Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals
Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand,...
Gespeichert in:
| Veröffentlicht in: | Nature communications Jg. 11; H. 1; S. 3926 - 10 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
06.08.2020
Nature Publishing Group Nature Portfolio |
| Schlagworte: | |
| ISSN: | 2041-1723, 2041-1723 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna’s impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface’s large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication.
Leveraging the large aperture and huge number of degrees of freedom offered by a programmable metasurface, the authors modulate the propagation environment of existing background commodity Wi-Fi signals to implement a secure and high-speed massive-backscatter communication link. |
|---|---|
| AbstractList | Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna's impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface's large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication.Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna's impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface's large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication. Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna's impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface's large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication. Leveraging the large aperture and huge number of degrees of freedom offered by a programmable metasurface, the authors modulate the propagation environment of existing background commodity Wi-Fi signals to implement a secure and high-speed massive-backscatter communication link. Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna’s impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface’s large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication. Leveraging the large aperture and huge number of degrees of freedom offered by a programmable metasurface, the authors modulate the propagation environment of existing background commodity Wi-Fi signals to implement a secure and high-speed massive-backscatter communication link. Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna’s impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface’s large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication. Leveraging the large aperture and huge number of degrees of freedom offered by a programmable metasurface, the authors modulate the propagation environment of existing background commodity Wi-Fi signals to implement a secure and high-speed massive-backscatter communication link. Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information, leading to important challenges including limited spectral resources and energy consumption. Backscatter communication systems, on the other hand, modulate an antenna’s impedance to encode information into already existing waves but suffer from low data rates and a lack of information security. Here, we introduce the concept of massive backscatter communication which modulates the propagation environment of stray ambient waves with a programmable metasurface. The metasurface’s large aperture and huge number of degrees of freedom enable unprecedented wave control and thereby secure and high-speed information transfer. Our prototype leveraging existing commodity 2.4 GHz Wi-Fi signals achieves data rates on the order of hundreds of Kbps. Our technique is applicable to all types of wave phenomena and provides a fundamentally new perspective on the role of metasurfaces in future wireless communication |
| ArticleNumber | 3926 |
| Author | Wei, Menglin Li, Lianlin Shuang, Ya Hougne, Philipp del Cui, Tie Jun Zhao, Hanting |
| Author_xml | – sequence: 1 givenname: Hanting surname: Zhao fullname: Zhao, Hanting organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University – sequence: 2 givenname: Ya surname: Shuang fullname: Shuang, Ya organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University – sequence: 3 givenname: Menglin surname: Wei fullname: Wei, Menglin organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University – sequence: 4 givenname: Tie Jun orcidid: 0000-0002-5862-1497 surname: Cui fullname: Cui, Tie Jun email: tjcui@seu.edu.cn organization: State Key Laboratory of Millimeter Waves, Southeast University – sequence: 5 givenname: Philipp del orcidid: 0000-0002-4821-3924 surname: Hougne fullname: Hougne, Philipp del email: philipp.delhougne@gmail.com organization: Univ Rennes, CNRS, Institut d’Electronique et de Télécommunications de Rennes (IETR)—UMR 6164 – sequence: 6 givenname: Lianlin orcidid: 0000-0001-9394-3638 surname: Li fullname: Li, Lianlin email: lianlin.li@pku.edu.cn organization: State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronics, Peking University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32764638$$D View this record in MEDLINE/PubMed https://hal.science/hal-02931864$$DView record in HAL |
