I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks

Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as re...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computer science and technology Ročník 37; číslo 6; s. 1337 - 1355
Hlavní autori: Li, Yuan, Dai, Jie, Fan, Xiao-Lin, Zhao, Yu-Hai, Wang, Guo-Ren
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore Springer Nature Singapore 01.12.2022
Springer
Springer Nature B.V
School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer,Beijing Institute of Technology,Beijing 100081,China
School of Information Science and Technology,North China University of Technology,Beijing 100144,China%School of Information Science and Technology,North China University of Technology,Beijing 100144,China
Predmet:
ISSN:1000-9000, 1860-4749
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.
AbstractList Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the fc-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate fc-core and then refining the fc-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi- external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB. Keywords early bursting cohesive subgraph (EBCS), I/O efficient algorithm, semi-external model, temporal network
Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.
Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the fc-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate fc-core and then refining the fc-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi- external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.
Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB.The online version contains supplementary material available at 10.1007/s11390-022-2367-3.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11390-022-2367-3.
Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which accumulates its cohesiveness at the fastest rate, is an important problem in temporal networks. The BCS has a large number of applications, such as representing emergency events in social media, traffic congestion in road networks and epidemic outbreak in communities. Nevertheless, existing methods demand the BCS lasting for a time interval, which neglects the timeliness of the BCS. In this paper, we design an early bursting cohesive subgraph (EBCS) model based on the k-core to enable identifying the burstiness as soon as possible. To find the EBCS, we first construct a time weight graph (TWG) to measure the bursting level by integrating the topological and temporal information. Then, we propose a global search algorithm, called GS-EBCS, which can find the exact EBCS by iteratively removing nodes from the TWG. Further, we propose a local search algorithm, named LS-EBCS, to find the EBCS by first expanding from a seed node until obtaining a candidate k-core and then refining the k-core to the result subgraph in an optimal time complexity. Subsequently, considering the situation that the massive temporal networks cannot be completely put into the memory, we first design an I/O method to build the TWG and then develop I/O efficient global search and local search algorithms, namely I/O-GS and I/O-LS respectively, to find the EBCS under the semi-external model. Extensive experiments, conducted on four real temporal networks, demonstrate the efficiency and effectiveness of our proposed algorithms. For example, on the DBLP dataset, I/O-LS and LS-EBCS have comparable running time, while the maximum memory usage of I/O-LS is only 6.5 MB, which is much smaller than that of LS-EBCS taking 308.7 MB. The online version contains supplementary material available at 10.1007/s11390-022-2367-3.
Audience Academic
Author Li, Yuan
Fan, Xiao-Lin
Dai, Jie
Zhao, Yu-Hai
Wang, Guo-Ren
AuthorAffiliation School of Information Science and Technology,North China University of Technology,Beijing 100144,China%School of Information Science and Technology,North China University of Technology,Beijing 100144,China;School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer,Beijing Institute of Technology,Beijing 100081,China
AuthorAffiliation_xml – name: School of Information Science and Technology,North China University of Technology,Beijing 100144,China%School of Information Science and Technology,North China University of Technology,Beijing 100144,China;School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer,Beijing Institute of Technology,Beijing 100081,China
Author_xml – sequence: 1
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: School of Information Science and Technology, North China University of Technology
– sequence: 2
  givenname: Jie
  surname: Dai
  fullname: Dai, Jie
  organization: School of Information Science and Technology, North China University of Technology, School of Computer Science and Engineering, Northeastern University
– sequence: 3
  givenname: Xiao-Lin
  surname: Fan
  fullname: Fan, Xiao-Lin
  organization: School of Information Science and Technology, North China University of Technology
– sequence: 4
  givenname: Yu-Hai
  surname: Zhao
  fullname: Zhao, Yu-Hai
  email: zhaoyuhai@mail.neu.edu.cn
  organization: School of Computer Science and Engineering, Northeastern University
– sequence: 5
  givenname: Guo-Ren
  surname: Wang
  fullname: Wang, Guo-Ren
  organization: School of Computer, Beijing Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36594008$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_wA9igSGxYNO117MTJBqkMA1QqdEG7thzPdcbTjD3YybTz7-swfdAKkCU7sr9zcn1895Md6ywmyVsCRwSAHwdCaA0Z5HmW05Jn9EWyR6oSMsZZvRO_ASCr47Sb7IewAKAcGHuV7NKyqBlAtZdcnh6fp1OtjTJo-3QqfbdJPw0-9Ma26cTNMZg1pj-HpvVyNU8_m6DcGv0mNTb9LsPv0wtcrpyXXfoD-2vnr8Lr5KWWXcA3d-tBcvllejH5lp2dfz2dnJxlquCszxqSAxZaglaqoWXdIGmAVprNGkkoQiHrgvOmUkQR0pSzyGpkoDWpCqpmjB4kH7e-q6FZ4kzFK8QyxMqbpfQb4aQRT0-smYvWrUXNa15VZTQ43BpcS6ulbcXCDd7GksUiLK5uFuGmEZjHgKEEGPEPd__z7teAoRfLmAd2nbTohiByXkLBalaSiL5_hj5Y53Wsv4oJVI9UKzsUxmoXy1SjqTjhlLEq50AjdfQXKo4ZLo2KPaFN3H8iePdnLg-B3L97BPgWUN6F4FELZXrZGzfGZDpBQIwdJrYdJmIAYuwwMVqTZ8p78_9p8q0mRNa26B-z-LfoFqlu4YE
CitedBy_id crossref_primary_10_1016_j_eswa_2025_128234
crossref_primary_10_1016_j_imu_2023_101371
Cites_doi 10.1109/ICDE.2019.00104
10.1007/s00778-014-0372-z
10.1007/s00778-020-00649-y
10.1016/j.ins.2017.07.012
10.1109/ICDE.2011.5767911
10.1109/ICDE.2018.00077
10.1109/TKDE.2020.3040762
10.1109/TBDATA.2021.3058294
10.1016/j.physrep.2012.03.001
10.1109/ICDM.2008.104
10.1109/TKDE.2020.3028025
10.1007/s10618-018-0602-x
10.1109/SWC50871.2021.00044
10.14778/2735479.2735484
10.1109/TBDATA.2020.2974849
10.11897/SP.J.1016.2020.01721
10.1007/s11280-021-00917-z
10.1145/2983323.2983836
10.1007/s11280-019-00725-6
10.1007/s00778-017-0467-4
10.1109/TBDATA.2019.2908384
10.1109/ICDE.2016.7498235
10.1007/978-3-319-63254-4_24
10.1007/3-540-36574-5_3
10.1145/3340531.3412091
10.1007/s00778-016-0451-4
10.1007/s10618-015-0422-1
10.14778/3358701.3358704
10.1145/2160601.2160616
10.14778/3213880.3213881
10.1016/j.chaos.2020.110057
10.1145/2588555.2612179
ContentType Journal Article
Copyright Institute of Computing Technology, Chinese Academy of Sciences 2022
Institute of Computing Technology, Chinese Academy of Sciences 2022.
COPYRIGHT 2022 Springer
Copyright Springer Nature B.V. Dec 2022
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Institute of Computing Technology, Chinese Academy of Sciences 2022
– notice: Institute of Computing Technology, Chinese Academy of Sciences 2022.
– notice: COPYRIGHT 2022 Springer
– notice: Copyright Springer Nature B.V. Dec 2022
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
2B.
4A8
92I
93N
PSX
TCJ
5PM
DOI 10.1007/s11390-022-2367-3
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
ABI/INFORM Global (Corporate)

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1860-4749
EndPage 1355
ExternalDocumentID PMC9797886
jsjkxjsxb_e202206006
A734482703
36594008
10_1007_s11390_022_2367_3
Genre Journal Article
GroupedDBID -SI
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
5XA
5XJ
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CAJEI
CCEZO
CCPQU
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
ICD
IHE
IJ-
IKXTQ
IVC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q--
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
~EX
AAYXX
ABFSG
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
TGMPQ
-4Z
-59
-5G
-BR
-EM
2B.
2C0
3V.
92R
93N
AAAVM
AAXDM
ADINQ
GQ6
GROUPED_ABI_INFORM_COMPLETE
M0N
NPM
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
4A8
PMFND
PSX
5PM
ID FETCH-LOGICAL-c574t-b120e5fa0fccb369be1b038f4dba13e05a9577b8c1c11b6de5ffe40ff1853cd43
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000925218500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1000-9000
IngestDate Tue Nov 04 02:07:01 EST 2025
Thu May 29 04:00:16 EDT 2025
Thu Oct 02 10:57:50 EDT 2025
Wed Nov 05 02:13:05 EST 2025
Sat Nov 29 14:18:49 EST 2025
Sat Nov 29 10:27:43 EST 2025
Wed Feb 19 02:24:40 EST 2025
Sat Nov 29 08:02:17 EST 2025
Tue Nov 18 22:32:21 EST 2025
Thu Apr 10 07:55:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords early bursting cohesive subgraph (EBCS)
I/O efficient algorithm
temporal network
semi-external model
early bursting cohesive subgraph(EBCS)
Language English
License Institute of Computing Technology, Chinese Academy of Sciences 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-b120e5fa0fccb369be1b038f4dba13e05a9577b8c1c11b6de5ffe40ff1853cd43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9797886
PMID 36594008
PQID 2918585748
PQPubID 326258
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9797886
wanfang_journals_jsjkxjsxb_e202206006
proquest_miscellaneous_2760549461
proquest_journals_2918585748
gale_infotracmisc_A734482703
gale_infotracacademiconefile_A734482703
pubmed_primary_36594008
crossref_citationtrail_10_1007_s11390_022_2367_3
crossref_primary_10_1007_s11390_022_2367_3
springer_journals_10_1007_s11390_022_2367_3
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: China
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate J Comput Sci Technol
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2022
Publisher Springer Nature Singapore
Springer
Springer Nature B.V
School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer,Beijing Institute of Technology,Beijing 100081,China
School of Information Science and Technology,North China University of Technology,Beijing 100144,China%School of Information Science and Technology,North China University of Technology,Beijing 100144,China
Publisher_xml – name: Springer Nature Singapore
– name: Springer
– name: Springer Nature B.V
– name: School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China%School of Computer,Beijing Institute of Technology,Beijing 100081,China
– name: School of Information Science and Technology,North China University of Technology,Beijing 100144,China%School of Information Science and Technology,North China University of Technology,Beijing 100144,China
References L Chu (2367_CR10) 2019; 12
P Sun (2367_CR27) 2020; 6
Y Jiang (2367_CR31) 2021; 30
H Qin (2367_CR4) 2022; 8
Y Li (2367_CR6) 2021; 24
2367_CR19
2367_CR16
Z Zhang (2367_CR30) 2015; 24
2367_CR15
Y Li (2367_CR33) 2020; 43
2367_CR13
2367_CR12
2367_CR11
2367_CR2
2367_CR5
K Semertzidis (2367_CR3) 2019; 33
N Barbieri (2367_CR14) 2015; 29
2367_CR7
2367_CR9
2367_CR8
L Yuan (2367_CR29) 2017; 26
P Holme (2367_CR1) 2012; 519
L Sun (2367_CR22) 2022; 34
2367_CR28
RH Li (2367_CR17) 2015; 8
Z Zheng (2367_CR21) 2017; 417
2367_CR26
2367_CR25
2367_CR23
R Li (2367_CR18) 2017; 26
Y Li (2367_CR32) 2020; 23
F Bi (2367_CR20) 2018; 11
H Qin (2367_CR24) 2022; 34
References_xml – ident: 2367_CR7
  doi: 10.1109/ICDE.2019.00104
– volume: 24
  start-page: 245
  issue: 2
  year: 2015
  ident: 2367_CR30
  publication-title: VLDB J.
  doi: 10.1007/s00778-014-0372-z
– volume: 30
  start-page: 713
  issue: 5
  year: 2021
  ident: 2367_CR31
  publication-title: VLDB J.
  doi: 10.1007/s00778-020-00649-y
– volume: 417
  start-page: 344
  year: 2017
  ident: 2367_CR21
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.012
– ident: 2367_CR26
  doi: 10.1109/ICDE.2011.5767911
– ident: 2367_CR2
  doi: 10.1109/ICDE.2018.00077
– volume: 34
  start-page: 4313
  issue: 9
  year: 2022
  ident: 2367_CR22
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3040762
– ident: 2367_CR5
  doi: 10.1109/TBDATA.2021.3058294
– volume: 519
  start-page: 97
  issue: 3
  year: 2012
  ident: 2367_CR1
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2012.03.001
– ident: 2367_CR23
  doi: 10.1109/ICDM.2008.104
– volume: 34
  start-page: 3927
  issue: 8
  year: 2022
  ident: 2367_CR24
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3028025
– volume: 33
  start-page: 1417
  issue: 5
  year: 2019
  ident: 2367_CR3
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-018-0602-x
– ident: 2367_CR16
  doi: 10.1109/SWC50871.2021.00044
– volume: 8
  start-page: 509
  issue: 5
  year: 2015
  ident: 2367_CR17
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2735479.2735484
– volume: 8
  start-page: 671
  issue: 3
  year: 2022
  ident: 2367_CR4
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2020.2974849
– volume: 43
  start-page: 1721
  issue: 9
  year: 2020
  ident: 2367_CR33
  publication-title: Chinese Journal of Computers
  doi: 10.11897/SP.J.1016.2020.01721
– volume: 24
  start-page: 1483
  issue: 5
  year: 2021
  ident: 2367_CR6
  publication-title: World Wide Web
  doi: 10.1007/s11280-021-00917-z
– ident: 2367_CR19
  doi: 10.1145/2983323.2983836
– volume: 23
  start-page: 799
  issue: 2
  year: 2020
  ident: 2367_CR32
  publication-title: World Wide Web
  doi: 10.1007/s11280-019-00725-6
– ident: 2367_CR9
– volume: 26
  start-page: 751
  issue: 6
  year: 2017
  ident: 2367_CR18
  publication-title: VLDB J.
  doi: 10.1007/s00778-017-0467-4
– volume: 6
  start-page: 816
  issue: 4
  year: 2020
  ident: 2367_CR27
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2019.2908384
– ident: 2367_CR28
  doi: 10.1109/ICDE.2016.7498235
– ident: 2367_CR11
  doi: 10.1007/978-3-319-63254-4_24
– ident: 2367_CR25
  doi: 10.1007/3-540-36574-5_3
– ident: 2367_CR8
  doi: 10.1145/3340531.3412091
– volume: 26
  start-page: 275
  issue: 2
  year: 2017
  ident: 2367_CR29
  publication-title: VLDB J.
  doi: 10.1007/s00778-016-0451-4
– volume: 29
  start-page: 1406
  issue: 5
  year: 2015
  ident: 2367_CR14
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-015-0422-1
– volume: 12
  start-page: 2353
  issue: 13
  year: 2019
  ident: 2367_CR10
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3358701.3358704
– ident: 2367_CR12
  doi: 10.1145/2160601.2160616
– volume: 11
  start-page: 1056
  issue: 9
  year: 2018
  ident: 2367_CR20
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3213880.3213881
– ident: 2367_CR13
  doi: 10.1016/j.chaos.2020.110057
– ident: 2367_CR15
  doi: 10.1145/2588555.2612179
SSID ssj0037044
Score 2.2944536
Snippet Temporal networks are an effective way to encode temporal information into graph data losslessly. Finding the bursting cohesive subgraph (BCS), which...
Temporal networks are an effective way to encode temporal information into graph data losslessly.Finding the bursting cohesive subgraph(BCS),which accumulates...
SourceID pubmedcentral
wanfang
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1337
SubjectTerms Algorithms
Analysis
Artificial Intelligence
Bursting
Cohesion
Computer Science
Data Structures and Information Theory
Epidemics
Football (College)
Graph theory
Information Systems Applications (incl.Internet)
Networks
Regular Paper
Roads & highways
Run time (computers)
Search algorithms
Software Engineering
Theory of Computation
Traffic congestion
SummonAdditionalLinks – databaseName: Engineering Database
  dbid: M7S
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcODS8u5CQUYCIYGs2rETxydUoBUcWJBopd6s-BHYpcqWZheVf4_HcbJND3vh7HE0yYzHE_ubbxB6WXLrCiEpEcZ5IqRzpMqlIqYCci_LauNEbDYhp9Py9FR9SwdubYJV9jExBmq3sHBGvp8pBldYUpTvzn8T6BoFt6uphcZNdAtYEliE7n3vIzGXNDZzhSNsAs0x-1vNWDoXUh9KAMsOHGaEj_al69H5yvZ0HTo53J_Gqp-mrpofVzaoo53_fbW7aDulpvig86V76IZv7qOdvu0DTlHgATr5vP8VH0bqiaAejhTJ-P0qpJFBQwz1HgCJxyEkRTZs_HHWWgCK_sWzBn8JyTqMHneUWGd42uHQ24fo5Ojw-MMnkrozEBtUXRLDMurzuqK1tYYXynhmKC9r4UzFuKd5pXIpTWmZZcwULsjWXtC6hgzBOsEfoa1m0fhdhKUJOwatuJEhO6uZM5mqijLzPLM-_J6pCaK9bbRN1OXQQeNMr0mXwZw6mFODOTWfoDfDlPOOt2OT8GswuIY1HZ5rq1SaELQDdix9ILkAulQaJPdGkmEt2vFwb2GdYkGr1-adoBfDMMwEfFvjF6sgI8NvpVCiYBP0uPOwQW1e5NC9PsyWI98bBIAhfDzSzH5GpnAllSzLYoLe9l66VmvD13iVHHktPG_nvy7n7aXRPoPa7JAmF082v-xTdAdEO-jPHtpaXqz8M3Tb_lnO2ovncaH-A2YAQ-Q
  priority: 102
  providerName: ProQuest
Title I/O Efficient Early Bursting Cohesive Subgraph Discovery in Massive Temporal Networks
URI https://link.springer.com/article/10.1007/s11390-022-2367-3
https://www.ncbi.nlm.nih.gov/pubmed/36594008
https://www.proquest.com/docview/2918585748
https://www.proquest.com/docview/2760549461
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e202206006
https://pubmed.ncbi.nlm.nih.gov/PMC9797886
Volume 37
WOSCitedRecordID wos000925218500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 7WY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M0C
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYxgMvjG8KozISCAlkYcdO7DxuoxMIrVT7gLKXKHYcaJkytLRo_Pfc5avLhCbBi6XIZ8ex73zn-O53hLww0mWR0pwpm3mmdJaxNNQxsymCezmR20xVySb0eGym03jSxHGXrbd7eyVZ7dSrYDcwVjhD73NEHWNyjWyAtjOYr-Hg8HO7_UrNqwyu-N-aYUbM9irzb130lNHVLfmSTrrqL9ldmlahPkWeFt8uaaW9zf_6njvkdmOE0u2aa-6SG764RzbbBA-0kff75PjD2090VIFMwJhoBYZMd5ZgMMKLKEZ2oPM7hc2nwr2m72alQ5fQ33RW0H0wy7H2qAa_OqXj2uO8fECO90ZHu-9Zk4eBuVCrBbMi4D7MU547Z2UUWy8slyZXmU2F9DxM41Bra5xwQtgoA9rcK57naAu4TMmHZL04K_xjQrUF3cBTaTXYYbnIbBCnkQm8DJyHg1g8ILxdkMQ1IOWYK-M0WcEr47QlMG0JTlsiB-R11-RnjdBxHfErXOUEpRf6dWkThACjQxysZFtLhcCoHCi3epQgda5f3fJJ0kh9mQSxwGtWrcyAPO-qsSV6shX-bAk0Gg6QKlaRGJBHNVt1w5ZRiHnqobXuMVxHgFjg_Zpi9r3CBI91rI2JBuRNy2yrYV0zGy8b7l0Rz8v5j4t5eWETH2AUNhjE0ZN_6vUpuYUta5-fLbK-OF_6Z-Sm-7WYledDsqa_fMVyaoZkY2c0nhzA00fNoNznu1jqQygn4cmwEuw_yRxAPg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQYIL5d1AASNRIYGsOrE3jg8IFdqqq20XDlupNxM7Dt2lypZmF9o_xW9kJo_dbg9764Gzx5HjfDPjiWe-IeRtIlwWS8WZtJlnUmUZSztKM5siuZcLc5vJqtmE6veT42P9bYX8bWthMK2ytYmVoc7GDv-Rb0U6xCssJZNPZ78Ydo3C29W2hUYNi56__AMhW_mxuwPfdzOK9nYHX_ZZ01WAOZg9YTaMuO_kKc-dsyLW1oeWiySXmU1D4Xkn1R2lbOJCF4Y2zkA295LnOXo2l0kBz71FbkuRKNSrnmKt5ReKV81j8Zc5w2ac7S1qVaoHRy3OMHceOdOYWPCD173BFXd4PVVzdl9bVRkVeVr8uOIQ99b-t618QO43R2-6XevKQ7Lii0dkrW1rQRsr95gcdbe-0t2KWgO2g1YU0PTzFI7JsCMU61kw5Z-Cya3YvunOsHSYCHtJhwU9hGAERwc15dcp7dd59uUTcnQjL_eUrBbjwq8Tqix4RJ4Kq-D0mYeZjXQaJ5EXkfMQfuqA8BYLxjXU7Ngh5NTMSaURPgbgYxA-RgTk_WzKWc1Lskz4HQLMoM2C57q0Kb2A1SH7l9lWQiIdLAfJjQVJsDVucbhFlGlsXWnmcArIm9kwzsT8vcKPpyCjIGyWWsZhQJ7ViJ4tW8QdDZ4EZqsFrM8EkAF9caQYnlRM6FpplSRxQD60WjFf1pLd2GwUZy48Kkc_L0blhTU-wtpzCAPi58tf9jW5uz84PDAH3X7vBbmH0-o0pw2yOjmf-pfkjvs9GZbnryojQcn3m1alf6C8o2A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9aRfpi_fa0agRFUMIlm-xm81htD4t6Fmylb2HzZe8s29K9k_rfm9mv6xYpiM-ZzGazk8lk85vfIPQq59ZlQlIijPNESOdIkUpFTAHkXpYF40RdbEJOp_nhodpr65xWHdq9u5JschqApalcjE9dGK8S32LgQgkg0YGBjPDr6IYAHD0c179971wxl7Su5gr_sAlUx-yuNf-mYrAxXXbPF_any9jJ_gK1TvspQ1H-uLBDTTb--93uoNttcIq3Gmu6i6758h7a6Ao_4NYP3EcHu-OveKcmn4h6cU2SjN8vYyAZH4oh4wNA8Tg6pZoPG2_PKgtQ0d94VuIvMVyH1v2GFOsYTxskevUAHUx29j98JG19BmJTKRbEsIT6NBQ0WGt4poxnhvI8CGcKxj1NC5VKaXLLLGMmc1E2eEFDgBjBOsEforXypPSPEZYm7hm04EbG-CwwZxJVZHnieWJ9PKCpEaLdx9G2JS-HGhrHekW7DNOm47RpmDbNR-ht3-W0Ye64SvgNfHENqzrqtUWbnBBHB_xYektyAYSpNEpuDiTjarTD5s5mdOsNKp0oBtevUuQj9LJvhp6AcCv9yTLKyHiwFEpkbIQeNSbWD5tnKdSvj73lwPh6AeAIH7aUs6OaK1xJJfM8G6F3neGthnXFbLxuLXklPK_mP8_n1bnRPoHs7BgoZ0_-SesLdGtve6I_704_PUXroKSBBW2itcXZ0j9DN-2vxaw6e16v4T_gB0TT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=I%2FO+Efficient+Early+Bursting+Cohesive+Subgraph+Discovery+in+Massive+Temporal+Networks&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Li%2C+Yuan&rft.au=Dai%2C+Jie&rft.au=Fan%2C+Xiao-Lin&rft.au=Zhao%2C+Yu-Hai&rft.date=2022-12-01&rft.pub=Springer+Nature+Singapore&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=37&rft.issue=6&rft.spage=1337&rft.epage=1355&rft_id=info:doi/10.1007%2Fs11390-022-2367-3&rft.externalDocID=PMC9797886
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg