecular censusing doubles giant panda population estimate in a key nature reserve
  publication-title: Current Biology
– year: 1990
– year: 2018
– volume: 47
  start-page: 1103
  issue: 5
  year: 2010
  end-page: 1109
  article-title: Pre‐screening acoustic and other natural signatures for use in noninvasive individual identification
  publication-title: Journal of Applied Ecology
– year: 2015a
– volume: 20
  start-page: 56
  issue: 1
  year: 2009
  end-page: 63
  article-title: Accurate population size estimates are vital parameters for conserving the giant panda
  publication-title: Ursus
– volume: 20
  start-page: 1696
  issue: 6
  year: 2010
  end-page: 1708
  article-title: From tiger to panda: Animal head detection
  publication-title: IEEE Transactions on Image Processing
– volume: 115
  start-page: E5716
  issue: 25
  year: 2018
  end-page: E5725
  article-title: Automatically identifying, counting, and describing wild animals in camera‐trap images with deep learning
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 1440
  year: 2015
  end-page: 1448
– start-page: 358
  year: 2012b
  end-page: 362
– volume: 6
  start-page: 139
  issue: 3
  year: 2016
  end-page: 156
  article-title: Visual animal biometrics: Survey
  publication-title: IET Biometrics
– start-page: 1137
  year: 2017
  end-page: 1149
– start-page: 618
  year: 2017
  end-page: 626
– volume: 10
  start-page: 461
  issue: 4
  year: 2019
  end-page: 470
  article-title: Past, present and future approaches using computer vision for animal re‐identification from camera trap data
  publication-title: Methods in Ecology and Evolution
– year: 2006
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  article-title: Deep learning
  publication-title: Nature
– start-page: 2017
  year: 2015
  end-page: 2025
– volume: 113
  start-page: 474
  issue: 4
  year: 1998
  end-page: 491
  article-title: Study design and interpretation of mammalian carnivore density estimates
  publication-title: Oecologia
– start-page: 740
  year: 2014
  end-page: 755
– start-page: 911
  year: 2012
  end-page: 915
– start-page: 814
  year: 2012a
  end-page: 818
– year: 2015b
– volume: 9
  start-page: 8137
  issue: 1
  year: 2019
  article-title: Insights and approaches using deep learning to classify wildlife
  publication-title: Scientific Reports
– ident: e_1_2_10_11_1
  doi: 10.1371/journal.pone.0159738
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1365-294X.2005.02577.x
– volume-title: Captive panadas rise to 548 globally
  year: 2018
  ident: e_1_2_10_27_1
– ident: e_1_2_10_18_1
  doi: 10.1038/nature14539
– ident: e_1_2_10_12_1
  doi: 10.1016/j.compind.2018.02.016
– ident: e_1_2_10_33_1
  doi: 10.1126/sciadv.aaw0736
– ident: e_1_2_10_24_1
  doi: 10.1038/s41598-019-44565-w
– ident: e_1_2_10_14_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_10_8_1
  doi: 10.1109/CVPR.2009.5206848
– ident: e_1_2_10_17_1
  doi: 10.1049/iet-bmt.2016.0017
– ident: e_1_2_10_20_1
  doi: 10.1007/978-3-319-46448-0_2
– volume-title: International Conference on Computer Vision Systems: Proceedings 2007
  year: 2007
  ident: e_1_2_10_2_1
– ident: e_1_2_10_34_1
  doi: 10.1109/ICCV.2017.74
– ident: e_1_2_10_22_1
  doi: 10.1109/ICIP.2019.8803125
– ident: e_1_2_10_10_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_2_10_40_1
  doi: 10.1111/2041-210X.13099
– ident: e_1_2_10_26_1
  doi: 10.1073/pnas.1719367115
– ident: e_1_2_10_41_1
  doi: 10.2192/08PER010.1
– ident: e_1_2_10_4_1
  doi: 10.1109/CISP.2012.6469668
– volume-title: The giant panda of Sichuan ‐ The fourth giant panda survey of Sichuan Province
  year: 2015
  ident: e_1_2_10_38_1
– ident: e_1_2_10_6_1
  doi: 10.1109/ICCPS.2012.6384309
– ident: e_1_2_10_42_1
  doi: 10.1016/j.cub.2006.05.042
– ident: e_1_2_10_28_1
  doi: 10.1111/j.1365-2664.2010.01851.x
– ident: e_1_2_10_13_1
  doi: 10.1109/ICCV.2017.322
– volume-title: The third national survey report on giant panda in China
  year: 2006
  ident: e_1_2_10_37_1
– ident: e_1_2_10_32_1
  doi: 10.1111/2041-210X.13133
– ident: e_1_2_10_43_1
  doi: 10.1109/TIP.2010.2099126
– ident: e_1_2_10_30_1
  doi: 10.1109/TPAMI.2016.2577031
– ident: e_1_2_10_19_1
  doi: 10.1007/978-3-319-10602-1_48
– ident: e_1_2_10_29_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_10_21_1
  doi: 10.1109/CVPR.2015.7298965
– ident: e_1_2_10_31_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_10_35_1
  doi: 10.1007/s004420050400
– ident: e_1_2_10_44_1
  doi: 10.1111/jzo.12377
– ident: e_1_2_10_3_1
  doi: 10.1007/978-3-319-71273-4_3
– volume-title: Release of the fourth national survey report on giant panda in China
  year: 2015
  ident: e_1_2_10_39_1
– ident: e_1_2_10_9_1
  doi: 10.1007/978-3-319-45886-1_5
– start-page: 2017
  volume-title: Advances in neural information processing systems
  year: 2015
  ident: e_1_2_10_15_1
– ident: e_1_2_10_7_1
  doi: 10.1109/BTAS.2018.8698538
– volume-title: Conserving the world's biological diversity
  year: 1990
  ident: e_1_2_10_23_1
– ident: e_1_2_10_16_1
  doi: 10.1111/j.1469-1795.2008.00179.x
– ident: e_1_2_10_5_1
  doi: 10.1109/CISP.2012.6469751
– ident: e_1_2_10_36_1
  doi: 10.1016/j.biocon.2005.09.025
SSID ssj0000602407
Score 2.440772
Snippet As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on panda...
Abstract As a highly endangered species, the giant panda (panda) has attracted significant attention in the past decades. Considerable efforts have been put on...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3561
SubjectTerms Algorithms
Animals
Artificial neural networks
Biometrics
Cameras
Computer vision
Conservation
Datasets
Deep learning
Digital imaging
Ecology
Endangered species
Face recognition
Forestry
giant panda
Identification
Identification methods
Image segmentation
individual identification
Machine learning
Methods
Molecular biology
Neural networks
Object recognition
Original Research
panda face recognition
Pandas
Pattern recognition
Population
population estimation
Population number
Researchers
Studies
Wildlife conservation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYltNBLafp0kxS19NCLG69eYx3TsKGHEnrIIfQiZFlqF1LvsrsJ5N9nRvaaXZrQSy_GSIMtj-YlafwNY590gzGIhraM9P-W0j6U1qhYThJolWTwpslVS77D-Xl9eWl_bJX6opywHh64Z9yx1ihyNiVjpVaknoBOVAnRVBA9Omyyvhj1bC2mehtM2F2wgRKqxHEMUX5B9y12HFDG6b8vuPw7R3I7ds3O5-w5ezZEjfykH-0-exS7F-zJNCNO375kP094honl847_wvle8wVtEPAxOwjbyV21RDD7gyZkxeeJe35FeeB8QZUSlpkKW4NfkAnsH7F6xS7Ophen38qhaEIZMPJC66aa1nrjpY2pTZM6iJisjEJCHdrQ1hrABDCxUiqYZCBYXAM3E18b3Xhcu7xme928i28ZFzIB6msdwFulJV59kqquWqCzzWZSsM8bRrowAIpTXYsr10MhC0c8d8Tzgn0cSRc9isZ9RF9pNkYCAr7ODSgObhAH9y9xKNjhZi7doI0rJ6St6NRfVAX7MHajHtHhiO_i_JpokA8YHVlbsDf91I8jwVcC2jrsgR2h2Bnqbk83-52xuoHyaCuDvMri8_DXu-npVNLNu__BhgP2VNDGQE4xOmR76-V1PGKPw816tlq-z7pyBxypFAs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqAhIXypuUggziwCU08dvqqVRbcUBVDz1UXCLHsctKbbLabJH67zvjZAOrFgmJSxTZk4edmfEXe_wNIZ9kDRhE6iYPuH9LSOdzq0TIy6iliNw7VaesJd_1yYk5P7enW-RgvRdm4IeYJtzQMpK_RgN3db__mzQ0-MC_wHgM_vdBWXKDeRuYOJ0mWAqF9F24XRoZ1wFFSrNmFirY_nT1xniUaPvvw5p3Qyb_hLJpLDre-a9WPCVPRghKDwedeUa2QvucPJol-uqbF-THIU2cs7Rr6QUoz4oucLaBTqFGUI5jX4MC8yvwRz3tInX0EoPK6QLTLiyTFJR6t0B_Otyif0nOjmdnR9_yMQND7gHGgasUdWOdctyG2MTSeBai5YFxbXzjGyO1Vl6rUAjhVVTaW_ihrktnlKwd_Ai9Ittt14Y3hDIeNRi_8dpZITkcXeTCFI3GhdK6zMjn9Weo_MhOjkkyLquBV5lV2FMV9lRGPk6ii4GS4z6hr_gtJwFk0U4F3fKiGo2ykhLcmY1RWS4Fun4NAE0wVhc6OACDGdlba0I1mnZfMW4LDCFgRUY-TNVglLjS4trQXaMM9ANALWsz8npQnOlN4JEaHCfU6A2V2njVzZp2_jMRf2sMyi0U9FVSqb-3vpodzTie7P676FvymOFcQopK2iPbq-V1eEce-l-reb98n2zrFlnuI2Y
  priority: 102
  providerName: Wiley-Blackwell
Title A study on giant panda recognition based on images of a large proportion of captive pandas
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fece3.6152
https://www.ncbi.nlm.nih.gov/pubmed/32274009
https://www.proquest.com/docview/2390201020
https://www.proquest.com/docview/2388819099
https://pubmed.ncbi.nlm.nih.gov/PMC7141006
https://doaj.org/article/553229ff6935415387064422b07ea025
Volume 10
WOSCitedRecordID wos000524417200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M0K
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: M7P
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: BENPR
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: PIMPY
  dateStart: 20110901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: WIN
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2045-7758
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000602407
  issn: 2045-7758
  databaseCode: 24P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC4gLj_IKlJVBHLiEZm3Hjk-orbaigq4iVImFS-Q4dlmpJGGzReLfM-PNBlYULlysxB4ldmY8Ho8n3xDyMi3BBklVFTv8f0ukxsZaChePvUqF59bIMmQtea-m02w203nvcOv6sMq1TgyKumos-sj3GWzO8eSWJW_abzFmjcLT1T6FxhbZQZQEHkL38sHHkkhE8FJrQKGE7Tvr-GtYxNnGMhTQ-q8yMf-MlPzdgg1L0PGd_-38XXK7Nz7pwUpa7pFrrt4lNyYBuPrHLrmJeTox-dt98vmABuBZ2tT0HCRoSVt0OdAh3gjqcQGskGD-FZRSRxtPDb3AyHLaYu6FRaCCWmtaVKqrR3QPyNnx5OzobdynYYgt2HKgL0VZaSMN185XfpxZ5rzmjnGV2cpWWaqUtEq6RAgrvVRWw666HJtMpqWB3dBDsl03tXtMKONegQbIrDJapBxK47nIkkrhaWk5jsirNVMK20OUY6aMi2IFrswK5F-B_IvIi4G0XeFyXEV0iJwdCBBKO1Q0i_Oin5lFmoJO095LzVOB-l-BlSYYKxPlDFiEEdlb87To53dX_GJoRJ4PzTAz8bjF1K65RBr4DmBvaR2RRysxGnoCr1SgPaFFbQjYRlc3W-r5l4D-rTAyN5HwrYIo_n30xeRowvHiyb9H8JTcYuhECOFIe2R7ubh0z8h1-3057xYjssVEDqWaZSOycziZ5h9GwXEB5WnybhRmHLTkJ6f5J7j7eDL9CdVCL9o
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5XnhUV4LBQwCqZfQrJPY8QGhUrZq1WXVwx4qLpbj2GWlkiy7W1B_FP-RGWcTWFG49cBlFdmjbOzM47M9mQ_gVVYgBslkGTn6fivNjI2USF3U9zJLfWKNKAJryVCORvnxsTpagx_ttzCUVtn6xOCoy9rSHvk2x8U5ndzy-N30a0SsUXS62lJoNGpx6M6_45Jt_vbgA77f15zvDca7-9GSVSCyCE3Q_NOiVEaYRDlf-n5uufMqcTyRuS1tmWdSCiuFi9PUCi-kVbhILPomF1lhJJFEoMe_giiC5yFT8Kjb0okFFQyTbf2imG8765I3iBn4StQL5AAXIdo_EzN_B8wh4u3d_s_m6g7cWkJrttPYwl1Yc9UGXBuEstznG3CdWEiJ2u4efNphoawuqyt2gvaxYFPaUGFdNhW2U3gvSWDyBV3unNWeGXZKefNsSswSsyCFrdZMKWQ0t5jfh_FlDPEBrFd15R4B44mX6N9yK41KswR_jU_SPC4lnQUX_R5stTqg7bIAO_GAnOqmdDTXpC6a1KUHLzvRaVN15CKh96RInQAVCg8N9exEL_2OzjL02Mp7oZIspegmEYOmnBexdAbxbg82WxXSS-8117_0pwcvum70O3SYZCpXn5EMzgOiSaV68LDR2u5J8C8lxgbskSv6vPKoqz3V5HOobS4p7zgWOFdB8_8-ej3YHSR08fjfI3gON_bHH4d6eDA6fAI3OW2XhMSrTVhfzM7cU7hqvy0m89mzYMwM9CUbxE_QDoRV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAhUXHuUVKGAQSFzCZp3Ejg8IlXZXVK1We-ih4mI5jl1WKknYbEH9afw7ZpwHrCjceuCyiuxRNnbmZXvyfYS8SnPIQVJRhBa_30pSbULJExuOnUgTFxvNc89aciRms-zkRM43yI_-Wxgsq-x9onfURWVwj3zEYHGOJ7csGrmuLGK-P31ffw2RQQpPWns6jVZFDu3Fd1i-Ne8O9uFdv2ZsOjne-xh2DAOhgTQFXEGSF1JzHUvrCjfODLNOxpbFIjOFKbJUCG4Et1GSGO64MBIWjPlYZzzNtUDCCPD-1wRilvuqwfmwvRNxBA8TPZZRxEbW2Pgt5A9sLQJ6ooDLsts_izR_T5599Jve_o_n7Q651aXcdLe1kbtkw5bb5MbEw3VfbJMtZCdFyrt75NMu9XC7tCrpKdjNita40UKHKitox7BfoMDiC7jihlaOanqG9fS0RsaJpZeCVqNrDCXtLZr75PgqhviAbJZVaR8RymInwO9lRmiZpDH8ahcnWVQIPCPOxwF50-uDMh0wO_KDnKkWUpopVB2FqhOQl4No3aKRXCb0AZVqEEAAcd9QLU9V549UmoInl85xGacJRj0BuWnCWB4JqyEPDshOr06q82qN-qVLAXkxdIM_wkMmXdrqHGVgHiDLlDIgD1sNHp4E_lJAzIAesabba4-63lMuPnvMc4H1yBGHufJW8PfRq8neJMaLx_8ewXOyBXagjg5mh0_ITYa7KL4ea4dsrpbn9im5br6tFs3ymbdrStQV28NPBoWNEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+giant+panda+recognition+based+on+images+of+a+large+proportion+of+captive+pandas&rft.jtitle=Ecology+and+evolution&rft.au=Chen%2C+Peng&rft.au=Swarup%2C+Pranjal&rft.au=Wojciech+Michal+Matkowski&rft.au=Adams+Wai+Kin+Kong&rft.date=2020-04-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2045-7758&rft.volume=10&rft.issue=7&rft.spage=3561&rft.epage=3573&rft_id=info:doi/10.1002%2Fece3.6152&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7758&client=summon