| BookMark | eNp9UsFu1DAUjFARLaU_wAFF4lIOATv22s4FqaoorbSIC4gLkuU4L7tekrjYzqL9e142pbR7qC9-Hs_MG9nvZXY0-AGy7DUl7ylh6kPklAtZkJIUVCqiit2z7KQknOKxZEcP6uPsLMYNwcUqqjh_kR2zUgoumDrJfn6BZOIYWmOhMDG6mKDJ-6naQl4b-ytakxKE_I8L0EGMufV9Pw4OYecHhNN6D_nGpV3-wxVXLo9uNZguvsqet7jB2d1-mn2_-vTt8rpYfv18c3mxLOxC8lS0XIgS49pWGSkkqRbAJRYLWlowwjYNba0xC64Ur20NnDLbSMIlSNWSumGn2c3s23iz0bfB9SbstDdO7wEfVtqE5GwH2jYttzURNTGG10IZVSOgKkVbaUpeo9fH2et2rHtoLAwpmO6R6eObwa31ym-1xFisUmjwbjZYH8iuL5Z6wkhZMaoE31Lknt81C_73CDHp3kULXWcG8GPUJUcm5bQSSH17QN34MUyvPLGIoqJiBFlvHqa_7__vw5FQzgQbfIwB2nsKJXoaLD0PFqbE8zRYeocidSCyLu2_H1_AdU9L2SyN2GdYQfgf-wnVXynO49I |
| CitedBy_id | crossref_primary_10_1038_s41467_024_54672_6 crossref_primary_10_1109_TCOMM_2022_3231893 crossref_primary_10_1515_nanoph_2023_0027 crossref_primary_10_1038_s41467_025_57132_x crossref_primary_10_1038_s41928_023_01011_0 crossref_primary_10_1038_s41598_024_54077_x crossref_primary_10_1002_adma_202208520 crossref_primary_10_1109_JIOT_2023_3241839 crossref_primary_10_1109_TIE_2021_3105988 crossref_primary_10_1109_MAP_2020_3036063 crossref_primary_10_1109_TAP_2025_3553972 crossref_primary_10_1007_s11227_024_06819_x crossref_primary_10_1002_admt_202201654 crossref_primary_10_1038_s41377_023_01218_y crossref_primary_10_1109_MWC_001_2200192 crossref_primary_10_1109_TAP_2023_3235015 crossref_primary_10_1002_aelm_202400056 crossref_primary_10_1002_adfm_202005310 crossref_primary_10_1063_5_0211512 crossref_primary_10_1038_s41467_024_50482_y crossref_primary_10_1002_adma_202200481 crossref_primary_10_1515_nanoph_2024_0423 crossref_primary_10_1002_advs_202304879 crossref_primary_10_1088_1361_6463_adbaff crossref_primary_10_1515_nanoph_2021_0663 crossref_primary_10_1515_nanoph_2021_0665 crossref_primary_10_1109_TWC_2023_3263850 crossref_primary_10_1002_advs_202303929 crossref_primary_10_1109_JPROC_2022_3169917 crossref_primary_10_1109_TMTT_2022_3197619 crossref_primary_10_1109_JSTQE_2021_3083565 crossref_primary_10_1103_PhysRevResearch_2_043422 crossref_primary_10_1109_TIM_2025_3551897 crossref_primary_10_1002_admt_202300111 crossref_primary_10_1002_adfm_202409045 crossref_primary_10_1109_MNET_107_2200623 crossref_primary_10_1109_TIE_2022_3187570 crossref_primary_10_1002_lpor_202100718 crossref_primary_10_1002_adma_202303891 crossref_primary_10_1016_j_carbon_2024_119150 crossref_primary_10_1038_s41377_024_01729_2 crossref_primary_10_1137_20M1366848 crossref_primary_10_1186_s43593_022_00013_3 crossref_primary_10_1002_lpor_202501068 crossref_primary_10_1109_JPROC_2022_3186087 crossref_primary_10_1088_1402_4896_ac3155 crossref_primary_10_1002_adma_202313697 crossref_primary_10_1002_adom_202401181 crossref_primary_10_1002_advs_202306119 crossref_primary_10_1109_TCCN_2024_3415623 crossref_primary_10_1002_sstr_202500300 crossref_primary_10_1016_j_jiixd_2023_06_008 crossref_primary_10_1109_TCOMM_2024_3422221 crossref_primary_10_1088_1361_6463_ac5663 crossref_primary_10_34133_research_0820 crossref_primary_10_1109_ACCESS_2022_3219871 crossref_primary_10_1002_pssr_202300176 crossref_primary_10_1109_TCOMM_2022_3202212 crossref_primary_10_1002_adom_202202081 crossref_primary_10_1002_advs_202204558 crossref_primary_10_1038_s41928_022_00719_9 crossref_primary_10_1093_nsr_nwac266 crossref_primary_10_1063_5_0051815 crossref_primary_10_1109_ACCESS_2022_3206831 crossref_primary_10_1002_aisy_202300341 crossref_primary_10_1002_mrm_30060 crossref_primary_10_1109_JPROC_2022_3170498 crossref_primary_10_7498_aps_74_20241668 crossref_primary_10_1002_lpor_202100369 crossref_primary_10_3390_s25061811 crossref_primary_10_1103_PhysRevApplied_19_034084 crossref_primary_10_1002_admt_202302164 crossref_primary_10_1109_TMTT_2023_3259526 crossref_primary_10_1109_TAP_2024_3354038 crossref_primary_10_1038_s41598_022_09772_y crossref_primary_10_1002_adma_202103815 crossref_primary_10_1109_MWC_007_00345 crossref_primary_10_1007_s11664_025_12232_8 crossref_primary_10_1063_5_0132854 crossref_primary_10_1002_admt_202500892 crossref_primary_10_1002_sstr_202500241 crossref_primary_10_1117_1_AP_7_3_034005 crossref_primary_10_1038_s41377_024_01712_x crossref_primary_10_1109_TMTT_2022_3207988 crossref_primary_10_1016_j_nanoen_2023_108761 crossref_primary_10_1109_TSP_2023_3272728 crossref_primary_10_1016_j_optcom_2021_127631 crossref_primary_10_1109_COMST_2023_3278239 crossref_primary_10_1515_nanoph_2023_0646 crossref_primary_10_3390_nano13020329 crossref_primary_10_1038_s41467_023_41763_z crossref_primary_10_1109_ACCESS_2021_3124812 crossref_primary_10_1002_admt_202401853 crossref_primary_10_1103_PhysRevApplied_17_064027 crossref_primary_10_1109_TMTT_2021_3054662 crossref_primary_10_1109_TWC_2022_3196834 crossref_primary_10_1002_adfm_202302080 crossref_primary_10_1002_advs_202105056 crossref_primary_10_1007_s11432_022_3471_9 crossref_primary_10_1364_PRJ_416287 crossref_primary_10_1002_lpor_202400619 crossref_primary_10_1002_lpor_202400979 crossref_primary_10_1002_adom_202203153 crossref_primary_10_1016_j_phycom_2024_102301 crossref_primary_10_1002_advs_202201458 crossref_primary_10_1038_s41598_024_61638_7 crossref_primary_10_1038_s41467_024_47865_6 crossref_primary_10_1109_ACCESS_2021_3053773 crossref_primary_10_1038_s41467_024_53035_5 crossref_primary_10_1038_s41467_025_57923_2 crossref_primary_10_1364_PRJ_447037 crossref_primary_10_1109_JSYST_2022_3169348 crossref_primary_10_1088_1361_6463_ac8207 crossref_primary_10_1109_LAWP_2024_3452428 crossref_primary_10_1515_nanoph_2023_0365 crossref_primary_10_1109_JMMCT_2021_3121300 crossref_primary_10_1109_TAP_2025_3559305 crossref_primary_10_1088_2515_7647_ad1a3b crossref_primary_10_1109_LAWP_2021_3050808 crossref_primary_10_1109_LAWP_2024_3403686 crossref_primary_10_1088_1402_4896_ad5d2c crossref_primary_10_1002_adma_202500266 crossref_primary_10_1016_j_est_2024_111610 crossref_primary_10_1109_TAP_2022_3145445 crossref_primary_10_1002_advs_202203747 crossref_primary_10_1109_LAWP_2024_3460398 crossref_primary_10_1109_TWC_2023_3313110 crossref_primary_10_1109_TAP_2024_3439887 crossref_primary_10_1002_advs_202309826 crossref_primary_10_1038_s41467_022_29354_w crossref_primary_10_1039_D3NR06521A crossref_primary_10_1109_JPROC_2021_3125285 crossref_primary_10_3390_s21082765 crossref_primary_10_1002_adfm_202411667 crossref_primary_10_3390_mi16080911 crossref_primary_10_1038_s41467_024_46916_2 crossref_primary_10_1109_TCOMM_2022_3160540 |
| Cites_doi | 10.1145/2534169.2486015 10.1145/2785956.2787490 10.1186/s13638-019-1438-9 10.1016/j.patter.2020.100006 10.1002/0471783021 10.1364/OE.24.014618 10.1109/TCOMM.2018.2876899 10.15325/BLTJ.2015.2407793 10.1038/nnano.2013.25 10.1063/1.1420510 10.1038/s41467-017-00164-9 10.1109/MSP.2018.2848361 10.1002/9780470825631 10.1023/A:1008889222784 10.1063/1.4935941 10.1038/s41377-019-0209-z 10.1093/nsr/nwy135 10.1038/nphoton.2014.139 10.1038/s41928-018-0190-1 10.1038/s41467-019-09103-2 10.1049/joe.2019.0209 10.1038/lsa.2014.99 10.1145/2668332.2668344 10.1126/science.1134824 10.1109/TSP.2018.2816577 10.1103/PhysRevApplied.8.061001 10.1063/1.4973345 10.1038/s41467-018-03155-6 10.1049/iet-rsn.2016.0516 10.1017/CBO9781316471807 10.1038/srep06693 10.1103/PhysRevLett.121.063901 10.1038/s41467-018-06802-0 10.1145/3210240.3210329 10.1002/j.1538-7305.1948.tb01338.x 10.1515/nanoph-2019-0006 10.34133/2019/2584509 10.1103/PhysRevLett.118.183901 10.1017/S030500410001152X 10.1038/srep42650 10.1017/CBO9780511841224 10.1109/MAES.2013.6678486 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1038/s41467-020-17808-y |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_cdf4cb06b0aa4b68a8bf4c8981f7a24b PMC7413398 oai:HAL:hal-02931864v1 32764638 10_1038_s41467_020_17808_y |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: the National Key Research and Development Program of China under Grant Nos. 2017YFA0700201, 2017YFA0700202, and 2017YFA0700203 – fundername: 1)the National Key Research and Development Program of China under Grant Nos. 2017YFA0700201, 2017YFA0700202,and 2017YFA0700203. 2)the 111 Project under Grant No. 111-2-05. – fundername: ; |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c574t-f4662204cf8a767095e47767512cea6cdd1fcaa54884bcbe413cd7047e78f0bd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 177 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000561122000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:04:10 EDT 2025 Tue Nov 04 01:57:55 EST 2025 Tue Oct 14 19:59:03 EDT 2025 Fri Sep 05 07:49:04 EDT 2025 Sat Nov 29 15:02:15 EST 2025 Wed Feb 19 02:01:56 EST 2025 Tue Nov 18 20:51:36 EST 2025 Sat Nov 29 06:20:27 EST 2025 Fri Feb 21 02:40:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | antenna commodity backscatter velocity communication article wave phenomena wireless communication |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c574t-f4662204cf8a767095e47767512cea6cdd1fcaa54884bcbe413cd7047e78f0bd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9394-3638 0000-0002-5862-1497 0000-0002-4821-3924 |
| OpenAccessLink | https://doaj.org/article/cdf4cb06b0aa4b68a8bf4c8981f7a24b |
| PMID | 32764638 |
| PQID | 2430816930 |
| PQPubID | 546298 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cdf4cb06b0aa4b68a8bf4c8981f7a24b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7413398 hal_primary_oai_HAL_hal_02931864v1 proquest_miscellaneous_2431814196 proquest_journals_2430816930 pubmed_primary_32764638 crossref_primary_10_1038_s41467_020_17808_y crossref_citationtrail_10_1038_s41467_020_17808_y springer_journals_10_1038_s41467_020_17808_y |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-06 |
| PublicationDateYYYYMMDD | 2020-08-06 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | ZhaoJProgrammable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systemsNatl. Sci. Rev.201962312381:CAS:528:DC%2BB3cXms1aqsg%3D%3D10.1093/nsr/nwy135 RoutSSonkusaleSWireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulationOpt. Express20162414618146312016OExpr..2414618R1:CAS:528:DC%2BC1cXkt1Wn2741061410.1364/OE.24.014618 HollPMReinhardFHolography of Wi-fi radiationPhys. Rev. Lett.20171181839012017PhRvL.118r3901H2852467410.1103/PhysRevLett.118.183901 FengWFriedtJ-MHuZCherniakGSatoMWiFi-based imaging for ground penetrating radar applications: fundamental study and experimental resultsJ. Eng.2019201963646368 BrookerGGomezJLev Termen’s Great Seal bug analyzedIEEE Trans. Aerosp. Electron. Syst.20132841110.1109/MAES.2013.6678486 YooIImaniMFSleasmanTPfisterHDSmithDREnhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channelsIEEE Trans. Commun.2019671070108410.1109/TCOMM.2018.2876899 KainaNDupréMLeroseyGFinkMShaping complex microwave fields in reverberating media with binary tunable metasurfacesSci. Rep.2015410.1038/srep06693 CuiTJQiMQWanXZhaoJChengQCoding metamaterials, digital metamaterials and programmable metamaterialsLight Sci. Appl.20143e2182014LSA.....3E.218C10.1038/lsa.2014.99 HuSRusekFEdforsOBeyond massive MIMO: the potential of data transmission with large intelligent surfacesIEEE Trans. Signal Process.201866274627582018ITSP...66.2746H38119881415.9413510.1109/TSP.2018.2816577 Sarkar, T. K. & Baker, D. C. History of Wireless (Wiley-Interscience, 2006). LiLCuiTJInformation metamaterials—from effective media to real-time information processing systemsNanophotonics2019870372410.1515/nanoph-2019-0006 XuCYangLZhangPPractical backscatter communication systems for battery-free internet of things: a tutorial and survey of recent researchIEEE Signal Process. Mag.20183516272018ISPM...35...16X10.1109/MSP.2018.2848361 SmithDRAn analysis of beamed wireless power transfer in the Fresnel zone using a dynamic metasurface apertureJ. Appl. Phys.20171210149012017JAP...121a4901S10.1063/1.4973345 OuJ-YPlumEZhangJZheludevNIAn electromechanically reconfigurable plasmonic metamaterial operating in the near-infraredNat. Nanotechnol.201382522552013NatNa...8..252O1:CAS:528:DC%2BC3sXktVKgtL0%3D2350309110.1038/nnano.2013.25 ShannonCEA mathematical theory of communicationBell Syst. Tech. J.194827379423262861154.9430310.1002/j.1538-7305.1948.tb01338.x del HougnePFinkMLeroseyGShaping microwave fields using nonlinear unsolicited feedback: application to enhance energy harvestingPhys. Rev. Appl.201780610012017PhRvP...8f1001D10.1103/PhysRevApplied.8.061001 Goldsmith, A. Wireless Communications (Cambridge University Press, 2005). Garnier, J. & Papanicolaou, G. Passive Imaging with Ambient Noise (Cambridge University Press, 2016). PalmerJReceiver platform motion compensation in passive radarIET Radar Sonar Navig.20171192293110.1049/iet-rsn.2016.0516 MarzettaTLMassive MIMO: an introductionBell Labs Tech. J.201520112210.15325/BLTJ.2015.2407793 CuiTJLiuSBaiGDMaQDirect transmission of digital message via programmable coding metasurfaceResearch2019201911210.34133/2019/2584509 SleasmanTImaniFGollubMJ. NSmithDRDynamic metamaterial aperture for microwave imagingAppl. Phys. Lett.20151072041042015ApPhL.107t4104S10.1063/1.4935941 ArbabiEMEMS-tunable dielectric metasurface lensNat. Commun.201892018NatCo...9..812A29476147582482510.1038/s41467-018-03155-6 NeymanJPearsonESOn the problem of the most efficient tests of statistical hypothesesPhilos. Trans. R. Soc. A19332316947040006.26804 del HougnePImaniMFDieboldAVHorstmeyerRSmithDRLearned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural networkAdv. Sci201981901913 Proakis, J. G. Digital Communications (McGraw-Hill, 2001). Cho, Y. S., Kim, J., Yang, W. Y. & Kang, C. MIMO-OFDM Wireless Communications with MATLAB (Wiley-IEEE Press, 2011). LiLMachine-learning reprogrammable metasurface imagerNat. Commun.2019102019NatCo..10.1082L30842417640324210.1038/s41467-019-09103-2 del HougnePImaniMFFinkMSmithDRLeroseyGPrecise localization of multiple noncooperative objects in a disordered cavity by wave front shapingPhys. Rev. Lett.20181210639012018PhRvL.121f3901D3014166910.1103/PhysRevLett.121.063901 Tang, W. et al. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. Preprint at https://arxiv.org/abs/1912.09955 (2019). ZhangLSpace-time-coding digital metasurfacesNat. Commun.201892018NatCo...9.4334Z30337522619406410.1038/s41467-018-06802-0 Bharadia, D., Joshi, K. R., Kotaru, M. & Katti, S. BackFi: High throughput WiFi backscatter. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication—SIGCOMM ’15, 283–296 (ACM Press, 2015). Huang, D., Nandakumar, R. & Gollakota, S. Feasibility and limits of Wi-Fi Imaging. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, 266–279 (ACM Press, 2014). RenzoMDSmart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has comeJ. Wirel. Commun. Netw.2019201912910.1186/s13638-019-1438-9 GollubJNLarge metasurface aperture for millimeter wave computational imaging at the human-scaleSci. Rep.201772017NatSR...742650G1:CAS:528:DC%2BC2sXjtVKktbk%3D28218254531699510.1038/srep42650 LeroseyGde RosnyJTourinAFinkMFocusing beyond the diffraction limit with far-field time reversalScience2007315112011222007Sci...315.1120L1:CAS:528:DC%2BD2sXhvFWrsrY%3D1732205910.1126/science.1134824 SimonSHMoustakasALStoytchevMSafarHCommunication in a disordered worldPhys. Today200154384310.1063/1.1420510 FoschiniGJGansMJOn limits of wireless communications in a fading environment when using multiple antennasWirel. Pers. Commun.1998631133510.1023/A:1008889222784 Zhao, J., Gong, W. & Liu, J. Spatial stream backscatter using commodity WiFi. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 191–203 (ACM, 2018). LiLElectromagnetic reprogrammable coding-metasurface hologramsNat. Commun.201782017NatCo...8..197L28775295554311610.1038/s41467-017-00164-9 WattsCMTerahertz compressive imaging with metamaterial spatial light modulatorsNat. Photon.201486056092014NaPho...8..605W1:CAS:528:DC%2BC2cXhtVKlsrfO10.1038/nphoton.2014.139 del HougnePLeroseyGLeveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signalsPhys. Rev. X20188041037 NeymanJPearsonESThe testing of statistical hypotheses in relation to probabilities a prioriMath. Proc. Camb. Philos. Soc.1933294925101933PCPS...29..492N59.1163.0310.1017/S030500410001152X LiLIntelligent metasurface imager and recognizerLight Sci. Appl.201982019LSA.....8...97L31645938680484710.1038/s41377-019-0209-z LiH-YIntelligent electromagnetic sensing with learnable data acquisition and processingPatterns2020110000610.1016/j.patter.2020.100006 LiuVAmbient backscatter: wireless communication out of thin airACM SIGCOMM Comput. Commun. Rev.20134339502013SSCom.170...39L1:CAS:528:DC%2BC3sXitVSqsLfO10.1145/2534169.2486015 del HougnePFinkMLeroseyGOptimally diverse communication channels in disordered environments with tuned randomnessNat. Electron.20192364110.1038/s41928-018-0190-1 N Kaina (17808_CR24) 2015; 4 T Sleasman (17808_CR26) 2015; 107 17808_CR6 17808_CR19 C Xu (17808_CR12) 2018; 35 P del Hougne (17808_CR27) 2018; 121 L Li (17808_CR38) 2017; 8 J Neyman (17808_CR45) 1933; 29 MD Renzo (17808_CR33) 2019; 2019 17808_CR10 17808_CR11 G Lerosey (17808_CR47) 2007; 315 TL Marzetta (17808_CR7) 2015; 20 J-Y Ou (17808_CR16) 2013; 8 SH Simon (17808_CR46) 2001; 54 CM Watts (17808_CR25) 2014; 8 TJ Cui (17808_CR37) 2019; 2019 L Li (17808_CR28) 2019; 10 J Zhao (17808_CR35) 2019; 6 DR Smith (17808_CR40) 2017; 121 P del Hougne (17808_CR41) 2018; 8 P del Hougne (17808_CR8) 2019; 2 H-Y Li (17808_CR31) 2020; 1 W Feng (17808_CR23) 2019; 2019 17808_CR20 17808_CR42 E Arbabi (17808_CR18) 2018; 9 P del Hougne (17808_CR29) 2019; 8 I Yoo (17808_CR32) 2019; 67 P del Hougne (17808_CR39) 2017; 8 JN Gollub (17808_CR43) 2017; 7 S Rout (17808_CR17) 2016; 24 J Palmer (17808_CR22) 2017; 11 V Liu (17808_CR9) 2013; 43 J Neyman (17808_CR44) 1933; 231 CE Shannon (17808_CR4) 1948; 27 PM Holl (17808_CR21) 2017; 118 L Li (17808_CR15) 2019; 8 GJ Foschini (17808_CR5) 1998; 6 G Brooker (17808_CR13) 2013; 28 L Li (17808_CR30) 2019; 8 17808_CR1 TJ Cui (17808_CR14) 2014; 3 17808_CR2 S Hu (17808_CR34) 2018; 66 L Zhang (17808_CR36) 2018; 9 17808_CR3 |
| References_xml | – reference: CuiTJQiMQWanXZhaoJChengQCoding metamaterials, digital metamaterials and programmable metamaterialsLight Sci. Appl.20143e2182014LSA.....3E.218C10.1038/lsa.2014.99 – reference: ZhangLSpace-time-coding digital metasurfacesNat. Commun.201892018NatCo...9.4334Z30337522619406410.1038/s41467-018-06802-0 – reference: ShannonCEA mathematical theory of communicationBell Syst. Tech. J.194827379423262861154.9430310.1002/j.1538-7305.1948.tb01338.x – reference: LiLMachine-learning reprogrammable metasurface imagerNat. Commun.2019102019NatCo..10.1082L30842417640324210.1038/s41467-019-09103-2 – reference: LiLElectromagnetic reprogrammable coding-metasurface hologramsNat. Commun.201782017NatCo...8..197L28775295554311610.1038/s41467-017-00164-9 – reference: del HougnePImaniMFDieboldAVHorstmeyerRSmithDRLearned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural networkAdv. Sci201981901913 – reference: PalmerJReceiver platform motion compensation in passive radarIET Radar Sonar Navig.20171192293110.1049/iet-rsn.2016.0516 – reference: Proakis, J. G. Digital Communications (McGraw-Hill, 2001). – reference: CuiTJLiuSBaiGDMaQDirect transmission of digital message via programmable coding metasurfaceResearch2019201911210.34133/2019/2584509 – reference: SmithDRAn analysis of beamed wireless power transfer in the Fresnel zone using a dynamic metasurface apertureJ. Appl. Phys.20171210149012017JAP...121a4901S10.1063/1.4973345 – reference: del HougnePLeroseyGLeveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signalsPhys. Rev. X20188041037 – reference: Cho, Y. S., Kim, J., Yang, W. Y. & Kang, C. MIMO-OFDM Wireless Communications with MATLAB (Wiley-IEEE Press, 2011). – reference: SleasmanTImaniFGollubMJ. NSmithDRDynamic metamaterial aperture for microwave imagingAppl. Phys. Lett.20151072041042015ApPhL.107t4104S10.1063/1.4935941 – reference: HuSRusekFEdforsOBeyond massive MIMO: the potential of data transmission with large intelligent surfacesIEEE Trans. Signal Process.201866274627582018ITSP...66.2746H38119881415.9413510.1109/TSP.2018.2816577 – reference: Garnier, J. & Papanicolaou, G. Passive Imaging with Ambient Noise (Cambridge University Press, 2016). – reference: LiLIntelligent metasurface imager and recognizerLight Sci. Appl.201982019LSA.....8...97L31645938680484710.1038/s41377-019-0209-z – reference: LiuVAmbient backscatter: wireless communication out of thin airACM SIGCOMM Comput. Commun. Rev.20134339502013SSCom.170...39L1:CAS:528:DC%2BC3sXitVSqsLfO10.1145/2534169.2486015 – reference: Bharadia, D., Joshi, K. R., Kotaru, M. & Katti, S. BackFi: High throughput WiFi backscatter. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication—SIGCOMM ’15, 283–296 (ACM Press, 2015). – reference: KainaNDupréMLeroseyGFinkMShaping complex microwave fields in reverberating media with binary tunable metasurfacesSci. Rep.2015410.1038/srep06693 – reference: Tang, W. et al. MIMO transmission through reconfigurable intelligent surface: system design, analysis, and implementation. Preprint at https://arxiv.org/abs/1912.09955 (2019). – reference: FoschiniGJGansMJOn limits of wireless communications in a fading environment when using multiple antennasWirel. Pers. Commun.1998631133510.1023/A:1008889222784 – reference: OuJ-YPlumEZhangJZheludevNIAn electromechanically reconfigurable plasmonic metamaterial operating in the near-infraredNat. Nanotechnol.201382522552013NatNa...8..252O1:CAS:528:DC%2BC3sXktVKgtL0%3D2350309110.1038/nnano.2013.25 – reference: XuCYangLZhangPPractical backscatter communication systems for battery-free internet of things: a tutorial and survey of recent researchIEEE Signal Process. Mag.20183516272018ISPM...35...16X10.1109/MSP.2018.2848361 – reference: RoutSSonkusaleSWireless multi-level terahertz amplitude modulator using active metamaterial-based spatial light modulationOpt. Express20162414618146312016OExpr..2414618R1:CAS:528:DC%2BC1cXkt1Wn2741061410.1364/OE.24.014618 – reference: BrookerGGomezJLev Termen’s Great Seal bug analyzedIEEE Trans. Aerosp. Electron. Syst.20132841110.1109/MAES.2013.6678486 – reference: Huang, D., Nandakumar, R. & Gollakota, S. Feasibility and limits of Wi-Fi Imaging. In Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems, 266–279 (ACM Press, 2014). – reference: GollubJNLarge metasurface aperture for millimeter wave computational imaging at the human-scaleSci. Rep.201772017NatSR...742650G1:CAS:528:DC%2BC2sXjtVKktbk%3D28218254531699510.1038/srep42650 – reference: SimonSHMoustakasALStoytchevMSafarHCommunication in a disordered worldPhys. Today200154384310.1063/1.1420510 – reference: Sarkar, T. K. & Baker, D. C. History of Wireless (Wiley-Interscience, 2006). – reference: del HougnePImaniMFFinkMSmithDRLeroseyGPrecise localization of multiple noncooperative objects in a disordered cavity by wave front shapingPhys. Rev. Lett.20181210639012018PhRvL.121f3901D3014166910.1103/PhysRevLett.121.063901 – reference: ArbabiEMEMS-tunable dielectric metasurface lensNat. Commun.201892018NatCo...9..812A29476147582482510.1038/s41467-018-03155-6 – reference: MarzettaTLMassive MIMO: an introductionBell Labs Tech. J.201520112210.15325/BLTJ.2015.2407793 – reference: LiH-YIntelligent electromagnetic sensing with learnable data acquisition and processingPatterns2020110000610.1016/j.patter.2020.100006 – reference: NeymanJPearsonESThe testing of statistical hypotheses in relation to probabilities a prioriMath. Proc. Camb. Philos. Soc.1933294925101933PCPS...29..492N59.1163.0310.1017/S030500410001152X – reference: LeroseyGde RosnyJTourinAFinkMFocusing beyond the diffraction limit with far-field time reversalScience2007315112011222007Sci...315.1120L1:CAS:528:DC%2BD2sXhvFWrsrY%3D1732205910.1126/science.1134824 – reference: del HougnePFinkMLeroseyGOptimally diverse communication channels in disordered environments with tuned randomnessNat. Electron.20192364110.1038/s41928-018-0190-1 – reference: NeymanJPearsonESOn the problem of the most efficient tests of statistical hypothesesPhilos. Trans. R. Soc. A19332316947040006.26804 – reference: HollPMReinhardFHolography of Wi-fi radiationPhys. Rev. Lett.20171181839012017PhRvL.118r3901H2852467410.1103/PhysRevLett.118.183901 – reference: ZhaoJProgrammable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systemsNatl. Sci. Rev.201962312381:CAS:528:DC%2BB3cXms1aqsg%3D%3D10.1093/nsr/nwy135 – reference: LiLCuiTJInformation metamaterials—from effective media to real-time information processing systemsNanophotonics2019870372410.1515/nanoph-2019-0006 – reference: Goldsmith, A. Wireless Communications (Cambridge University Press, 2005). – reference: Zhao, J., Gong, W. & Liu, J. Spatial stream backscatter using commodity WiFi. In Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services, 191–203 (ACM, 2018). – reference: FengWFriedtJ-MHuZCherniakGSatoMWiFi-based imaging for ground penetrating radar applications: fundamental study and experimental resultsJ. Eng.2019201963646368 – reference: WattsCMTerahertz compressive imaging with metamaterial spatial light modulatorsNat. Photon.201486056092014NaPho...8..605W1:CAS:528:DC%2BC2cXhtVKlsrfO10.1038/nphoton.2014.139 – reference: YooIImaniMFSleasmanTPfisterHDSmithDREnhancing capacity of spatial multiplexing systems using reconfigurable cavity-backed metasurface antennas in clustered MIMO channelsIEEE Trans. Commun.2019671070108410.1109/TCOMM.2018.2876899 – reference: RenzoMDSmart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has comeJ. Wirel. Commun. Netw.2019201912910.1186/s13638-019-1438-9 – reference: del HougnePFinkMLeroseyGShaping microwave fields using nonlinear unsolicited feedback: application to enhance energy harvestingPhys. Rev. Appl.201780610012017PhRvP...8f1001D10.1103/PhysRevApplied.8.061001 – volume: 43 start-page: 39 year: 2013 ident: 17808_CR9 publication-title: ACM SIGCOMM Comput. Commun. Rev. doi: 10.1145/2534169.2486015 – ident: 17808_CR10 doi: 10.1145/2785956.2787490 – volume: 2019 start-page: 129 year: 2019 ident: 17808_CR33 publication-title: J. Wirel. Commun. Netw. doi: 10.1186/s13638-019-1438-9 – volume: 1 start-page: 100006 year: 2020 ident: 17808_CR31 publication-title: Patterns doi: 10.1016/j.patter.2020.100006 – ident: 17808_CR1 doi: 10.1002/0471783021 – volume: 24 start-page: 14618 year: 2016 ident: 17808_CR17 publication-title: Opt. Express doi: 10.1364/OE.24.014618 – volume: 67 start-page: 1070 year: 2019 ident: 17808_CR32 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2018.2876899 – volume: 20 start-page: 11 year: 2015 ident: 17808_CR7 publication-title: Bell Labs Tech. J. doi: 10.15325/BLTJ.2015.2407793 – volume: 8 start-page: 252 year: 2013 ident: 17808_CR16 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.25 – volume: 54 start-page: 38 year: 2001 ident: 17808_CR46 publication-title: Phys. Today doi: 10.1063/1.1420510 – volume: 8 year: 2017 ident: 17808_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00164-9 – volume: 35 start-page: 16 year: 2018 ident: 17808_CR12 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2018.2848361 – ident: 17808_CR6 doi: 10.1002/9780470825631 – volume: 6 start-page: 311 year: 1998 ident: 17808_CR5 publication-title: Wirel. Pers. Commun. doi: 10.1023/A:1008889222784 – volume: 8 start-page: 1901913 year: 2019 ident: 17808_CR29 publication-title: Adv. Sci – volume: 107 start-page: 204104 year: 2015 ident: 17808_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4935941 – volume: 8 year: 2019 ident: 17808_CR30 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0209-z – volume: 6 start-page: 231 year: 2019 ident: 17808_CR35 publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwy135 – volume: 8 start-page: 605 year: 2014 ident: 17808_CR25 publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.139 – volume: 2 start-page: 36 year: 2019 ident: 17808_CR8 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0190-1 – ident: 17808_CR2 – volume: 10 year: 2019 ident: 17808_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09103-2 – volume: 2019 start-page: 6364 year: 2019 ident: 17808_CR23 publication-title: J. Eng. doi: 10.1049/joe.2019.0209 – volume: 3 start-page: e218 year: 2014 ident: 17808_CR14 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2014.99 – ident: 17808_CR19 doi: 10.1145/2668332.2668344 – volume: 231 start-page: 694 year: 1933 ident: 17808_CR44 publication-title: Philos. Trans. R. Soc. A – volume: 315 start-page: 1120 year: 2007 ident: 17808_CR47 publication-title: Science doi: 10.1126/science.1134824 – volume: 66 start-page: 2746 year: 2018 ident: 17808_CR34 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2816577 – volume: 8 start-page: 061001 year: 2017 ident: 17808_CR39 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.8.061001 – volume: 121 start-page: 014901 year: 2017 ident: 17808_CR40 publication-title: J. Appl. Phys. doi: 10.1063/1.4973345 – volume: 9 year: 2018 ident: 17808_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03155-6 – volume: 11 start-page: 922 year: 2017 ident: 17808_CR22 publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2016.0516 – ident: 17808_CR20 doi: 10.1017/CBO9781316471807 – volume: 4 year: 2015 ident: 17808_CR24 publication-title: Sci. Rep. doi: 10.1038/srep06693 – volume: 121 start-page: 063901 year: 2018 ident: 17808_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.063901 – volume: 8 start-page: 041037 year: 2018 ident: 17808_CR41 publication-title: Phys. Rev. X – ident: 17808_CR42 – volume: 9 year: 2018 ident: 17808_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06802-0 – ident: 17808_CR11 doi: 10.1145/3210240.3210329 – volume: 27 start-page: 379 year: 1948 ident: 17808_CR4 publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – volume: 8 start-page: 703 year: 2019 ident: 17808_CR15 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0006 – volume: 2019 start-page: 1 year: 2019 ident: 17808_CR37 publication-title: Research doi: 10.34133/2019/2584509 – volume: 118 start-page: 183901 year: 2017 ident: 17808_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.183901 – volume: 29 start-page: 492 year: 1933 ident: 17808_CR45 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S030500410001152X – volume: 7 year: 2017 ident: 17808_CR43 publication-title: Sci. Rep. doi: 10.1038/srep42650 – ident: 17808_CR3 doi: 10.1017/CBO9780511841224 – volume: 28 start-page: 4 year: 2013 ident: 17808_CR13 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/MAES.2013.6678486 |
| SSID | ssj0000391844 |
| Score | 2.6791496 |
| Snippet | Conventional wireless communication architecture, a backbone of our modern society, relies on actively generated carrier signals to transfer information,... Leveraging the large aperture and huge number of degrees of freedom offered by a programmable metasurface, the authors modulate the propagation environment of... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3926 |
| SubjectTerms | 639/166/987 639/624/1075/187 639/766/930 Apertures Backscattering Commodities Communications systems Degrees of freedom Energy consumption Engineering Sciences High speed Humanities and Social Sciences Information processing Information transfer Metasurfaces multidisciplinary Science Science (multidisciplinary) Wave propagation Wireless communications |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggMSF9yNQUEDcwKrjeGPnhApi1UOpeuDRA5LlZ7tSScrudqX998w42ZRQ0Qu3yI_EzoxnxuPxN4S8mdSOSVNHakrDqAhFTY1RjPLCgbashefpFv-3fXlwoI6O6sPe4bbowyo3MjEJat869JHvcFFijoi6ZO_PflHMGoWnq30KjevkBqIk8BS6dzj4WBD9XAnR35VhpdpZiCQZcM9USMUUXY_0UYLtBy1zgkGRly3Oy4GTf52eJqU0vfu_07lH7vTmaL7b8c99ci00D8itLkHl-iH58Tks0YcYjQsUzGzkCZ__xKdVyC3ez3cJoDNHyONTkJq5-_PGSY5u3lTUejD38-8zOp3lGDMCXP-IfJ1--vJxj_b5GKibSLGkUVQV50y4qIxE3LdJEAgGBDaDC6Zy3hfRGQN7ICWsswH0o_OSCRmkisz68jHZatomPCW5tB52ngUzzsJ-po7WGRAsXBYuBm5qm5FiQxXterByzJlxqtOheal0R0kNlNSJknqdkbdDn7MOquPK1h-Q2ENLhNlOBe38WPerVjsfhbOssswYYStllIUCVasiSsMFDPM1sMroHXu7-xrLGNhRharEqsjI9oYFdC8gFvqC_hl5NVTD0sbzGtOE9jy1AftLgIzMyJOO8YZPlVxWAmRnRuSIJUdjGdc0s5MEHw42ZFnW0PPdhnkvhvXv__Xs6lk8J7c5rioMpqm2ydZyfh5ekJtutZwt5i_TsvwNWXlAeg priority: 102 providerName: ProQuest |
| Title | Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals |
| URI | https://link.springer.com/article/10.1038/s41467-020-17808-y https://www.ncbi.nlm.nih.gov/pubmed/32764638 https://www.proquest.com/docview/2430816930 https://www.proquest.com/docview/2431814196 https://hal.science/hal-02931864 https://pubmed.ncbi.nlm.nih.gov/PMC7413398 https://doaj.org/article/cdf4cb06b0aa4b68a8bf4c8981f7a24b |
| Volume | 11 |
| WOSCitedRecordID | wos000561122000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BAIkXxDcZowqIN4jmJG5sP25o1ZC2KkJ8FIRk2Y6jVRrptHaV-t9z56SlYQJeeIkifySW73wf9vl3AK-HyjFhVJ2Y3LCE-1QlxkiWZKlDbal4lYVb_J9PxHgsJxNVbqX6opiwFh64nbh9V9XcWVZYZgy3hTTSYoFUMq2Fybgl6cuE2nKmggzOFbouvLslw3K5P-dBJpC3lArJZLLqaaIA2I_65YzCIa_bmtdDJn87Nw3qaHQf7nV2ZHzQjv8B3PDNQ7jTZpZcPYLvp35Bm3-1cT5B-5iIWcU_6G3pY0sX611A1owJq_gcxV3stq-KxLQ_G4pmFdrp8ZdpMprGFOyB7PoYPo2OPr47TrpECokbCr5Ial4UWca4q6URBNg29JxQfFDZO28KV1Vp7YxB50Vy66xHxeYqwbjwQtbMVvkT2GlmjX8GsbAVuowpM86iI6Jq6wxKhEykrvaZUTaCdD2p2nUo45Ts4lyH0-5c6pYQGgmhAyH0KoI3mz4XLcbGX1sfEq02LQkfOxQg1-iOa_S_uCaCV0jp3jeOD040lTE0gFJZ8GUawd6aEXS3suc64znlKlE5i-DlphrXJB20mMbPrkIbNJw4CrcInrZ8s_lVnomCo9CLQPQ4qjeWfk0zPQu432j85bnCnm_XvPdrWH-er93_MV_P4W5GS4diZYo92FlcXvkXcNstF9P55QBuiokITzmAW4dH4_LDIKzHAYXSlvgsh9-wpnx_Wn79CTc_Oxg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGB4IX7pfAgIDgCaI5jhs7DwiNS9VqbdWHAUNCMrbjsEojHW1X1D_Fb-QcJ-koE3vbA2-R4yRO8p2bffwdQp61M0uFzopIJ5pG3MVZpLWkEYstWMuM58zv4v_YF8Oh3N_PRhvkV7MXBtMqG53oFXU-sThHvs14gjUisoS-PvoRYdUoXF1tSmhUsNh1y58Qss1e9d7B_33OWOf93ttuVFcViGxb8HlU8DRljHJbSC2QvaztOFLagOWzTqc2z-PCag2evOTGGgda3uaCcuGELKjJE7jvBbLJEewtsjnqDUafV7M6yLcuOa9359BEbs-410UYpcVCUhkt1yygLxQAdu0A0zBP-7inUzX_Wq_1ZrBz7X_7gNfJ1drhDncqCblBNlx5k1yqSnAub5EvAzfHWdJCWxdBIIGoz8PveLRwoUEGAuspSEMkdT4EuxDaP_fUhDiR7ZsmOQQ04adx1BmHmBUDcn2bfDiXV7tDWuWkdPdIKEwOsXVMtTUQsWWFsRpUJxOxLRzTmQlI3KBA2ZqOHauCHCqfFpBIVSFHAXKUR45aBuTF6pqjiozkzN5vEFyrnkgk7hsm02-q1kvK5gW3hqaGas1NKrU00CAzGRdCMw7DfArQXLtHd6evsI2CpxjLlC_igGw1kFO1CpypE7wF5MnqNCgvXJHSpZsc-z7gYXKwAgG5WwF99aiEiZSDdQiIWBOBtbGsnynHB54gHbzkJMngypeNsJwM69_f6_7Zb_GYXO7uDfqq3xvuPiBXGEo0pg6lW6Q1nx67h-SiXczHs-mjWimE5Ot5i9FvKhyfTw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgX7pfAgIDgCaw6jhs7DwgNRrVppeoDlwkhGdtxWKWRjrYr6l_j13GOk3SUib3tgbfIcRIn-c7NPv4OIU-7uWPS5CU1qWFU-CSnxihGeeLAWuai4GEX_8e-HAzU3l4-XCO_2r0wmFbZ6sSgqIuxwznyDhcp1ojIU9Ypm7SI4Vbv1eEPihWkcKW1LadRQ2TXL35C-DZ9ubMF__oZ5723799s06bCAHVdKWa0FFnGOROuVEYik1nXC6S3ASvovMlcUSSlMwa8eiWssx40viskE9JLVTJbpHDfc-S8hBgT0wmH3c_L-R1kXldCNPt0WKo6UxG0EsZriVRM0cWKLQwlA8DC7WNC5klv92TS5l8rt8Eg9q7-z5_yGrnSuOHxZi0318mar26Qi3VhzsVN8uWdn-HcaWmcpxBeoCwU8Xc8mvvYIi-BC8SkMVI9H4C1iN2fO21inN4OTeMCwpz404j2RjHmyoC03yIfzuTVbpP1alz5uySWtoCIO2HGWYjj8tI6AwqVy8SVnpvcRiRpEaFdQ9KOtUIOdEgWSJWuUaQBRTqgSC8i8nx5zWFNUXJq79cItGVPpBcPDePJN91oK-2KUjjLMsuMETZTRlloULlKSmm4gGE-AZiu3GN7s6-xjYH_mKhMzJOIbLTw041inOpj7EXk8fI0qDRcpzKVHx-FPuB3CrANEblTg375qJTLTIDNiIhcEYeVsayeqUb7gTYdfOc0zeHKF63gHA_r39_r3ulv8YhcAtnR_Z3B7n1ymaNwYz5RtkHWZ5Mj_4BccPPZaDp5GLRDTL6etQz9Bu24prI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metasurface-assisted+massive+backscatter+wireless+communication+with+commodity+Wi-Fi+signals&rft.jtitle=Nature+communications&rft.au=Zhao%2C+Hanting&rft.au=Shuang%2C+Ya&rft.au=Wei%2C+Menglin&rft.au=Cui%2C+Tie+Jun&rft.date=2020-08-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-17808-y&rft.externalDocID=10_1038_s41467_020_17808_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |