Variability and reproducibility in deep learning for medical image segmentation

Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of clas...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; p. 13724
Main Authors: Renard, Félix, Guedria, Soulaimane, Palma, Noel De, Vuillerme, Nicolas
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 13.08.2020
Nature Publishing Group
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of classical segmentation in terms of accuracy. However, these techniques are complex and can have a high range of variability, calling the reproducibility of the results into question. In this article, through a literature review, we propose an original overview of the sources of variability to better understand the challenges and issues of reproducibility related to deep learning for medical image segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) an adequate description of the framework of deep learning, (2) a suitable analysis of the different sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the segmentation results.
AbstractList Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of classical segmentation in terms of accuracy. However, these techniques are complex and can have a high range of variability, calling the reproducibility of the results into question. In this article, through a literature review, we propose an original overview of the sources of variability to better understand the challenges and issues of reproducibility related to deep learning for medical image segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) an adequate description of the framework of deep learning, (2) a suitable analysis of the different sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the segmentation results.Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of classical segmentation in terms of accuracy. However, these techniques are complex and can have a high range of variability, calling the reproducibility of the results into question. In this article, through a literature review, we propose an original overview of the sources of variability to better understand the challenges and issues of reproducibility related to deep learning for medical image segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) an adequate description of the framework of deep learning, (2) a suitable analysis of the different sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the segmentation results.
Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of classical segmentation in terms of accuracy. However, these techniques are complex and can have a high range of variability, calling the reproducibility of the results into question. In this article, through a literature review, we propose an original overview of the sources of variability to better understand the challenges and issues of reproducibility related to deep learning for medical image segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) an adequate description of the framework of deep learning, (2) a suitable analysis of the different sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the segmentation results.
ArticleNumber 13724
Author Vuillerme, Nicolas
Guedria, Soulaimane
Renard, Félix
Palma, Noel De
Author_xml – sequence: 1
  givenname: Félix
  surname: Renard
  fullname: Renard, Félix
  email: felix.renard@univ-grenoble-alpes.fr
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, Univ. Grenoble Alpes, AGEIS
– sequence: 2
  givenname: Soulaimane
  surname: Guedria
  fullname: Guedria, Soulaimane
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, Univ. Grenoble Alpes, AGEIS
– sequence: 3
  givenname: Noel De
  surname: Palma
  fullname: Palma, Noel De
  organization: Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
– sequence: 4
  givenname: Nicolas
  surname: Vuillerme
  fullname: Vuillerme, Nicolas
  organization: Univ. Grenoble Alpes, AGEIS, Institut Universitaire de France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32792540$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02917117$$DView record in HAL
BookMark eNp9Uk1v1DAQtVARLaV_gAOKxIUeAv7-uCBVFaVIK_UCXK2J401dZe3FTir13-MlWyh7qA_2ePzem2d7XqOjmKJH6C3BHwlm-lPhRBjdYopbaUyd8Qt0QjEXLWWUHj2Jj9FZKXe4DkENJ-YVOmZUGSo4PkE3PyEH6MIYpocGYt9kv82pn13Y50Jseu-3zeghxxCHZp1ys_F9cDA2YQODb4ofNj5OMIUU36CXaxiLP9uvp-jH1Zfvl9ft6ubrt8uLVeuE4lMLILFWAos1MMFV14FUwmvW474HcKA1GEmAgJZYOglC0xqTjtWdcL5jp-jzorudu-rG1foZRrvN1VJ-sAmC_f8khls7pHurOJUcqypwvgjcHtCuL1Z2l8PUEEWIuicV-2FfLKdfsy-T3YTi_DhC9GkulnLGuWIM6wp9fwC9S3OO9Sl2KCarqpEV9e6p-7_1H_-lAvQCcDmVkv3aurA8cL1MGC3BdtcFdumC6hXbP11gd1R6QH1Uf5bEFlKp4Dj4_M_2M6zfAhXD3g
CitedBy_id crossref_primary_10_3390_healthcare10122481
crossref_primary_10_1007_s10278_024_01265_w
crossref_primary_10_1007_s10723_023_09697_4
crossref_primary_10_3390_epigenomes6040034
crossref_primary_10_1016_j_compbiomed_2024_108944
crossref_primary_10_1109_TIP_2021_3128329
crossref_primary_10_3390_rs13163173
crossref_primary_10_1055_s_0044_1800860
crossref_primary_10_3389_fneur_2021_625308
crossref_primary_10_3389_fnins_2021_740353
crossref_primary_10_1093_ejo_cjae029
crossref_primary_10_1109_TVCG_2024_3350076
crossref_primary_10_1016_j_cpet_2021_06_001
crossref_primary_10_1029_2022EA002379
crossref_primary_10_5194_se_15_493_2024
crossref_primary_10_1002_ana_26435
crossref_primary_10_1007_s10278_021_00494_7
crossref_primary_10_1016_j_cmpb_2023_107839
crossref_primary_10_3390_jmse10030391
crossref_primary_10_1016_j_media_2025_103638
crossref_primary_10_7759_cureus_27247
crossref_primary_10_1002_jum_16086
crossref_primary_10_1109_ACCESS_2021_3132293
crossref_primary_10_1148_radiol_2021212306
crossref_primary_10_1016_j_jdent_2022_104238
crossref_primary_10_3390_biology10111134
crossref_primary_10_3390_biomedicines12081878
crossref_primary_10_1016_j_compmedimag_2022_102109
crossref_primary_10_1186_s13104_022_06096_y
crossref_primary_10_3390_cancers14102372
crossref_primary_10_1038_s41598_024_56309_6
crossref_primary_10_1016_j_bspc_2025_107925
crossref_primary_10_1186_s41205_022_00145_9
crossref_primary_10_1148_rg_230180
crossref_primary_10_1088_1361_6560_ac6d9c
crossref_primary_10_1002_stvr_1910
crossref_primary_10_3390_diagnostics13040747
crossref_primary_10_1002_jmri_29710
crossref_primary_10_1097_JS9_0000000000000595
crossref_primary_10_3390_diagnostics15020118
crossref_primary_10_1038_s41598_022_12486_w
crossref_primary_10_1016_j_mcpdig_2023_08_007
crossref_primary_10_1136_bmjopen_2021_059000
crossref_primary_10_1155_2022_9984873
crossref_primary_10_7717_peerj_cs_806
crossref_primary_10_1371_journal_pone_0267976
crossref_primary_10_1007_s12559_023_10174_z
crossref_primary_10_3390_diagnostics13172813
crossref_primary_10_1007_s42044_025_00321_0
crossref_primary_10_1016_j_compbiomed_2025_110032
crossref_primary_10_1016_j_bioactmat_2024_11_021
crossref_primary_10_1016_j_compmedimag_2022_102167
crossref_primary_10_1007_s42979_024_03047_1
crossref_primary_10_1016_j_engappai_2023_106638
crossref_primary_10_3389_fnins_2021_714318
crossref_primary_10_3390_bioengineering9020081
crossref_primary_10_3390_diagnostics13101684
crossref_primary_10_3390_s22030876
crossref_primary_10_1016_j_media_2024_103278
crossref_primary_10_1117_1_JMI_11_2_024003
crossref_primary_10_1002_jbio_202300274
crossref_primary_10_1186_s12880_023_00974_y
crossref_primary_10_1016_j_cmpb_2022_106650
crossref_primary_10_12677_acm_2025_1551577
crossref_primary_10_1016_j_diii_2023_08_001
crossref_primary_10_3390_diagnostics11040616
crossref_primary_10_1016_j_bpr_2025_100201
crossref_primary_10_1016_j_media_2024_103141
crossref_primary_10_1016_j_radonc_2022_11_004
crossref_primary_10_1109_ACCESS_2022_3159923
crossref_primary_10_1016_j_patcog_2022_108656
crossref_primary_10_1109_ACCESS_2023_3311134
crossref_primary_10_1016_j_compmedimag_2024_102434
crossref_primary_10_1111_1754_9485_13668
crossref_primary_10_1038_s44303_025_00076_0
crossref_primary_10_3390_info14060333
crossref_primary_10_1038_s41598_023_49613_0
crossref_primary_10_1088_1361_6560_ad1f86
crossref_primary_10_1111_jcpe_13774
crossref_primary_10_1016_j_cviu_2021_103248
