PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT

Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage clinical Vol. 14; no. C; pp. 379 - 390
Main Authors: Muschelli, John, Sweeney, Elizabeth M., Ullman, Natalie L., Vespa, Paul, Hanley, Daniel F., Crainiceanu, Ciprian M.
Format: Journal Article
Language:English
Published: Netherlands Elsevier Inc 01.01.2017
Elsevier
Subjects:
ISSN:2213-1582, 2213-1582
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans. The Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test. All results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach. •A hemorrhage segmentation algorithm from CT scans is proposed.•Validation using manual segmentation was done on 102 patients from multiple sites.•Software is provided as a website (http://johnmuschelli.com/ich_segment.html).•An R package (https://github.com/muschellij2/ichseg) is available.
AbstractList • A hemorrhage segmentation algorithm from CT scans is proposed. • Validation using manual segmentation was done on 102 patients from multiple sites. • Software is provided as a website (http://johnmuschelli.com/ich_segment.html). • An R package (https://github.com/muschellij2/ichseg) is available.
Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans. The Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test. All results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach. •A hemorrhage segmentation algorithm from CT scans is proposed.•Validation using manual segmentation was done on 102 patients from multiple sites.•Software is provided as a website (http://johnmuschelli.com/ich_segment.html).•An R package (https://github.com/muschellij2/ichseg) is available.
INTRODUCTIONIntracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10-15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans.METHODSThe Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test.RESULTSAll results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach.
AbstractIntroductionIntracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans. MethodsThe Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test. ResultsAll results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic ( p < 0.001), LASSO ( p < 0.001), or GAM ( p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package ( https://github.com/muschellij2/ichseg) and a Shiny R application online ( http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach.
Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10-15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans. The Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test. All results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic ( < 0.001), LASSO ( < 0.001), or GAM ( < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach.
Introduction: Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed tomography (CT) scanning is largely used to assess the location and volume of these hemorrhages. Manual segmentation of the CT scan using planimetry by an expert reader is the gold standard for volume estimation, but is time-consuming and has within- and across-reader variability. We propose a fully automated segmentation approach using a random forest algorithm with features extracted from X-ray computed tomography (CT) scans. Methods: The Minimally Invasive Surgery plus rt-PA in ICH Evacuation (MISTIE) trial was a multi-site Phase II clinical trial that tested the safety of hemorrhage removal using recombinant-tissue plasminogen activator (rt-PA). For this analysis, we use 112 baseline CT scans from patients enrolled in the MISTE trial, one CT scan per patient. ICH was manually segmented on these CT scans by expert readers. We derived a set of imaging predictors from each scan. Using 10 randomly-selected scans, we used a first-pass voxel selection procedure based on quantiles of a set of predictors and then built 4 models estimating the voxel-level probability of ICH. The models used were: 1) logistic regression, 2) logistic regression with a penalty on the model parameters using LASSO, 3) a generalized additive model (GAM) and 4) a random forest classifier. The remaining 102 scans were used for model validation.For each validation scan, the model predicted the probability of ICH at each voxel. These voxel-level probabilities were then thresholded to produce binary segmentations of the hemorrhage. These masks were compared to the manual segmentations using the Dice Similarity Index (DSI) and the correlation of hemorrhage volume of between the two segmentations. We tested equality of median DSI using the Kruskal-Wallis test across the 4 models. We tested equality of the median DSI from sets of 2 models using a Wilcoxon signed-rank test. Results: All results presented are for the 102 scans in the validation set. The median DSI for each model was: 0.89 (logistic), 0.885 (LASSO), 0.88 (GAM), and 0.899 (random forest). Using the random forest results in a slightly higher median DSI compared to the other models. After Bonferroni correction, the hypothesis of equality of median DSI was rejected only when comparing the random forest DSI to the DSI from the logistic (p < 0.001), LASSO (p < 0.001), or GAM (p < 0.001) models. In practical terms the difference between the random forest and the logistic regression is quite small. The correlation (95% CI) between the volume from manual segmentation and the predicted volume was 0.93 (0.9,0.95) for the random forest model. These results indicate that random forest approach can achieve accurate segmentation of ICH in a population of patients from a variety of imaging centers. We provide an R package (https://github.com/muschellij2/ichseg) and a Shiny R application online (http://johnmuschelli.com/ich_segment_all.html) for implementing and testing the proposed approach.
Author Vespa, Paul
Crainiceanu, Ciprian M.
Sweeney, Elizabeth M.
Ullman, Natalie L.
Hanley, Daniel F.
Muschelli, John
AuthorAffiliation c Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
a Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
b Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, USA
AuthorAffiliation_xml – name: c Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
– name: a Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– name: b Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, USA
Author_xml – sequence: 1
  givenname: John
  surname: Muschelli
  fullname: Muschelli, John
  email: jmusche1@jhu.edu
  organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 2
  givenname: Elizabeth M.
  surname: Sweeney
  fullname: Sweeney, Elizabeth M.
  email: emsweene1@jhu.edu
  organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
– sequence: 3
  givenname: Natalie L.
  surname: Ullman
  fullname: Ullman, Natalie L.
  email: nullman1@jhmi.edu
  organization: Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, USA
– sequence: 4
  givenname: Paul
  surname: Vespa
  fullname: Vespa, Paul
  email: PVespa@mednet.ucla.edu
  organization: Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
– sequence: 5
  givenname: Daniel F.
  surname: Hanley
  fullname: Hanley, Daniel F.
  email: dhanley@jhmi.edu
  organization: Department of Neurology, Division of Brain Injury Outcomes, Johns Hopkins Medical Institutions, Baltimore, MD, USA
– sequence: 6
  givenname: Ciprian M.
  surname: Crainiceanu
  fullname: Crainiceanu, Ciprian M.
  email: ccrainic@jhsph.edu
  organization: Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28275541$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvGyEQhVdVqiZN8wd6qPbYix1gYYEcKlWWXVuKVCt1zyMWWAd3DSmsI_nfh42dKKnUcAHBm2_EvPexOPHB26L4jNEYI1xfbsbe6W5MEOZjRMYI8XfFGSG4GmEmyMmL82lxkdIG5SWyqq4_FKdEEM4YxWcFLBe9ni-nNzM7WV2Vy-i2Ku7Lhe-j0lF5p7pybrchxlu1tvk9NKpxnev35TT1Wdy74Mtdcn5d3ihvwrachWhTn8p8P1l9Kt63qkv24rifF79n09VkPrr--WMx-X490ozTfqREwyRppTSSYFkrLrlljeGm0UxobZVsCaMtb6pWNcxwLgimiMumVW1lJK3Oi8WBa4LawN3hGxCUg8eLENegYp8nZoHWGWlbgaRh1JhGUC6Zrlhb24q21mTWtwPrbtdsrdF2GEb3Cvr6xbtbWId7YBURnOIM-HoExPB3l4cBW5e07TrlbdglwILXVOJK1ln65WWv5yZPDmWBOAh0DClF24J2_ePUc2vXAUYw5AE2MOQBhjwAIpCdzqXkn9In-ptFx8_b7Na9sxF057JKdX_s3qZN2EWfjQQMKRfAryFmQ8owrxCieHDi6v-A7IZ7q_sDd3jjbw
CitedBy_id crossref_primary_10_1001_jamanetworkopen_2024_27772
crossref_primary_10_1016_j_cmpb_2020_105546
crossref_primary_10_1088_1361_6560_aba166
crossref_primary_10_1007_s12028_019_00705_8
crossref_primary_10_1111_jon_12997
crossref_primary_10_1016_j_wneu_2024_05_065
crossref_primary_10_1016_j_zemedi_2022_11_009
crossref_primary_10_1016_j_jstrokecerebrovasdis_2021_105996
crossref_primary_10_3389_fneur_2022_791816
crossref_primary_10_1109_ACCESS_2019_2906605
crossref_primary_10_1002_mp_13880
crossref_primary_10_1093_biostatistics_kxx068
crossref_primary_10_1007_s40747_020_00257_x
crossref_primary_10_1016_j_hest_2025_04_003
crossref_primary_10_1371_journal_pone_0286485
crossref_primary_10_1016_j_wneu_2022_10_051
crossref_primary_10_1038_s41598_023_30581_4
crossref_primary_10_1016_j_nicl_2021_102785
crossref_primary_10_1186_s41747_024_00510_9
crossref_primary_10_3389_fneur_2021_666875
crossref_primary_10_3390_jcm12124005
crossref_primary_10_3892_etm_2025_12797
crossref_primary_10_2147_IJGM_S408725
crossref_primary_10_1109_ACCESS_2022_3225671
crossref_primary_10_32604_cmc_2023_041855
crossref_primary_10_1007_s12021_020_09493_5
crossref_primary_10_1109_ACCESS_2023_3339560
crossref_primary_10_1007_s00234_024_03311_4
crossref_primary_10_1007_s10278_018_00172_1
crossref_primary_10_1186_s12883_023_03258_8
crossref_primary_10_1016_j_ipm_2020_102352
crossref_primary_10_3389_fneur_2023_1244672
crossref_primary_10_1016_j_hsr_2023_100126
crossref_primary_10_1016_j_nic_2020_07_001
crossref_primary_10_1038_s41598_020_76459_7
crossref_primary_10_1242_dmm_048785
crossref_primary_10_3390_informatics9010004
crossref_primary_10_32604_cmc_2021_015480
crossref_primary_10_1016_j_eswa_2022_118016
crossref_primary_10_3390_data5010014
crossref_primary_10_1038_s41598_019_54491_6
crossref_primary_10_1088_1742_6596_1187_4_042088
crossref_primary_10_1155_2022_3560507
crossref_primary_10_1016_j_wneu_2022_10_105
crossref_primary_10_1049_cit2_12302
crossref_primary_10_1161_STROKEAHA_119_027657
crossref_primary_10_3390_ijerph18126499
crossref_primary_10_1007_s00330_021_08352_4
Cites_doi 10.1097/00003246-199903000-00045
10.1136/jnnp.2004.044347
10.1161/STROKEAHA.107.512202
10.1007/s11548-012-0670-0
10.1161/01.STR.27.8.1304
10.32614/RJ-2015-013
10.1097/00008506-200307000-00010
10.1161/01.STR.32.4.891
10.1016/j.neuroimage.2012.03.020
10.1002/hbm.10062
10.1016/j.neuroimage.2010.09.025
10.1109/TMI.2014.2377694
10.1161/STROKEAHA.109.561795
10.1161/STROKEAHA.113.001638
10.1016/S1474-4422(08)70069-3
10.1016/j.nicl.2014.03.009
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s12021-011-9109-y
10.1161/STROKEAHA.114.007343
10.1016/j.media.2007.06.004
10.2307/1932409
10.1161/STROKEAHA.110.607861
10.1155/2000/421719
10.1023/A:1010933404324
10.1161/01.STR.24.7.987
10.1111/j.1467-9868.2010.00749.x
10.1016/j.neuroimage.2015.03.074
10.18637/jss.v033.i01
10.1161/STROKEAHA.115.010369
10.1161/STROKEAHA.112.667220
10.1111/j.1552-6569.2011.00588.x
10.1161/STROKEAHA.108.541383
10.1016/j.neuroimage.2011.09.015
10.1056/NEJMoa042991
10.1007/s12028-011-9541-8
10.1161/STROKEAHA.111.000411
10.1016/j.mric.2006.06.002
10.1111/rssc.12068
ContentType Journal Article
Copyright 2017 The Authors
The Authors
2017 The Authors 2017
Copyright_xml – notice: 2017 The Authors
– notice: The Authors
– notice: 2017 The Authors 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U8
7X8
C1K
JXQ
5PM
DOA
DOI 10.1016/j.nicl.2017.02.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
Toxline
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList

TOXLINE

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2213-1582
EndPage 390
ExternalDocumentID oai_doaj_org_article_4658cef809d54ddb84795c35f6e34fed
PMC5328741
28275541
10_1016_j_nicl_2017_02_007
1_s2_0_S2213158217300414
S2213158217300414
Genre Multicenter Study
Clinical Trial, Phase II
Journal Article
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL123407
– fundername: NINDS NIH HHS
  grantid: U01 NS062851
– fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NIA NIH HHS
  grantid: T32 AG000247
– fundername: NINDS NIH HHS
  grantid: U01 NS080824
– fundername: NIMH NIH HHS
  grantid: R01 MH095836
– fundername: NIBIB NIH HHS
  grantid: R01 EB012547
– fundername: NINDS NIH HHS
  grantid: R01 NS046309
GroupedDBID .1-
.FO
0R~
1P~
457
53G
5VS
AAEDT
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADRAZ
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFRHN
AFTJW
AGHFR
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
IXB
KQ8
M41
M48
M~E
O-L
O9-
OK1
RIG
ROL
RPM
SSZ
Z5R
AFCTW
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7U8
7X8
C1K
JXQ
5PM
ID FETCH-LOGICAL-c574t-a8b592f99d92196a797e5bd7dbc58ccea9f254f7b3fab5d778214079bfaf3d943
IEDL.DBID DOA
ISICitedReferencesCount 57
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405984300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2213-1582
IngestDate Fri Oct 03 12:38:01 EDT 2025
Tue Sep 30 16:46:36 EDT 2025
Fri Sep 05 11:53:39 EDT 2025
Mon Jul 21 06:05:59 EDT 2025
Tue Nov 18 22:18:35 EST 2025
Wed Nov 05 20:47:57 EST 2025
Wed Jun 18 06:48:26 EDT 2025
Tue Aug 26 17:37:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords CT
Stroke
ICH segmentation
Intracerebral hemorrhage
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-a8b592f99d92196a797e5bd7dbc58ccea9f254f7b3fab5d778214079bfaf3d943
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://doaj.org/article/4658cef809d54ddb84795c35f6e34fed
PMID 28275541
PQID 1876491396
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_4658cef809d54ddb84795c35f6e34fed
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5328741
proquest_miscellaneous_1876491396
pubmed_primary_28275541
crossref_citationtrail_10_1016_j_nicl_2017_02_007
crossref_primary_10_1016_j_nicl_2017_02_007
elsevier_clinicalkeyesjournals_1_s2_0_S2213158217300414
elsevier_clinicalkey_doi_10_1016_j_nicl_2017_02_007
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle NeuroImage clinical
PublicationTitleAlternate Neuroimage Clin
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Pedraza, Puig, Blasco, Daunis-i Estadella, Boada, Bardera, Castellanos, Serena (bb0175) 2012; 22
Wood (bb0255) 2011; 73
Sahni, Weinberger (bb0220) 2007; 3
Rorden, Bonilha, Fridriksson, Bender, Karnath (bb0205) 2012; 61
Prakash, Zhou, Morgan, Hanley, Nowinski (bb0190) 2012; 7
Kothari, Brott, Broderick, Barsan, Sauerbeck, Zuccarello, Khoury (bb0115) 1996; 27
Smith, Rosand, Greenberg (bb0225) 2006; 14
Bergström, Ericson, Levander, Svendsen, Larsson (bb0035) 1977; 1
Wang, Lou, Liu, Cui, Chen, Wang (bb0245) 2013; 44
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (bb0140) 2015; 34
Hastie, Tibshirani (bb0090) 1990; 43
Muschelli, Sweeney, Lindquist, Crainiceanu (bb0160) 2015; 7
Smith (bb0230) 2002; 17
Loncaric, Cosic, Dhawan (bb0125) 1996; 10
Muschelli, Ullman, Mould, Vespa, Hanley, Crainiceanu (bb0165) 2015
Avants, Tustison, Song, Cook, Klein, Gee (bb0025) 2011; 54
Rost, Smith, Chang, Snider, Chanderraj, Schwab, FitzMaurice, Wendell, Goldstein, Greenberg, Rosand (bb0215) 2008; 39
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bb0105) 2012; 62
Tuhrim, Horowitz, Sacher, Godbold (bb0240) 1999; 27
Jordan, Kleinman, Hillis (bb0110) 2009; 40
Muschelli, Ullman, Sweeney, Eloyan, Martin, Vespa, Hanley, Crainiceanu (bb0170) 2015; 46
Broderick, Brott, Duldner, Tomsick, Huster (bb0045) 1993; 24
Anderson, Huang, Arima, Heeley, Skulina, Parsons, Peng, Li, Su, Tao, Li, Jiang, Tai, Zhang, Xu, Cheng, Morgenstern, Chalmers, Wang (bb0010) 2010; 41
.
Mayer, Brun, Begtrup, Broderick, Davis, Diringer, Skolnick, Steiner (bb0135) 2005; 352
Avants, Epstein, Grossman, Gee (bb0020) 2008; 12
Hastie, Tibshirani (bb0085) 1986
Dice (bb0065) 1945; 26
Anderson, Huang, Wang, Arima, Neal, Peng, Heeley, Skulina, Parsons, Kim (bb0015) 2008; 7
Hussein, Tariq, Palesch, Qureshi (bb0100) 2013; 44
Wood, Goude, Shaw (bb0260) 2015; 64
Hemphill, Bonovich, Besmertis, Manley, Johnston (bb0095) 2001; 32
Qureshi, Palesch, Martin, Novitzke, Cruz-Flores, Ehtisham, Ezzeddine, Goldstein, Kirmani, Hussein, Suri, Tariq, Liu, Investigators (bb0195) 2011; 15
Breiman (bb0040) 2001; 45
Chang, Cheng, Allaire, Xie, McPherson (bb0060) 2015
Mould, Carhuapoma, Muschelli, Lane, Morgan, McBee, Bistran-Hall, Ullman, Vespa, Martin, Awad, Zuccarello, Hanley (bb0155) 2013; 44
Gillebert, Humphreys, Mantini (bb0080) 2014; 4
Liaw, Wiener (bb0120) 2002; 2
Pérez, Valdés, Guevara, Rodríguez, Molina (bb0180) 2007
Morgan, Zuccarello, Narayan, Keyl, Lane, Hanley (bb0150) 2008
Divani, Majidi, Luo, Souslian, Zhang, Abosch, Tummala (bb0070) 2011; 42
Carhuapoma, Hanley, Banerjee, Beauchamp (bb0050) 2003; 15
Core Team (bb0200) 2015
Rorden, Brett (bb0210) 2000; 12
Loncaric, Dhawan, Cosic, Kovacević, Broderick, Brott (bb0130) 1999
Castellanos, Leira, Tejada, Gil-Peralta, Dàvalos, Castillo (bb0055) 2005; 76
Tibshirani (bb0235) 1996; 58
Frequently Asked Questions for FLIRT.
Webb, Ullman, Morgan, Muschelli, Kornbluth, Awad, Mayo, Rosenblum, Ziai, Zuccarrello, Aldrich, John, Harnof, Lopez, Broaddus, Wijman, Vespa, Bullock, Haines, Cruz-Flores, Tuhrim, Hill, Narayan, Hanley, Tayal, Diaz, Hoffer, Moheet, Agarwal, Markowski, Rosenthal, Kureshi (bb0250) 2015; 46
Perona, Shiota, Malik (bb0185) 1994
Avants, Tustison, Wu, Cook, Gee (bb0030) 2011; 9
Friedman, Hastie, Tibshirani (bb0075) 2010; 33
Morgan, Awad, Keyl, Lane, Hanley (bb0145) 2008
Avants (10.1016/j.nicl.2017.02.007_bb0030) 2011; 9
Menze (10.1016/j.nicl.2017.02.007_bb0140) 2015; 34
Pérez (10.1016/j.nicl.2017.02.007_bb0180) 2007
Avants (10.1016/j.nicl.2017.02.007_bb0025) 2011; 54
Kothari (10.1016/j.nicl.2017.02.007_bb0115) 1996; 27
Rost (10.1016/j.nicl.2017.02.007_bb0215) 2008; 39
Chang (10.1016/j.nicl.2017.02.007_bb0060) 2015
Hemphill (10.1016/j.nicl.2017.02.007_bb0095) 2001; 32
Tuhrim (10.1016/j.nicl.2017.02.007_bb0240) 1999; 27
Dice (10.1016/j.nicl.2017.02.007_bb0065) 1945; 26
Anderson (10.1016/j.nicl.2017.02.007_bb0015) 2008; 7
Avants (10.1016/j.nicl.2017.02.007_bb0020) 2008; 12
Castellanos (10.1016/j.nicl.2017.02.007_bb0055) 2005; 76
Hastie (10.1016/j.nicl.2017.02.007_bb0090) 1990; 43
Loncaric (10.1016/j.nicl.2017.02.007_bb0125) 1996; 10
Bergström (10.1016/j.nicl.2017.02.007_bb0035) 1977; 1
Muschelli (10.1016/j.nicl.2017.02.007_bb0170) 2015; 46
Prakash (10.1016/j.nicl.2017.02.007_bb0190) 2012; 7
Muschelli (10.1016/j.nicl.2017.02.007_bb0165) 2015
Hussein (10.1016/j.nicl.2017.02.007_bb0100) 2013; 44
Loncaric (10.1016/j.nicl.2017.02.007_bb0130) 1999
Webb (10.1016/j.nicl.2017.02.007_bb0250) 2015; 46
Mould (10.1016/j.nicl.2017.02.007_bb0155) 2013; 44
Muschelli (10.1016/j.nicl.2017.02.007_bb0160) 2015; 7
Jordan (10.1016/j.nicl.2017.02.007_bb0110) 2009; 40
Carhuapoma (10.1016/j.nicl.2017.02.007_bb0050) 2003; 15
Gillebert (10.1016/j.nicl.2017.02.007_bb0080) 2014; 4
Broderick (10.1016/j.nicl.2017.02.007_bb0045) 1993; 24
Qureshi (10.1016/j.nicl.2017.02.007_bb0195) 2011; 15
10.1016/j.nicl.2017.02.007_bb0005
Tibshirani (10.1016/j.nicl.2017.02.007_bb0235) 1996; 58
Rorden (10.1016/j.nicl.2017.02.007_bb0210) 2000; 12
Wood (10.1016/j.nicl.2017.02.007_bb0260) 2015; 64
Sahni (10.1016/j.nicl.2017.02.007_bb0220) 2007; 3
Wood (10.1016/j.nicl.2017.02.007_bb0255) 2011; 73
Core Team (10.1016/j.nicl.2017.02.007_bb0200) 2015
Divani (10.1016/j.nicl.2017.02.007_bb0070) 2011; 42
Mayer (10.1016/j.nicl.2017.02.007_bb0135) 2005; 352
Breiman (10.1016/j.nicl.2017.02.007_bb0040) 2001; 45
Anderson (10.1016/j.nicl.2017.02.007_bb0010) 2010; 41
Friedman (10.1016/j.nicl.2017.02.007_bb0075) 2010; 33
Rorden (10.1016/j.nicl.2017.02.007_bb0205) 2012; 61
Smith (10.1016/j.nicl.2017.02.007_bb0230) 2002; 17
Hastie (10.1016/j.nicl.2017.02.007_bb0085) 1986
Smith (10.1016/j.nicl.2017.02.007_bb0225) 2006; 14
Liaw (10.1016/j.nicl.2017.02.007_bb0120) 2002; 2
Wang (10.1016/j.nicl.2017.02.007_bb0245) 2013; 44
Perona (10.1016/j.nicl.2017.02.007_bb0185) 1994
Pedraza (10.1016/j.nicl.2017.02.007_bb0175) 2012; 22
Jenkinson (10.1016/j.nicl.2017.02.007_bb0105) 2012; 62
Morgan (10.1016/j.nicl.2017.02.007_bb0145) 2008
Morgan (10.1016/j.nicl.2017.02.007_bb0150) 2008
References_xml – volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 46
  start-page: 3270
  year: 2015
  end-page: 3273
  ident: bb0170
  article-title: Quantitative intracerebral hemorrhage localization
  publication-title: Stroke
– volume: 61
  start-page: 957
  year: 2012
  end-page: 965
  ident: bb0205
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: NeuroImage
– volume: 44
  start-page: 237
  year: 2013
  end-page: 239
  ident: bb0100
  article-title: Reliability of hematoma volume measurement at local sites in a multicenter acute intracerebral hemorrhage clinical trial
  publication-title: Stroke
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bb0105
  article-title: FSL
  publication-title: NeuroImage
– volume: 7
  start-page: 785
  year: 2012
  end-page: 798
  ident: bb0190
  article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 4
  start-page: 540
  year: 2014
  end-page: 548
  ident: bb0080
  article-title: Automated delineation of stroke lesions using brain CT images
  publication-title: NeuroImage Clin.
– volume: 43
  year: 1990
  ident: bb0090
  article-title: Generalized Additive Models
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  ident: bb0025
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 15
  start-page: 428
  year: 2011
  end-page: 435
  ident: bb0195
  article-title: Association of serum glucose concentrations during acute hospitalization with hematoma expansion, perihematomal edema, and three month outcome among patients with intracerebral hemorrhage
  publication-title: Neurocrit. Care
– start-page: 212
  year: 2007
  end-page: 220
  ident: bb0180
  article-title: Set of methods for spontaneous ICH segmentation and tracking from CT head images
  publication-title: Progress in Pattern Recognition, Image Analysis and Applications
– volume: 27
  start-page: 1304
  year: 1996
  end-page: 1305
  ident: bb0115
  article-title: The ABCs of measuring intracerebral hemorrhage volumes
  publication-title: Stroke
– volume: 10
  start-page: 1109
  year: 1996
  ident: bb0125
  article-title: Hierarchical segmentation of CT head images
  publication-title: Proc IEEE EMBS
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bb0230
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 76
  start-page: 691
  year: 2005
  end-page: 695
  ident: bb0055
  article-title: Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 44
  start-page: 627
  year: 2013
  end-page: 634
  ident: bb0155
  article-title: Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema
  publication-title: Stroke
– volume: 9
  start-page: 381
  year: 2011
  end-page: 400
  ident: bb0030
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
– volume: 7
  start-page: 391
  year: 2008
  end-page: 399
  ident: bb0015
  article-title: Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial
  publication-title: Lancet Neurol.
– year: 2015
  ident: bb0200
  article-title: R: a language and environment for statistical computing
  publication-title: R Foundation for Statistical Computing, Vienna, Austria
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0120
  article-title: Classification and regression by randomforest
  publication-title: R News
– volume: 3
  start-page: 701
  year: 2007
  end-page: 709
  ident: bb0220
  article-title: Management of intracerebral hemorrhage
  publication-title: Vasc. Health Risk Manag.
– volume: 27
  start-page: 617
  year: 1999
  end-page: 621
  ident: bb0240
  article-title: Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage
  publication-title: Crit. Care Med.
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: bb0065
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– volume: 39
  start-page: 2304
  year: 2008
  end-page: 2309
  ident: bb0215
  article-title: Prediction of functional outcome in patients with primary intracerebral hemorrhage the FUNC score
  publication-title: Stroke
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bb0075
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: bb0140
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
– volume: 64
  start-page: 139
  year: 2015
  end-page: 155
  ident: bb0260
  article-title: Generalized additive models for large data sets
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
– start-page: 886
  year: 1999
  end-page: 894
  ident: bb0130
  article-title: Quantitative intracerebral brain hemorrhage analysis
  publication-title: Medical Imaging’99
– volume: 44
  start-page: 2315
  year: 2013
  end-page: 2317
  ident: bb0245
  article-title: Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping
  publication-title: Stroke
– volume: 1
  start-page: 57
  year: 1977
  end-page: 63
  ident: bb0035
  article-title: Variation with time of the attenuation values of intracranial hematomas
  publication-title: Stroke
– year: 2015
  ident: bb0060
  article-title: Shiny: Web Application Framework for R
– volume: 41
  start-page: 307
  year: 2010
  end-page: 312
  ident: bb0010
  article-title: Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage the intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT)
  publication-title: Stroke
– volume: 12
  start-page: 26
  year: 2008
  end-page: 41
  ident: bb0020
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
– start-page: 217
  year: 2008
  end-page: 220
  ident: bb0145
  article-title: Preliminary report of the clot lysis evaluating accelerated resolution of intraventricular hemorrhage (CLEAR-IVH) clinical trial
  publication-title: Cerebral Hemorrhage
– volume: 73
  start-page: 3
  year: 2011
  end-page: 36
  ident: bb0255
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
– volume: 352
  start-page: 777
  year: 2005
  end-page: 785
  ident: bb0135
  article-title: Recombinant activated factor VII for acute intracerebral hemorrhage
  publication-title: N. Engl. J. Med.
– start-page: 147
  year: 2008
  end-page: 151
  ident: bb0150
  article-title: Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial
  publication-title: Cerebral Hemorrhage
– volume: 7
  start-page: 163
  year: 2015
  end-page: 175
  ident: bb0160
  article-title: FSLR: connecting the FSL software with R
  publication-title: R J.
– volume: 46
  start-page: 2470
  year: 2015
  end-page: 2476
  ident: bb0250
  article-title: Accuracy of the ABC/2 score for intracerebral hemorrhage systematic review and analysis of MISTIE, CLEAR-IVH, and CLEAR III
  publication-title: Stroke
– volume: 14
  start-page: 127
  year: 2006
  end-page: 140
  ident: bb0225
  article-title: Imaging of hemorrhagic stroke
  publication-title: Magn. Reson. Imaging Clin. N. Am.
– start-page: 73
  year: 1994
  end-page: 92
  ident: bb0185
  article-title: Anisotropic diffusion
  publication-title: Geometry-driven Diffusion in Computer Vision
– volume: 40
  start-page: 1666
  year: 2009
  end-page: 1671
  ident: bb0110
  article-title: Intracerebral hemorrhage volume predicts poor neurologic outcome in children
  publication-title: Stroke
– volume: 42
  start-page: 1569
  year: 2011
  end-page: 1574
  ident: bb0070
  article-title: The ABCs of accurate volumetric measurement of cerebral hematoma
  publication-title: Stroke
– volume: 32
  start-page: 891
  year: 2001
  end-page: 897
  ident: bb0095
  article-title: The ICH score a simple, reliable grading scale for intracerebral hemorrhage
  publication-title: Stroke
– volume: 15
  start-page: 230
  year: 2003
  end-page: 233
  ident: bb0050
  article-title: Brain edema after human cerebral hemorrhage a magnetic resonance imaging volumetric analysis
  publication-title: J. Neurosurg. Anesthesiol.
– volume: 12
  start-page: 191
  year: 2000
  end-page: 200
  ident: bb0210
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
– reference: Frequently Asked Questions for FLIRT.
– reference: .
– year: 2015
  ident: bb0165
  article-title: Validated automatic brain extraction of head CT images
  publication-title: NeuroImage
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bb0235
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 24
  start-page: 987
  year: 1993
  end-page: 993
  ident: bb0045
  article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality
  publication-title: Stroke
– start-page: 297
  year: 1986
  end-page: 310
  ident: bb0085
  article-title: Generalized additive models
  publication-title: Stat. Sci.
– volume: 22
  start-page: 155
  year: 2012
  end-page: 159
  ident: bb0175
  article-title: Reliability of the ABC/2 method in determining acute infarct volume
  publication-title: J. Neuroimaging
– start-page: 212
  year: 2007
  ident: 10.1016/j.nicl.2017.02.007_bb0180
  article-title: Set of methods for spontaneous ICH segmentation and tracking from CT head images
– volume: 27
  start-page: 617
  issue: 3
  year: 1999
  ident: 10.1016/j.nicl.2017.02.007_bb0240
  article-title: Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage
  publication-title: Crit. Care Med.
  doi: 10.1097/00003246-199903000-00045
– volume: 76
  start-page: 691
  issue: 5
  year: 2005
  ident: 10.1016/j.nicl.2017.02.007_bb0055
  article-title: Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.2004.044347
– volume: 39
  start-page: 2304
  issue: 8
  year: 2008
  ident: 10.1016/j.nicl.2017.02.007_bb0215
  article-title: Prediction of functional outcome in patients with primary intracerebral hemorrhage the FUNC score
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.512202
– volume: 7
  start-page: 785
  issue: 5
  year: 2012
  ident: 10.1016/j.nicl.2017.02.007_bb0190
  article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-012-0670-0
– volume: 27
  start-page: 1304
  issue: 8
  year: 1996
  ident: 10.1016/j.nicl.2017.02.007_bb0115
  article-title: The ABCs of measuring intracerebral hemorrhage volumes
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1304
– start-page: 217
  year: 2008
  ident: 10.1016/j.nicl.2017.02.007_bb0145
  article-title: Preliminary report of the clot lysis evaluating accelerated resolution of intraventricular hemorrhage (CLEAR-IVH) clinical trial
– volume: 10
  start-page: 1109
  year: 1996
  ident: 10.1016/j.nicl.2017.02.007_bb0125
  article-title: Hierarchical segmentation of CT head images
  publication-title: Proc IEEE EMBS
– volume: 7
  start-page: 163
  issue: 1
  year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0160
  article-title: FSLR: connecting the FSL software with R
  publication-title: R J.
  doi: 10.32614/RJ-2015-013
– volume: 15
  start-page: 230
  issue: 3
  year: 2003
  ident: 10.1016/j.nicl.2017.02.007_bb0050
  article-title: Brain edema after human cerebral hemorrhage a magnetic resonance imaging volumetric analysis
  publication-title: J. Neurosurg. Anesthesiol.
  doi: 10.1097/00008506-200307000-00010
– volume: 32
  start-page: 891
  issue: 4
  year: 2001
  ident: 10.1016/j.nicl.2017.02.007_bb0095
  article-title: The ICH score a simple, reliable grading scale for intracerebral hemorrhage
  publication-title: Stroke
  doi: 10.1161/01.STR.32.4.891
– volume: 61
  start-page: 957
  issue: 4
  year: 2012
  ident: 10.1016/j.nicl.2017.02.007_bb0205
  article-title: Age-specific CT and MRI templates for spatial normalization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.020
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2017.02.007_bb0230
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 54
  start-page: 2033
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2017.02.007_bb0025
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.09.025
– volume: 34
  start-page: 1993
  issue: 10
  year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0140
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 41
  start-page: 307
  issue: 2
  year: 2010
  ident: 10.1016/j.nicl.2017.02.007_bb0010
  article-title: Effects of early intensive blood pressure-lowering treatment on the growth of hematoma and perihematomal edema in acute intracerebral hemorrhage the intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT)
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.109.561795
– start-page: 886
  year: 1999
  ident: 10.1016/j.nicl.2017.02.007_bb0130
  article-title: Quantitative intracerebral brain hemorrhage analysis
– volume: 44
  start-page: 2315
  issue: 8
  year: 2013
  ident: 10.1016/j.nicl.2017.02.007_bb0245
  article-title: Hematoma volume measurement in gradient echo MRI using quantitative susceptibility mapping
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.001638
– volume: 7
  start-page: 391
  issue: 5
  year: 2008
  ident: 10.1016/j.nicl.2017.02.007_bb0015
  article-title: Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70069-3
– volume: 4
  start-page: 540
  year: 2014
  ident: 10.1016/j.nicl.2017.02.007_bb0080
  article-title: Automated delineation of stroke lesions using brain CT images
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2014.03.009
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.nicl.2017.02.007_bb0235
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 1
  start-page: 57
  issue: 1
  year: 1977
  ident: 10.1016/j.nicl.2017.02.007_bb0035
  article-title: Variation with time of the attenuation values of intracranial hematomas
  publication-title: Stroke
– volume: 3
  start-page: 701
  issue: 5
  year: 2007
  ident: 10.1016/j.nicl.2017.02.007_bb0220
  article-title: Management of intracerebral hemorrhage
  publication-title: Vasc. Health Risk Manag.
– start-page: 147
  year: 2008
  ident: 10.1016/j.nicl.2017.02.007_bb0150
  article-title: Preliminary findings of the minimally-invasive surgery plus rtPA for intracerebral hemorrhage evacuation (MISTIE) clinical trial
– volume: 43
  year: 1990
  ident: 10.1016/j.nicl.2017.02.007_bb0090
– volume: 9
  start-page: 381
  issue: 4
  year: 2011
  ident: 10.1016/j.nicl.2017.02.007_bb0030
  article-title: An open source multivariate framework for n-tissue segmentation with evaluation on public data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-011-9109-y
– volume: 46
  start-page: 2470
  issue: 9
  year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0250
  article-title: Accuracy of the ABC/2 score for intracerebral hemorrhage systematic review and analysis of MISTIE, CLEAR-IVH, and CLEAR III
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.007343
– year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0060
– volume: 12
  start-page: 26
  issue: 1
  year: 2008
  ident: 10.1016/j.nicl.2017.02.007_bb0020
  article-title: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2007.06.004
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.nicl.2017.02.007_bb0065
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 42
  start-page: 1569
  issue: 6
  year: 2011
  ident: 10.1016/j.nicl.2017.02.007_bb0070
  article-title: The ABCs of accurate volumetric measurement of cerebral hematoma
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.607861
– year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0200
  article-title: R: a language and environment for statistical computing
– ident: 10.1016/j.nicl.2017.02.007_bb0005
– volume: 12
  start-page: 191
  issue: 4
  year: 2000
  ident: 10.1016/j.nicl.2017.02.007_bb0210
  article-title: Stereotaxic display of brain lesions
  publication-title: Behav. Neurol.
  doi: 10.1155/2000/421719
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.nicl.2017.02.007_bb0120
  article-title: Classification and regression by randomforest
  publication-title: R News
– start-page: 73
  year: 1994
  ident: 10.1016/j.nicl.2017.02.007_bb0185
  article-title: Anisotropic diffusion
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.nicl.2017.02.007_bb0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 987
  issue: 7
  year: 1993
  ident: 10.1016/j.nicl.2017.02.007_bb0045
  article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality
  publication-title: Stroke
  doi: 10.1161/01.STR.24.7.987
– volume: 73
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.nicl.2017.02.007_bb0255
  article-title: Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
  doi: 10.1111/j.1467-9868.2010.00749.x
– year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0165
  article-title: Validated automatic brain extraction of head CT images
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.074
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.nicl.2017.02.007_bb0075
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 46
  start-page: 3270
  issue: 11
  year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0170
  article-title: Quantitative intracerebral hemorrhage localization
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.010369
– volume: 44
  start-page: 237
  issue: 1
  year: 2013
  ident: 10.1016/j.nicl.2017.02.007_bb0100
  article-title: Reliability of hematoma volume measurement at local sites in a multicenter acute intracerebral hemorrhage clinical trial
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.112.667220
– volume: 22
  start-page: 155
  issue: 2
  year: 2012
  ident: 10.1016/j.nicl.2017.02.007_bb0175
  article-title: Reliability of the ABC/2 method in determining acute infarct volume
  publication-title: J. Neuroimaging
  doi: 10.1111/j.1552-6569.2011.00588.x
– volume: 40
  start-page: 1666
  issue: 5
  year: 2009
  ident: 10.1016/j.nicl.2017.02.007_bb0110
  article-title: Intracerebral hemorrhage volume predicts poor neurologic outcome in children
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.541383
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.nicl.2017.02.007_bb0105
  article-title: FSL
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.015
– start-page: 297
  year: 1986
  ident: 10.1016/j.nicl.2017.02.007_bb0085
  article-title: Generalized additive models
  publication-title: Stat. Sci.
– volume: 352
  start-page: 777
  issue: 8
  year: 2005
  ident: 10.1016/j.nicl.2017.02.007_bb0135
  article-title: Recombinant activated factor VII for acute intracerebral hemorrhage
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa042991
– volume: 15
  start-page: 428
  issue: 3
  year: 2011
  ident: 10.1016/j.nicl.2017.02.007_bb0195
  article-title: Association of serum glucose concentrations during acute hospitalization with hematoma expansion, perihematomal edema, and three month outcome among patients with intracerebral hemorrhage
  publication-title: Neurocrit. Care
  doi: 10.1007/s12028-011-9541-8
– volume: 44
  start-page: 627
  issue: 3
  year: 2013
  ident: 10.1016/j.nicl.2017.02.007_bb0155
  article-title: Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.000411
– volume: 14
  start-page: 127
  issue: 2
  year: 2006
  ident: 10.1016/j.nicl.2017.02.007_bb0225
  article-title: Imaging of hemorrhagic stroke
  publication-title: Magn. Reson. Imaging Clin. N. Am.
  doi: 10.1016/j.mric.2006.06.002
– volume: 64
  start-page: 139
  issue: 1
  year: 2015
  ident: 10.1016/j.nicl.2017.02.007_bb0260
  article-title: Generalized additive models for large data sets
  publication-title: J. R. Stat. Soc.: Ser. C: Appl. Stat.
  doi: 10.1111/rssc.12068
SSID ssj0000800766
Score 2.3453097
Snippet Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray computed...
AbstractIntroductionIntracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes....
Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10-15% of all strokes. X-ray computed...
INTRODUCTIONIntracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10-15% of all strokes. X-ray...
• A hemorrhage segmentation algorithm from CT scans is proposed. • Validation using manual segmentation was done on 102 patients from multiple sites. •...
Introduction: Intracerebral hemorrhage (ICH), where a blood vessel ruptures into areas of the brain, accounts for approximately 10–15% of all strokes. X-ray...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Brain - diagnostic imaging
Brain - drug effects
Brain - surgery
Female
Humans
ICH segmentation
Image Processing, Computer-Assisted
Intracerebral hemorrhage
Intracranial Hemorrhages - diagnostic imaging
Intracranial Hemorrhages - drug therapy
Intracranial Hemorrhages - surgery
Logistic Models
Male
Middle Aged
Minimally Invasive Surgical Procedures - methods
Outcome Assessment, Health Care
Probability
Radiology
Regular
Stroke
Tissue Plasminogen Activator - therapeutic use
Tomography, X-Ray Computed
Young Adult
Title PItcHPERFeCT: Primary Intracranial Hemorrhage Probability Estimation using Random Forests on CT
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2213158217300414
https://www.clinicalkey.es/playcontent/1-s2.0-S2213158217300414
https://www.ncbi.nlm.nih.gov/pubmed/28275541
https://www.proquest.com/docview/1876491396
https://pubmed.ncbi.nlm.nih.gov/PMC5328741
https://doaj.org/article/4658cef809d54ddb84795c35f6e34fed
Volume 14
WOSCitedRecordID wos000405984300041&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2213-1582
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000800766
  issn: 2213-1582
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZghRAXtLzDY2UkbiiiSew65gZVq67ErqqloN4sP9muIEVNFokLv31n4qRqAC0XLjkkfsgz43nE428IeeWCYZ4ZlzqrTcoct6m23KQ5wksJx0Zl--vi8wdxelquVnKxV-oLc8IiPHAk3BsGJtL6UI6k48w5A9pUclvwMPYFC96h9gWvZy-Yuuj8INEeVOZ5VqQZL_PuxkxM7kLUWczrEhGwUwysUgvePzBOfzqfv-dQ7hml2SG523mT9F1cxT1yw1f3ye2T7rz8AVGL48bOF9OzmZ8s39JFhJagxziYBSsFwkfnmGu7PQe9At9hd7fZsj_pFPZ-vNZIMTf-Cz3Tldt8o1jLs25qCu8ny4fk02y6nMzTrqRCarlgTapLw2UepHQSVNVYCyk8N044Y4HM1msZIGIMwhRBG-4E-A8QgQlpgg6Fk6x4RA6qTeWfEJqJYDKM90boUzmjrYNoU9qxNyU4mS4hWU9SZTu8cSx78VX1iWUXCtmgkA1qlCtgQ0Je7_p8jyS5tvV75NSuJSJlty9AflQnP-pf8pOQouez6i-jgvqEgdbXTi3-1svXnQaoVaZqaKk-ovyh-GWixTZjCXnZC5OCnYzHM7rym0voAYaJIUrrOCGPo3DtlgaBsQDHL4N5B2I3WPvwS7U-b9HCeYElDbKn_4NYz8gdJEL8BfWcHDTbS_-C3LI_mnW9PSI3xao8ajciPE9-Ta8AksA4CA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PItcHPERFeCT%3A+Primary+Intracranial+Hemorrhage+Probability+Estimation+using+Random+Forests+on+CT&rft.jtitle=NeuroImage+clinical&rft.au=Muschelli%2C+John&rft.au=Sweeney%2C+Elizabeth+M&rft.au=Ullman%2C+Natalie+L&rft.au=Vespa%2C+Paul&rft.date=2017-01-01&rft.eissn=2213-1582&rft.volume=14&rft.spage=379&rft_id=info:doi/10.1016%2Fj.nicl.2017.02.007&rft_id=info%3Apmid%2F28275541&rft.externalDocID=28275541
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F22131582%2FS2213158217X00028%2Fcov150h.gif