crossref_primary_10_32604_cmc_2021_015399
crossref_primary_10_1016_j_procs_2023_01_082
crossref_primary_10_1186_s12880_021_00644_x
crossref_primary_10_3389_fbioe_2021_696227
crossref_primary_10_1002_mrm_29184
crossref_primary_10_3389_fneur_2025_1532398
crossref_primary_10_1016_j_acra_2024_06_015
crossref_primary_10_1007_s11307_022_01775_5
crossref_primary_10_3390_rs14225760
crossref_primary_10_1016_j_media_2023_102863
crossref_primary_10_1371_journal_pcbi_1011815
crossref_primary_10_1515_psr_2022_0121
crossref_primary_10_3389_fnins_2022_768634
crossref_primary_10_3390_diagnostics15080984
crossref_primary_10_1038_s41598_023_40516_8
crossref_primary_10_1017_dce_2022_18
crossref_primary_10_3390_life13010124
crossref_primary_10_1007_s10462_022_10152_1
crossref_primary_10_1007_s42421_025_00118_4
crossref_primary_10_1016_j_asoc_2025_113692
crossref_primary_10_1016_j_patcog_2022_108956
crossref_primary_10_1093_nsr_nwae109
crossref_primary_10_3390_mi13101701
crossref_primary_10_2217_3dp_2021_0007
crossref_primary_10_3390_healthcare10020343
crossref_primary_10_3389_fnins_2024_1509358
crossref_primary_10_3390_diagnostics15081041
crossref_primary_10_1002_jor_25509
crossref_primary_10_1109_TGRS_2024_3446950
crossref_primary_10_1016_j_identj_2025_100883
crossref_primary_10_1109_JBHI_2022_3192277
crossref_primary_10_1007_s10278_025_01458_x
crossref_primary_10_1007_s00384_025_04809_w
Cites_doi 10.1016/j.compmedimag.2005.12.001
10.1038/srep20280
10.1186/s40537-019-0197-0
10.1038/s41746-019-0079-z
10.1016/j.media.2016.05.004
10.1109/TMI.2014.2377694
10.1109/TMI.2016.2535222
10.1016/S0896-6273(02)00569-X
10.1016/j.media.2016.10.004
10.1109/TMI.2016.2548501
10.1109/TMI.2016.2528821
10.1118/1.4810971
10.1006/jmps.1999.1279
10.1016/j.array.2019.100004
10.1038/nm.3390
10.1016/j.media.2017.07.005
10.1016/j.cviu.2017.04.002
10.1016/j.media.2004.12.004
10.1016/j.jneumeth.2016.10.007
10.1038/s41598-017-05728-9
10.1080/21681163.2016.1182072
10.1016/j.neuroimage.2014.12.061
10.1109/JSTSP.2008.2011119
10.1038/533452a
10.1016/j.zemedi.2018.11.002
10.1038/s41598-017-01779-0
10.1038/nature14539
10.1109/TMI.2007.908121
10.1109/TMI.2016.2538465
10.1016/j.neuroimage.2016.01.024
10.1038/s41598-017-05300-5
10.1186/s12880-015-0068-x
10.1037/0033-2909.86.2.420
10.25080/Majora-8b375195-003
10.1145/2647868.2654889
10.1007/978-3-642-35289-8_3
10.1109/ICDMAI.2017.8073516
10.1109/CVPR.2015.7298965
10.1109/ISBI.2016.7493261
10.1155/2016/8356294
10.1007/978-3-030-23987-9_10
10.1007/978-3-319-46976-8_7
10.1109/TPAMI.2021.3059968
10.1145/2733373.2807412
10.1109/ISBI.2016.7493515
10.1007/978-3-319-10470-6_39
10.1007/978-3-319-24574-4_28
10.1109/CVPRW.2015.7301312
10.1007/978-3-319-46723-8_54
10.5281/zenodo.27878
10.1007/978-3-319-46976-8_15
10.1109/CVPR.2018.00907
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOI 10.1038/s41598-020-69920-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
ExternalDocumentID PMC7426407
oai:HAL:hal-02917117v1
32792540
10_1038_s41598_020_69920_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Studio Virtuel EU FEDER AURA
– fundername: Hydda FSN
– fundername: LSI Carnot Institute
– fundername: French National Research Agency
  grantid: ANR-10-AIRT-05
– fundername: ;
– fundername: ;
  grantid: ANR-10-AIRT-05
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
1XC
EJD
IPNFZ
RIG
VOOES
5PM
ID FETCH-LOGICAL-c574t-aa6087505fa3547bba675e83d0ddaaca88a961a1a8606c6a5821a81b306c5ceb3
IEDL.DBID M2P
ISICitedReferencesCount 135
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000563547400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Nov 04 01:54:59 EST 2025
Sat Nov 22 06:20:41 EST 2025
Thu Oct 02 10:40:38 EDT 2025
Mon Oct 06 17:30:10 EDT 2025
Thu Jan 02 22:46:39 EST 2025
Sat Nov 29 04:02:18 EST 2025
Tue Nov 18 22:32:21 EST 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-aa6087505fa3547bba675e83d0ddaaca88a961a1a8606c6a5821a81b306c5ceb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC7426407
ORCID 0000-0003-3773-393X
0000-0002-0045-3611
0000-0003-4638-7266
OpenAccessLink https://www.proquest.com/docview/2433602996?pq-origsite=%requestingapplication%
PMID 32792540
PQID 2433602996
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7426407
hal_primary_oai_HAL_hal_02917117v1
proquest_miscellaneous_2434473308
proquest_journals_2433602996
pubmed_primary_32792540
crossref_citationtrail_10_1038_s41598_020_69920_0
crossref_primary_10_1038_s41598_020_69920_0
springer_journals_10_1038_s41598_020_69920_0
PublicationCentury 2000
PublicationDate 2020-08-13
PublicationDateYYYYMMDD 2020-08-13
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References (CR20) 2019
CR39
Bao, Chung (CR70) 2018; 6
CR38
CR37
CR36
Milletari (CR57) 2017; 164
Fisher (CR24) 2006
CR35
Shorten, Khoshgoftaar (CR27) 2019; 6
CR34
CR33
CR77
CR32
CR31
CR75
CR30
CR73
CR71
Shrout, Fleiss (CR23) 1979; 86
Zhou, Ruan, Canu (CR45) 2019; 3
Kleesiek (CR72) 2016; 129
CR49
CR44
CR43
Brosch (CR52) 2016; 35
CR41
Lundervold, Lundervold (CR46) 2019; 29
CR40
Chen, Xu, Yang, Egger (CR12) 2016; 6
Gulli, Pal (CR63) 2017
Kamnitsas (CR47) 2017; 36
Taha, Hanbury (CR19) 2015; 15
Browne (CR25) 2000; 44
Silveira (CR5) 2009; 3
Baker (CR21) 2016; 533
Pereira, Pinto, Alves, Silva (CR48) 2016; 35
Zhang (CR65) 2015; 108
Fortunati (CR11) 2013; 40
LeCun, Bengio, Hinton (CR14) 2015; 521
Mezer (CR3) 2013; 19
CR18
CR17
Sharma (CR4) 2017; 7
CR16
Sharma, Aggarwal (CR2) 2010; 35
Trebeschi (CR8) 2017; 7
CR59
CR53
Goodfellow, Bengio, Courville (CR13) 2016
CR51
CR50
Chrástek (CR6) 2005; 9
Ben-Nun, Hoefler (CR42) 2019; 52
Withey, Koles (CR1) 2008; 10
Moeskops (CR56) 2016; 35
Tu (CR10) 2008; 27
Litjens (CR15) 2017; 42
Stupple, Singerman, Celi (CR22) 2019; 2
Fischl (CR9) 2002; 33
CR29
CR28
Piater, Cohen, Zhang, Atighetchi (CR74) 1998; 98
CR69
Ghafoorian (CR7) 2017; 7
CR67
CR66
CR64
Havaei (CR55) 2017; 35
Udupa (CR26) 2006; 30
CR62
CR61
CR60
Demšar (CR76) 2006; 7
Choi, Jin (CR68) 2016; 274
Mansoor (CR58) 2016; 35
Menze (CR54) 2014; 34
69920_CR53
JH Piater (69920_CR74) 1998; 98
MW Browne (69920_CR25) 2000; 44
K Sharma (69920_CR4) 2017; 7
W Zhang (69920_CR65) 2015; 108
G Litjens (69920_CR15) 2017; 42
69920_CR59
Y LeCun (69920_CR14) 2015; 521
69920_CR16
T Brosch (69920_CR52) 2016; 35
H Choi (69920_CR68) 2016; 274
69920_CR50
69920_CR51
A Gulli (69920_CR63) 2017
DJ Withey (69920_CR1) 2008; 10
P Moeskops (69920_CR56) 2016; 35
X Chen (69920_CR12) 2016; 6
T Ben-Nun (69920_CR42) 2019; 52
V Fortunati (69920_CR11) 2013; 40
69920_CR64
69920_CR66
AA Taha (69920_CR19) 2015; 15
S Pereira (69920_CR48) 2016; 35
69920_CR67
M Ghafoorian (69920_CR7) 2017; 7
M Silveira (69920_CR5) 2009; 3
69920_CR69
N Sharma (69920_CR2) 2010; 35
69920_CR60
69920_CR61
JK Udupa (69920_CR26) 2006; 30
69920_CR62
I Goodfellow (69920_CR13) 2016
R Chrástek (69920_CR6) 2005; 9
J Demšar (69920_CR76) 2006; 7
69920_CR17
C Shorten (69920_CR27) 2019; 6
K Kamnitsas (69920_CR47) 2017; 36
69920_CR18
A Stupple (69920_CR22) 2019; 2
BH Menze (69920_CR54) 2014; 34
69920_CR31
69920_CR75
69920_CR32
69920_CR33
69920_CR77
69920_CR34
69920_CR35
69920_CR36
69920_CR37
69920_CR38
M Havaei (69920_CR55) 2017; 35
69920_CR71
PE Shrout (69920_CR23) 1979; 86
69920_CR73
69920_CR30
A Mansoor (69920_CR58) 2016; 35
S Trebeschi (69920_CR8) 2017; 7
AS Lundervold (69920_CR46) 2019; 29
A Mezer (69920_CR3) 2013; 19
69920_CR28
69920_CR29
Z Tu (69920_CR10) 2008; 27
69920_CR43
69920_CR44
69920_CR49
F Milletari (69920_CR57) 2017; 164
M Baker (69920_CR21) 2016; 533
B Fischl (69920_CR9) 2002; 33
69920_CR40
69920_CR41
RA Fisher (69920_CR24) 2006
S Bao (69920_CR70) 2018; 6
T Zhou (69920_CR45) 2019; 3
69920_CR39
National Academies of Sciences, Engineering, and Medicine (69920_CR20) 2019
J Kleesiek (69920_CR72) 2016; 129
References_xml – volume: 30
  start-page: 75
  year: 2006
  end-page: 87
  ident: CR26
  article-title: A framework for evaluating image segmentation algorithms
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.12.001
– ident: CR49
– volume: 6
  start-page: 20280
  year: 2016
  ident: CR12
  article-title: A semi-automatic computer-aided method for surgical template design
  publication-title: Sci. Rep.
  doi: 10.1038/srep20280
– volume: 6
  start-page: 60
  year: 2019
  ident: CR27
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: CR39
– ident: CR16
– ident: CR51
– volume: 2
  start-page: 2
  year: 2019
  ident: CR22
  article-title: The reproducibility crisis in the age of digital medicine
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0079-z
– ident: CR35
– ident: CR29
– ident: CR61
– ident: CR77
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR55
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– year: 2016
  ident: CR13
  publication-title: Deep Learning
– year: 2017
  ident: CR63
  publication-title: Deep Learning with Keras
– ident: CR71
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: CR76
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: CR54
  article-title: The multimodal brain tumor image segmentation benchmark (brats)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– ident: CR67
– ident: CR75
– volume: 52
  start-page: 65
  year: 2019
  ident: CR42
  article-title: Demystifying parallel and distributed deep learning: an in-depth concurrency analysis
  publication-title: ACM Comput. Surv. (CSUR)
– ident: CR50
– volume: 35
  start-page: 1856
  year: 2016
  end-page: 1865
  ident: CR58
  article-title: Deep learning guided partitioned shape model for anterior visual pathway segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535222
– ident: CR32
– ident: CR60
– ident: CR36
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  ident: CR9
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– ident: CR64
– volume: 36
  start-page: 61
  year: 2017
  end-page: 78
  ident: CR47
  article-title: Efficient multi-scale 3d CNN with fully connected crf for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: CR56
  article-title: Automatic segmentation of mr brain images with a convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 10
  start-page: 125
  year: 2008
  end-page: 148
  ident: CR1
  article-title: A review of medical image segmentation: methods and available software
  publication-title: Int. J. Bioelectromagn.
– ident: CR18
– ident: CR43
– volume: 35
  start-page: 1229
  year: 2016
  end-page: 1239
  ident: CR52
  article-title: Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528821
– ident: CR66
– volume: 40
  start-page: 071905
  year: 2013
  ident: CR11
  article-title: Tissue segmentation of head and neck ct images for treatment planning: a multiatlas approach combined with intensity modeling
  publication-title: Med. Phys.
  doi: 10.1118/1.4810971
– volume: 44
  start-page: 108
  year: 2000
  end-page: 132
  ident: CR25
  article-title: Cross-validation methods
  publication-title: J. Math. Psychol.
  doi: 10.1006/jmps.1999.1279
– volume: 3
  start-page: 100004
  year: 2019
  ident: CR45
  article-title: A review: deep learning for medical image segmentation using multi-modality fusion
  publication-title: Array
  doi: 10.1016/j.array.2019.100004
– volume: 19
  start-page: 1667
  year: 2013
  ident: CR3
  article-title: Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging
  publication-title: Nat. Med.
  doi: 10.1038/nm.3390
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR15
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: CR37
– ident: CR53
– volume: 164
  start-page: 92
  year: 2017
  end-page: 102
  ident: CR57
  article-title: Hough-cnn: deep learning for segmentation of deep brain regions in MRI and ultrasound
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.04.002
– volume: 9
  start-page: 297
  year: 2005
  end-page: 314
  ident: CR6
  article-title: Automated segmentation of the optic nerve head for diagnosis of glaucoma
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.12.004
– ident: CR30
– year: 2006
  ident: CR24
  publication-title: Statistical Methods for Research Workers
– volume: 274
  start-page: 146
  year: 2016
  end-page: 153
  ident: CR68
  article-title: Fast and robust segmentation of the striatum using deep convolutional neural networks
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.10.007
– volume: 7
  start-page: 5301
  year: 2017
  ident: CR8
  article-title: Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric mr
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05728-9
– ident: CR33
– year: 2019
  ident: CR20
  publication-title: Reproducibility and Replicability in Science
– volume: 6
  start-page: 113
  year: 2018
  end-page: 117
  ident: CR70
  article-title: Multi-scale structured cnn with label consistency for brain MR image segmentation
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2016.1182072
– volume: 98
  start-page: 430
  year: 1998
  end-page: 438
  ident: CR74
  article-title: A randomized anova procedure for comparing performance curves
  publication-title: ICML
– volume: 108
  start-page: 214
  year: 2015
  end-page: 224
  ident: CR65
  article-title: Deep convolutional neural networks for multi-modality isointense infant brain image segmentation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: CR40
– volume: 3
  start-page: 35
  year: 2009
  end-page: 45
  ident: CR5
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2011119
– volume: 533
  start-page: 452
  year: 2016
  ident: CR21
  article-title: 1,500 scientists lift the lid on reproducibility
  publication-title: Nat. News
  doi: 10.1038/533452a
– ident: CR69
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: CR46
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– ident: CR44
– volume: 7
  start-page: 2049
  year: 2017
  ident: CR4
  article-title: Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01779-0
– ident: CR73
– ident: CR38
– ident: CR17
– ident: CR31
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 27
  start-page: 495
  year: 2008
  end-page: 508
  ident: CR10
  article-title: Brain anatomical structure segmentation by hybrid discriminative/generative models
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.908121
– ident: CR34
– volume: 35
  start-page: 1240
  year: 2016
  end-page: 1251
  ident: CR48
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: CR59
– volume: 129
  start-page: 460
  year: 2016
  end-page: 469
  ident: CR72
  article-title: Deep MRI brain extraction: a 3D convolutional neural network for skull stripping
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– volume: 7
  start-page: 5110
  year: 2017
  ident: CR7
  article-title: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05300-5
– volume: 15
  start-page: 29
  year: 2015
  ident: CR19
  article-title: Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 86
  start-page: 420
  year: 1979
  ident: CR23
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 35
  start-page: 3
  year: 2010
  ident: CR2
  article-title: Automated medical image segmentation techniques
  publication-title: J. Med. Phys. Assoc. Med. Phys. India
– ident: 69920_CR62
– volume: 40
  start-page: 071905
  year: 2013
  ident: 69920_CR11
  publication-title: Med. Phys.
  doi: 10.1118/1.4810971
– ident: 69920_CR34
  doi: 10.25080/Majora-8b375195-003
– volume: 35
  start-page: 1229
  year: 2016
  ident: 69920_CR52
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528821
– ident: 69920_CR61
  doi: 10.1145/2647868.2654889
– ident: 69920_CR43
– volume: 35
  start-page: 1856
  year: 2016
  ident: 69920_CR58
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535222
– volume: 129
  start-page: 460
  year: 2016
  ident: 69920_CR72
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.01.024
– ident: 69920_CR75
– volume: 15
  start-page: 29
  year: 2015
  ident: 69920_CR19
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-015-0068-x
– ident: 69920_CR28
  doi: 10.1007/978-3-642-35289-8_3
– ident: 69920_CR38
  doi: 10.1109/ICDMAI.2017.8073516
– volume: 86
  start-page: 420
  year: 1979
  ident: 69920_CR23
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 108
  start-page: 214
  year: 2015
  ident: 69920_CR65
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.12.061
– ident: 69920_CR16
  doi: 10.1109/CVPR.2015.7298965
– ident: 69920_CR49
  doi: 10.1109/ISBI.2016.7493261
– volume: 533
  start-page: 452
  year: 2016
  ident: 69920_CR21
  publication-title: Nat. News
  doi: 10.1038/533452a
– ident: 69920_CR73
  doi: 10.1155/2016/8356294
– ident: 69920_CR18
– ident: 69920_CR33
– volume: 34
  start-page: 1993
  year: 2014
  ident: 69920_CR54
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 98
  start-page: 430
  year: 1998
  ident: 69920_CR74
  publication-title: ICML
– volume: 9
  start-page: 297
  year: 2005
  ident: 69920_CR6
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.12.004
– ident: 69920_CR32
  doi: 10.1007/978-3-030-23987-9_10
– volume-title: Reproducibility and Replicability in Science
  year: 2019
  ident: 69920_CR20
– volume: 7
  start-page: 2049
  year: 2017
  ident: 69920_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01779-0
– volume: 6
  start-page: 113
  year: 2018
  ident: 69920_CR70
  publication-title: Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
  doi: 10.1080/21681163.2016.1182072
– volume: 30
  start-page: 75
  year: 2006
  ident: 69920_CR26
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2005.12.001
– ident: 69920_CR51
  doi: 10.1007/978-3-319-46976-8_7
– volume: 521
  start-page: 436
  year: 2015
  ident: 69920_CR14
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 69920_CR37
  doi: 10.1109/TPAMI.2021.3059968
– volume: 33
  start-page: 341
  year: 2002
  ident: 69920_CR9
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00569-X
– volume-title: Deep Learning with Keras
  year: 2017
  ident: 69920_CR63
– volume: 6
  start-page: 60
  year: 2019
  ident: 69920_CR27
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 274
  start-page: 146
  year: 2016
  ident: 69920_CR68
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.10.007
– volume: 2
  start-page: 2
  year: 2019
  ident: 69920_CR22
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-019-0079-z
– volume: 27
  start-page: 495
  year: 2008
  ident: 69920_CR10
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.908121
– ident: 69920_CR53
– ident: 69920_CR60
  doi: 10.1145/2733373.2807412
– ident: 69920_CR66
  doi: 10.1109/ISBI.2016.7493515
– volume-title: Deep Learning
  year: 2016
  ident: 69920_CR13
– volume: 36
  start-page: 61
  year: 2017
  ident: 69920_CR47
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– ident: 69920_CR39
– volume: 35
  start-page: 1240
  year: 2016
  ident: 69920_CR48
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: 69920_CR44
  doi: 10.1007/978-3-319-10470-6_39
– volume: 29
  start-page: 102
  year: 2019
  ident: 69920_CR46
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2018.11.002
– ident: 69920_CR29
– volume: 7
  start-page: 5110
  year: 2017
  ident: 69920_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05300-5
– volume: 3
  start-page: 35
  year: 2009
  ident: 69920_CR5
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2011119
– ident: 69920_CR41
– ident: 69920_CR17
  doi: 10.1007/978-3-319-24574-4_28
– volume-title: Statistical Methods for Research Workers
  year: 2006
  ident: 69920_CR24
– volume: 42
  start-page: 60
  year: 2017
  ident: 69920_CR15
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 69920_CR77
– volume: 164
  start-page: 92
  year: 2017
  ident: 69920_CR57
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2017.04.002
– ident: 69920_CR67
  doi: 10.1109/CVPRW.2015.7301312
– ident: 69920_CR35
– volume: 7
  start-page: 5301
  year: 2017
  ident: 69920_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05728-9
– ident: 69920_CR31
– ident: 69920_CR59
– volume: 35
  start-page: 18
  year: 2017
  ident: 69920_CR55
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
– volume: 35
  start-page: 3
  year: 2010
  ident: 69920_CR2
  publication-title: J. Med. Phys. Assoc. Med. Phys. India
– volume: 35
  start-page: 1252
  year: 2016
  ident: 69920_CR56
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 52
  start-page: 65
  year: 2019
  ident: 69920_CR42
  publication-title: ACM Comput. Surv. (CSUR)
– ident: 69920_CR69
– ident: 69920_CR71
  doi: 10.1007/978-3-319-46723-8_54
– ident: 69920_CR64
  doi: 10.5281/zenodo.27878
– volume: 44
  start-page: 108
  year: 2000
  ident: 69920_CR25
  publication-title: J. Math. Psychol.
  doi: 10.1006/jmps.1999.1279
– volume: 3
  start-page: 100004
  year: 2019
  ident: 69920_CR45
  publication-title: Array
  doi: 10.1016/j.array.2019.100004
– volume: 10
  start-page: 125
  year: 2008
  ident: 69920_CR1
  publication-title: Int. J. Bioelectromagn.
– ident: 69920_CR40
– ident: 69920_CR50
  doi: 10.1007/978-3-319-46976-8_15
– volume: 6
  start-page: 20280
  year: 2016
  ident: 69920_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep20280
– volume: 19
  start-page: 1667
  year: 2013
  ident: 69920_CR3
  publication-title: Nat. Med.
  doi: 10.1038/nm.3390
– ident: 69920_CR36
  doi: 10.1109/CVPR.2018.00907
– volume: 7
  start-page: 1
  year: 2006
  ident: 69920_CR76
  publication-title: J. Mach. Learn. Res.
– ident: 69920_CR30
SSID ssj0000529419
Score 2.6447954
Snippet Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13724
SubjectTerms 639/705/117
692/308
Algorithms
Artificial Intelligence
Computer Science
Deep Learning
Diagnostic Imaging - methods
Humanities and Social Sciences
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image Processing, Computer-Assisted - methods
Learning algorithms
Literature reviews
Machine learning
Medical Imaging
multidisciplinary
Neural Networks, Computer
Reproducibility
Reproducibility of Results
Science
Science (multidisciplinary)
Segmentation
Surgery
Title Variability and reproducibility in deep learning for medical image segmentation
URI https://link.springer.com/article/10.1038/s41598-020-69920-0
https://www.ncbi.nlm.nih.gov/pubmed/32792540
https://www.proquest.com/docview/2433602996
https://www.proquest.com/docview/2434473308
https://hal.science/hal-02917117
https://pubmed.ncbi.nlm.nih.gov/PMC7426407
Volume 10
WOSCitedRecordID wos000563547400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_RFSRe-B4LjCog3iBaHCex84QG2jQkVioEqDxFF9vdKq1pWbtJ---5S9xMZWIvvPjBdpQ4d75P-3cAb20ls6JAjAo1UVGaGhVhgjYStrLoClHZzDbFJtRwqMfjYuQDbkt_rHItExtBbeeGY-R7SSplHpPwzD8sfkdcNYqzq76ERg_6ZNkIPtJ1nIy6GAtnsVJR-LsysdR7S9JXfKeMfaaioDbe0Ee9Uz4NedPUvHli8q-0aaONDh_-7zoewQNvh4b7LeM8hjuufgL32sqUV0_h60_yoVsI76sQaxsy-CVjw05937QOrXOL0FedOAnJ-A1nbdYnnM5ISoVLdzLzN5vqZ_Dj8OD7p6PI116ITKbSVYSYM9Z9nE1QZqmqKiTPwmlpY2sRDWqNRS5QoCYPyOTI922RTGDyQExmyEPfhq16XrsdCDWabJLFk6zKHalMXRknTYJkONKfUFoGINYUKI0HJuf6GGdlkyCXumypVhLVyoZqZRzAu-6ZRQvLcevsN0TYbiIjah_tfym5jyghlBDqUgSwuyZY6ffxsrymVgCvu2HagZxWwdrNL5o5aaqkjHUAz1s26V4lGZ-RjOIA1AYDbXzL5kg9PW1QvhXbqrEK4P2a1a4_699LfXH7Kl7C_YSZnzF95S5src4v3Cu4ay5X0-X5AHpqrJpWD6D_8WA4-jZoghSDZl9xq6jtjz4fj379Adx7KJM
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21BVQufBcMBRYEJ7Bqe23v-oBQBVSpGkIPBfVmxrub1hJxQpMW5U_xG5nxR6pQ0VsPXHywN7HX-3b2rWfmDcArW8gkyxD9TA2VH8dG-Rih9UNbWHRZWNjE1sUm1GCgDw-z_RX43eXCcFhlZxNrQ23Hhr-Rb0WxlGlAxjN9P_npc9Uo9q52JTQaWOy5-S_ask3f7X6k8X0dRTufDj70_LaqgG8SFc98xJRV3INkiDKJVVEgcWanpQ2sRTSoNWZpiCFq4vYmRc4kRSJ3xK1NYmjvSf-7CtdiVhbjUMFof_FNh71mcZi1uTmB1FtTWh85h433aFlGx2Bp_Vs95ujLi9T2YoTmX27aevXbuf2_vbc7cKvl2WK7mRh3YcVV9-BGU3lzfh--fEOaeXVg8FxgZQWLe7L2bdmeKythnZuItqrGkSByL0aNV0uUI7LCYuqORm3mVvUAvl5JbzZgrRpX7hEIjSYZJsEwKVJHlEAXxkkTIRFjevNKSw_CbsRz0wqvc_2PH3kdACB13qAkJ5TkNUrywIM3i99MGtmRS1u_JCAtGrJieG-7n_M5GvlQhaE6Cz3Y7ACSt3Zqmp-jw4MXi8tkYdhthJUbn9Zt4lhJGWgPHjawXNxKsv4kkX4P1BJgl55l-UpVHtcq5oq5eKA8eNtB-_yx_t3Vx5f34jms9w4-9_P-7mDvCdyMeOKxfrHchLXZyal7CtfN2aycnjyrZ66A71cN-T-siX8M
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB21KVRc-KYYCiwITmDF9tre9QGhihI1agk5AConM95dt5aIE5q0KH-NX8esv6pQ0VsPXHKw147X-3b2rWfmDcBLnfEoSRDdROTCDUMlXAxQu77ONJrEz3Skq2ITYjSSh4fJeA1-t7kwNqyytYmVodZTZb-R94OQ89gj4xn38yYsYrw7eDf76doKUtbT2pbTqCGyb5a_aPs2fzvcpbF-FQSDD5_f77lNhQFXRSJcuIixVXT3ohx5FIosQ-LPRnLtaY2oUEpMYh99lMTzVYw2qxSJ6BHPVpGifSjddx02iJKHQQ82xsOP42_dFx7rQwv9pMnU8bjsz2m1tBltdseWJPTrrayG68c2FvMi0b0Yr_mX07ZaCwe3_ue3eBtuNgyc7dRT5g6smfIuXK9rci7vwaevSHOyChleMiw1s7KfVhW3aI4VJdPGzFhTb-OIEe1nk9rfxYoJ2Wc2N0eTJqervA9frqQ3D6BXTkvzEJhEFeWRl0dZbIgsyEwZrgIkykyjICR3wG9HP1WNJLutDPIjrUIDuExrxKSEmLRCTOo58Lq7ZlYLklza-gWBqmtotcT3dg5Se4xQ4AvfF2e-A9stWNLGgs3Tc6Q48Lw7TbbHOpSwNNPTqk0YCs496cBWDdHur7hVpqTtgANiBbwrz7J6piyOK31zYVm6Jxx408L8_LH-3dVHl_fiGWwS0tOD4Wj_MdwI7By0wsZ8G3qLk1PzBK6ps0UxP3naTGMG368a838AXaCJVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variability+and+reproducibility+in+deep+learning+for+medical+image+segmentation&rft.jtitle=Scientific+reports&rft.au=Renard%2C+F%C3%A9lix&rft.au=Guedria%2C+Soulaimane&rft.au=Palma%2C+Noel+De&rft.au=Vuillerme%2C+Nicolas&rft.date=2020-08-13&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft.spage=13724&rft_id=info:doi/10.1038%2Fs41598-020-69920-0&rft_id=info%3Apmid%2F32792540&rft.externalDocID=32792540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon