Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction

Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 13; číslo 1; s. 3003 - 10
Hlavní autoři: Dupraz, Maxime, Li, Ni, Carnis, Jérôme, Wu, Longfei, Labat, Stéphane, Chatelier, Corentin, van de Poll, Rim, Hofmann, Jan P., Almog, Ehud, Leake, Steven J., Watier, Yves, Lazarev, Sergey, Westermeier, Fabian, Sprung, Michael, Hensen, Emiel J. M., Thomas, Olivier, Rabkin, Eugen, Richard, Marie-Ingrid
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 30.05.2022
Nature Publishing Group
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
AbstractList Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry.
Abstract Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O adsorption or desorption during O exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.
ArticleNumber 3003
Author Li, Ni
Westermeier, Fabian
Richard, Marie-Ingrid
Thomas, Olivier
Sprung, Michael
Dupraz, Maxime
van de Poll, Rim
Rabkin, Eugen
Wu, Longfei
Carnis, Jérôme
Chatelier, Corentin
Hensen, Emiel J. M.
Almog, Ehud
Hofmann, Jan P.
Watier, Yves
Labat, Stéphane
Leake, Steven J.
Lazarev, Sergey
Author_xml – sequence: 1
  givenname: Maxime
  orcidid: 0000-0003-3213-6255
  surname: Dupraz
  fullname: Dupraz, Maxime
  email: maxime.dupraz@esrf.fr
  organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron
– sequence: 2
  givenname: Ni
  surname: Li
  fullname: Li, Ni
  organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron
– sequence: 3
  givenname: Jérôme
  orcidid: 0000-0001-7270-6211
  surname: Carnis
  fullname: Carnis, Jérôme
  organization: ESRF - The European Synchrotron, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334
– sequence: 4
  givenname: Longfei
  surname: Wu
  fullname: Wu, Longfei
  organization: ESRF - The European Synchrotron, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334
– sequence: 5
  givenname: Stéphane
  surname: Labat
  fullname: Labat, Stéphane
  organization: Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334
– sequence: 6
  givenname: Corentin
  surname: Chatelier
  fullname: Chatelier, Corentin
  organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron
– sequence: 7
  givenname: Rim
  surname: van de Poll
  fullname: van de Poll, Rim
  organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology
– sequence: 8
  givenname: Jan P.
  orcidid: 0000-0002-5765-1096
  surname: Hofmann
  fullname: Hofmann, Jan P.
  organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt
– sequence: 9
  givenname: Ehud
  surname: Almog
  fullname: Almog, Ehud
  organization: Department of Materials Science and Engineering, Technion-Israel Institute of Technology
– sequence: 10
  givenname: Steven J.
  orcidid: 0000-0003-1640-0386
  surname: Leake
  fullname: Leake, Steven J.
  organization: ESRF - The European Synchrotron
– sequence: 11
  givenname: Yves
  surname: Watier
  fullname: Watier, Yves
  organization: ESRF - The European Synchrotron
– sequence: 12
  givenname: Sergey
  surname: Lazarev
  fullname: Lazarev, Sergey
  organization: Deutsches Elektronen-Synchrotron (DESY)
– sequence: 13
  givenname: Fabian
  orcidid: 0000-0003-0696-206X
  surname: Westermeier
  fullname: Westermeier, Fabian
  organization: Deutsches Elektronen-Synchrotron (DESY)
– sequence: 14
  givenname: Michael
  surname: Sprung
  fullname: Sprung, Michael
  organization: Deutsches Elektronen-Synchrotron (DESY)
– sequence: 15
  givenname: Emiel J. M.
  orcidid: 0000-0002-9754-2417
  surname: Hensen
  fullname: Hensen, Emiel J. M.
  organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology
– sequence: 16
  givenname: Olivier
  orcidid: 0000-0002-0583-9257
  surname: Thomas
  fullname: Thomas, Olivier
  organization: Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334
– sequence: 17
  givenname: Eugen
  orcidid: 0000-0001-5545-1261
  surname: Rabkin
  fullname: Rabkin, Eugen
  organization: Department of Materials Science and Engineering, Technion-Israel Institute of Technology
– sequence: 18
  givenname: Marie-Ingrid
  orcidid: 0000-0002-8172-3141
  surname: Richard
  fullname: Richard, Marie-Ingrid
  email: mrichard@esrf.fr
  organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35637233$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03788875$$DView record in HAL
BookMark eNp9Uk1v1DAUjFARLaV_gAOKxAUOAX_buSBVFdCVVoIDnC3HednNKmsH26nUf4-z2UK7h_ry7OeZ8chvXhdnzjsoircYfcKIqs-RYSZkhQipKOI1qfCL4oIghissCT17tD8vrmLcobxojRVjr4pzygXNN_SiaFZ7s-ndpkxbKDtjIZVxCvOmjCmY3uViEpS-y_1x9CFBW-6nIfXVAZ1PP1PpjPOjCam3A8SyncKsGMDY1Hv3pnjZmSHC1bFeFr-_ff11c1utf3xf3VyvK8slS5VArAHbWiFFbnBODLFCtaBsZ2sCgBpQ2DaYQ41rYwW0qsO8kVxIZoBgelmsFt3Wm50eQ7834V570-tDw4eNPlrUtDFStqzprGUMSKtsYyVR1mDRsFbVWevLojVOzR5aCy5_xvBE9OmN67d64-90jTkWjGeBj4vA9oR2e73Wcw9RqZSS_G42_uH4WPB_JohJ7_toYRiMAz9FTYTEdS0onaHvT6A7PwWXv_WAYhxJJjLq3WP3_95_GHsGqAVgg48xQKdtn8echzXPfNAY6TlkegmZziHTh5Dp2QE5oT6oP0uiCymOczQg_Lf9DOsvCank4Q
CitedBy_id crossref_primary_10_1002_aenm_202405320
crossref_primary_10_1021_acsaem_5c00228
crossref_primary_10_1039_D5TA05486A
crossref_primary_10_1107_S1600576724004163
crossref_primary_10_1002_aenm_202301647
crossref_primary_10_1039_D4NR02634A
crossref_primary_10_1107_S1600576723007720
crossref_primary_10_1039_D3NR00456B
crossref_primary_10_1021_jacs_3c08619
crossref_primary_10_1016_j_nanoen_2022_107919
crossref_primary_10_1016_j_checat_2025_101302
crossref_primary_10_1039_D3NR04342H
crossref_primary_10_1021_acs_jpclett_5c00481
crossref_primary_10_1002_adma_202418146
crossref_primary_10_1002_aenm_202202097
crossref_primary_10_1002_adma_202312524
crossref_primary_10_1038_s41524_024_01340_4
crossref_primary_10_1002_smll_202308408
crossref_primary_10_1002_smtd_202500740
crossref_primary_10_34133_research_0842
Cites_doi 10.1103/PhysRevB.69.144113
10.1038/sdata.2016.80
10.1021/acsnano.5b02986
10.1103/PhysRevLett.81.2819
10.1038/s41598-020-57561-2
10.1038/s41467-018-05464-2
10.1021/acs.jpcc.5b04511
10.1107/S1600576720010985
10.1038/srep29941
10.1021/acscatal.8b02371
10.1016/S0360-0564(08)60366-1
10.1016/j.actamat.2019.12.030
10.1016/0039-6028(94)90701-3
10.1038/s41467-020-18622-2
10.1107/S0021889813017214
10.1006/jcph.1995.1039
10.1126/science.aaf7680
10.1088/0266-5611/21/1/004
10.1021/jp804051e
10.1039/D0TC00265H
10.1038/natrevmats.2017.59
10.1038/ncomms1994
10.1002/anie.201102619
10.1364/AO.21.002758
10.1021/acs.jpclett.6b01038
10.1038/376238a0
10.1038/nmat4033
10.1107/S1600576716012279
10.1364/JOSAA.23.001179
10.1039/C5NR02529J
10.1038/s41598-019-53774-2
10.1063/1.5055235
10.1107/S0021889811009009
10.1038/nmat2607
10.1103/PhysRevLett.93.146104
10.1103/PhysRevB.33.7983
10.1016/j.ultramic.2012.07.024
10.1016/j.nanoen.2016.04.047
10.1021/nl402875m
10.1103/PhysRevB.83.134118
10.1038/nmat2132
10.1088/0965-0393/18/1/015012
10.1364/OL.3.000027
10.1002/smll.201804726
10.1038/nmat3458
10.1088/0953-8984/20/18/184018
10.1126/science.aah6133
10.5281/zenodo.3257616
10.1021/nl0495256
10.1021/cr5002657
10.1038/nmat2400
10.1103/PhysRevB.68.140101
10.1016/j.coche.2018.12.012
10.1021/acscatal.9b03692
10.1016/S0360-0564(02)45013-4
10.1103/PhysRevLett.120.126101
10.1038/s41467-018-06575-6
10.1038/s41929-019-0364-x
10.1021/jz4024699
10.1016/j.susc.2019.05.002
10.1021/nl903717z
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
5PM
DOA
DOI 10.1038/s41467-022-30592-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



Publicly Available Content Database
PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_3ba77d4bfcc44e2d8cbc728ca16b4d89
PMC9151645
oai:HAL:hal-03788875v1
35637233
10_1038_s41467_022_30592_1
Genre Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 818823
  funderid: https://doi.org/10.13039/100010663
– fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 818823
– fundername: ;
  grantid: 818823
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
1XC
4.4
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
VOOES
5PM
ID FETCH-LOGICAL-c574t-604becdc676c57552a2c68de8cfc92ee0be81cb15e919ac6ed8f15b75674ae213
IEDL.DBID M7P
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805647600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Fri Oct 03 12:50:45 EDT 2025
Tue Nov 04 02:00:51 EST 2025
Tue Oct 14 20:58:19 EDT 2025
Fri Sep 05 06:19:14 EDT 2025
Tue Oct 07 07:01:47 EDT 2025
Thu Apr 03 06:57:49 EDT 2025
Sat Nov 29 02:11:07 EST 2025
Tue Nov 18 21:08:05 EST 2025
Fri Feb 21 02:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-604becdc676c57552a2c68de8cfc92ee0be81cb15e919ac6ed8f15b75674ae213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5765-1096
0000-0001-7270-6211
0000-0002-9754-2417
0000-0003-1640-0386
0000-0001-5545-1261
0000-0002-0583-9257
0000-0002-8172-3141
0000-0003-0696-206X
0000-0003-3213-6255
0000-0002-0821-8309
OpenAccessLink https://www.proquest.com/docview/2671450746?pq-origsite=%requestingapplication%
PMID 35637233
PQID 2671450746
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_3ba77d4bfcc44e2d8cbc728ca16b4d89
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9151645
hal_primary_oai_HAL_hal_03788875v1
proquest_miscellaneous_2671996331
proquest_journals_2671450746
pubmed_primary_35637233
crossref_citationtrail_10_1038_s41467_022_30592_1
crossref_primary_10_1038_s41467_022_30592_1
springer_journals_10_1038_s41467_022_30592_1
PublicationCentury 2000
PublicationDate 2022-05-30
PublicationDateYYYYMMDD 2022-05-30
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ZhouXWJohnsonRAWadleyHNGMisfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayersPhys. Rev. B20046914411310.1103/PhysRevB.69.1441132004PhRvB..69n4113Z1:CAS:528:DC%2BD2cXktVGru7k%3D
Favre-NicolinVLeakeSChushkinYFree log-likelihood as an unbiased metric for coherent diffraction imagingSci. Rep.2020101:CAS:528:DC%2BB3cXkvVahtLw%3D32060293702179610.1038/s41598-020-57561-22020NatSR..10.2664F
RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNat. Mater.200982912981:CAS:528:DC%2BD1MXjsFKntb8%3D1930808810.1038/nmat24002009NatMa...8..291R
ZhangJYangHFangJZouSSynthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedraNano Lett.2010106386441:CAS:528:DC%2BC3cXnt1Sqsw%3D%3D2007806810.1021/nl903717z2010NanoL..10..638Z
WangHDirect and continuous strain control of catalysts with tunable battery electrode materialsScience2016354103110361:CAS:528:DC%2BC28XhvV2gsLjI2788502810.1126/science.aaf76802016Sci...354.1031W
TranRSurface energies of elemental crystalsSci. Data201631:CAS:528:DC%2BC28XhsFCmsLzO27622853502087310.1038/sdata.2016.80
LuoMGuoSStrain-controlled electrocatalysis on multimetallic nanomaterialsNat. Rev. Mater.20172170591:CAS:528:DC%2BC2sXhsFOitbzP10.1038/natrevmats.2017.592017NatRM...217059L
BuLBiaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysisScience2016354141014141:CAS:528:DC%2BC28XitVyjtrvN2798020710.1126/science.aah61332016Sci...354.1410B
ZhengHGrain boundary properties of elemental metalsActa Mater.202018640491:CAS:528:DC%2BB3cXnvFWkug%3D%3D10.1016/j.actamat.2019.12.0302020AcMat.186...40Z
WangDStructurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalystsNat. Mater.20131281871:CAS:528:DC%2BC38XhsFOmtLbI2310415410.1038/nmat34582013JNuM..440...81W
KimDActive site localization of methane oxidation on Pt nanocrystalsNat. Commun.2018930143615610903810.1038/s41467-018-05464-22018NatCo...9.3422K1:CAS:528:DC%2BC1cXhs1Wiu77O
LukeDRRelaxed averaged alternating reflections for diffraction imagingInverse Probl.2004213750214616310.1088/0266-5611/21/1/0042005InvPr..21...37L1146.78008
SunXJiangKZhangNGuoSHuangXCrystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic propertiesACS Nano20159763476401:CAS:528:DC%2BC2MXhtFKjtL7E2617205610.1021/acsnano.5b02986
KriegnerDWintersbergerEStanglJxrayutilities : a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectorsJ. Appl. Crystallogr.201346116211701:CAS:528:DC%2BC3sXhtFChsbvJ24046508376907210.1107/S0021889813017214
Favre-NicolinVPyNX: high-performance computing toolkit for coherent X-ray imaging based on operatorsJ. Appl. Crystallogr.202053140414131:CAS:528:DC%2BB3cXhvF2hsrbM10.1107/S1600576720010985
MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B20036814010110.1103/PhysRevB.68.1401012003PhRvB..68n0101M1:CAS:528:DC%2BD3sXovVSrtrg%3D
ZhangXLuGComputational design of core/shell nanoparticles for oxygen reduction reactionsJ. Phys. Chem. Lett.201452922971:CAS:528:DC%2BC3sXitVWnsLvO2627070210.1021/jz4024699
CherukaraMJChaWHarderRJAnisotropic nano-scale resolution in 3D bragg coherent diffraction imagingAppl. Phys. Lett.201811320310110.1063/1.50552352018ApPhL.113t3101C1:CAS:528:DC%2BC1cXit1Chtr%2FK
Castellanos-GomezALocal strain engineering in atomically thin MoS2Nano Lett.201313536153661:CAS:528:DC%2BC3sXhsFelt77N2408352010.1021/nl402875m2013NanoL..13.5361C
TaoFFCrozierPAAtomic-scale observations of catalyst structures under reaction conditions and during catalysisChem. Rev.2016116348735391:CAS:528:DC%2BC28Xjsl2gsr8%3D2695585010.1021/cr5002657
NewtonMCLeakeSJHarderRRobinsonIKThree-dimensional imaging of strain in a single ZnO nanorodNat. Mater.201091201241:CAS:528:DC%2BC3cXhtVOnt7w%3D2002363210.1038/nmat26072010NatMa...9..120N
StrasserPKühlSDealloyed Pt-based core-shell oxygen reduction electrocatalystsNano Energy2016291661771:CAS:528:DC%2BC28Xnslalu7o%3D10.1016/j.nanoen.2016.04.047
van DeelenTWHernández MejíaCde JongKPControl of metal-support interactions in heterogeneous catalysts to enhance activity and selectivityNat. Catal.2019295597010.1038/s41929-019-0364-x1:CAS:528:DC%2BC1MXisVWqtLfJ
GerchbergRSaxtonOA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246
HammerBNørskovJKWhy gold is the noblest of all the metalsNature19953762382401:CAS:528:DyaK2MXntFSmurk%3D10.1038/376238a01995Natur.376..238H
SharmaAHickmanJGazitNRabkinEMishinYNickel nanoparticles set a new record of strengthNat. Commun.201891:STN:280:DC%2BB3czmtlKjtQ%3D%3D30291239617375010.1038/s41467-018-06575-62018NatCo...9.4102S
ShengHWKramerMJCadienAFujitaTChenMWHighly optimized embedded-atom-method potentials for fourteen fcc metalsPhys. Rev. B20118313411810.1103/PhysRevB.83.1341182011PhRvB..83m4118S1:CAS:528:DC%2BC3MXlsV2ksrw%3D
SneedBTYoungAPTsungC-KBuilding up strain in colloidal metal nanoparticle catalystsNanoscale2015712248122651:CAS:528:DC%2BC2MXosFKmsbY%3D2614748610.1039/C5NR02529J2015Nanos...712248S
PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comp. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.10391995JCoPh.117....1P0830.65120
ZhouKLiYCatalysis based on nanocrystals with well-defined facetsAngew. Chem. Int. Ed.2012516026131:CAS:528:DC%2BC3MXhsFGrsr7K10.1002/anie.201102619
HsiehP-LWuS-HLiangT-YChenL-JHuangMHGaAs wafers possessing facet-dependent electrical conductivity propertiesJ. Mater. Chem. C20208545654601:CAS:528:DC%2BB3cXls1GntLo%3D10.1039/D0TC00265H
WesterströmRStructure and reactivity of a model catalyst alloy under realistic conditionsJ. Condens. Matter Phys.20082018401810.1088/0953-8984/20/18/1840182008JPCM...20r4018W1:CAS:528:DC%2BD1cXmsVWmsro%3D
ClarkJNHuangXHarderRRobinsonIKHigh-resolution three-dimensional partially coherent diffraction imagingNat. Commun.201231:STN:280:DC%2BC38fmt1Chtg%3D%3D2287181210.1038/ncomms19942012NatCo...3..993C
GoodmanDCatalysis: from single crystals to the “real world”Surf. Sci.1994299-3008378481:CAS:528:DyaK2cXhsVGgu7g%3D10.1016/0039-6028(94)90701-31994SurSc.299..837G
FoilesSMBaskesMIDawMSEmbedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloysPhys. Rev. B198633798379911:CAS:528:DyaL28XksVOgsbk%3D10.1103/PhysRevB.33.79831986PhRvB..33.7983F
FienupJRReconstruction of an object from the modulus of its Fourier transformOpt. Lett.1978327291:STN:280:DC%2BD1MrlvVaqug%3D%3D1968468510.1364/OL.3.0000271978OptL....3...27F
MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys. Rev. Lett.1998812819282210.1103/PhysRevLett.81.28191998PhRvL..81.2819M
LiuFWuCYangGYangSCO oxidation over strained Pt(100) surface: A DFT studyJ. Phys. Chem. C201511915500155051:CAS:528:DC%2BC2MXhtVakurnE10.1021/acs.jpcc.5b04511
ChapmanHNHigh-resolution Ab Initio three-dimensional x-ray diffraction microscopyJ. Opt. Soc. Am. A2006231179120010.1364/JOSAA.23.0011792006OSAJ...23.1179C
TianNZhouZ-YSunS-GPlatinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticlesJ. Phys. Chem. C200811219801198171:CAS:528:DC%2BD1cXhtlGrs7%2FL10.1021/jp804051e
StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.20091801501210.1088/0965-0393/18/1/0150122010MSMSE..18a5012S
CarnisJTowards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: Artefacts and sign convention in reconstructionsSci. Rep.201991131:CAS:528:DC%2BC1MXit1KrtrbN10.1038/s41598-019-53774-2
LiWXOxidation of Pt(110)Phys. Rev. Lett.2004931461041:STN:280:DC%2BD2crlslemtQ%3D%3D1552481610.1103/PhysRevLett.93.1461042004PhRvL..93n6104L
VendelboSBVisualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidationNat. Mater.2014138848901:CAS:528:DC%2BC2cXhtFGqu77E2503873010.1038/nmat40332014NatMa..13..884V
NarayananREl-SayedMAShape-dependent catalytic activity of platinum nanoparticles in colloidal solutionNano Lett.20044610.1021/nl04952561:CAS:528:DC%2BD2cXktlahsLc%3D
UlvestadAIn situ 3D imaging of catalysis induced strain in gold nanoparticlesJ. Phys. Chem. Lett.20167300830131:CAS:528:DC%2BC28XhtFOktbrF2742921910.1021/acs.jpclett.6b01038
MandulaOElzo AizarnaMEymeryJBurghammerMFavre-NicolinVPyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructuresJ. Appl. Crystallogr.201649184218481:CAS:528:DC%2BC28Xhs1WqurrP10.1107/S1600576716012279
RuYDislocation network with pair-coupling structure in {111} γ/γ’ interface of Ni-based single crystal superalloySci. Rep.201661:CAS:528:DC%2BC28XhtlCit7rE27511822498069410.1038/srep299412016NatSR...629941R
WeissmüllerJAdsorption-strain coupling at solid surfacesCurr. Opin. Chem. Eng.201924455310.1016/j.coche.2018.12.012
HuangMHFacet-dependent optical properties of semiconductor nanocrystalsSmall201915180472610.1002/smll.2018047261:CAS:528:DC%2BC1MXht1ehsbg%3D
GrothausmannRAutomated quantitative 3D analysis of faceting of particles in tomographic datasetsUltramicroscopy201212265751:CAS:528:DC%2BC38XhslKgt7nN2301066510.1016/j.ultramic.2012.07.024
Favre-NicolinVCorauxJRichardM-IRenevierHFast computation of scattering maps of nanostructures using graphical processing unitsJ. Appl. Crystallogr.2011446356401:CAS:528:DC%2BC3MXmt1Gntb4%3D10.1107/S0021889811009009
PassosARThree-dimensional strain dynamics govern the hysteresis in heterogeneous catalysisNat. Commun.2020111:CAS:528:DC%2BB3cXhvFSisL%2FP32948780750185110.1038/s41467-020-18622-22020NatCo..11.4733P
TranRAnisotropic work function of elemental crystalsSurf. Sci.201968748551:CAS:528:DC%2BC1MXpvVymt7Y%3D10.1016/j.susc.2019.05.0022019SurSc.687...48T
PlodinecMNerlHCGirgsdiesFSchlöglRLunkenbeinTInsights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEMACS Catal.202010318331931:C
SB Vendelbo (30592_CR11) 2014; 13
R Gerchberg (30592_CR51) 1972; 35
V Favre-Nicolin (30592_CR61) 2011; 44
M Mavrikakis (30592_CR15) 1998; 81
MC Newton (30592_CR33) 2010; 9
B Hammer (30592_CR17) 1995; 376
MH Huang (30592_CR6) 2019; 15
I Robinson (30592_CR26) 2009; 8
K Zhou (30592_CR5) 2012; 51
L Bu (30592_CR23) 2016; 354
HW Sheng (30592_CR60) 2011; 83
M Plodinec (30592_CR12) 2020; 10
D Wang (30592_CR9) 2013; 12
M Luo (30592_CR21) 2017; 2
R Narayanan (30592_CR4) 2004; 4
D Kim (30592_CR28) 2018; 9
MJ Cherukara (30592_CR32) 2018; 113
R Tran (30592_CR39) 2016; 3
A Sharma (30592_CR18) 2018; 9
WJ Huang (30592_CR24) 2008; 7
SM Foiles (30592_CR34) 1986; 33
X Sun (30592_CR10) 2015; 9
H Wang (30592_CR14) 2016; 354
X Zhang (30592_CR19) 2014; 5
J Carnis (30592_CR35) 2019; 9
D Kriegner (30592_CR48) 2013; 46
A Stukowski (30592_CR62) 2009; 18
JN Clark (30592_CR55) 2012; 3
A Ulvestad (30592_CR27) 2016; 7
HN Chapman (30592_CR31) 2006; 23
JR Fienup (30592_CR54) 1982; 21
30592_CR57
N Tian (30592_CR3) 2008; 112
30592_CR1
D Goodman (30592_CR2) 1994; 299-300
JR Fienup (30592_CR52) 1978; 3
V Favre-Nicolin (30592_CR56) 2020; 10
S Plimpton (30592_CR58) 1995; 117
TW van Deelen (30592_CR45) 2019; 2
S Marchesini (30592_CR53) 2003; 68
WX Li (30592_CR37) 2004; 93
J Weissmüller (30592_CR42) 2019; 24
30592_CR16
H Zheng (30592_CR41) 2020; 186
A Castellanos-Gomez (30592_CR22) 2013; 13
P-L Hsieh (30592_CR7) 2020; 8
J Zhang (30592_CR8) 2010; 10
R Tran (30592_CR40) 2019; 687
F Liu (30592_CR25) 2015; 119
GTKK Gunasooriya (30592_CR36) 2018; 8
FF Tao (30592_CR13) 2016; 116
R Westerström (30592_CR47) 2008; 20
DR Luke (30592_CR50) 2004; 21
XW Zhou (30592_CR59) 2004; 69
U Hejral (30592_CR46) 2018; 120
Y Ru (30592_CR38) 2016; 6
P Strasser (30592_CR20) 2016; 29
V Favre-Nicolin (30592_CR49) 2020; 53
O Mandula (30592_CR30) 2016; 49
R Grothausmann (30592_CR43) 2012; 122
AR Passos (30592_CR29) 2020; 11
BT Sneed (30592_CR44) 2015; 7
References_xml – reference: RuYDislocation network with pair-coupling structure in {111} γ/γ’ interface of Ni-based single crystal superalloySci. Rep.201661:CAS:528:DC%2BC28XhtlCit7rE27511822498069410.1038/srep299412016NatSR...629941R
– reference: Hammer, B. & Nørskov, J. Theoretical Surf. Sci. and catalysis – calculations and concepts. In Impact of Surface Science on Catalysis, vol. 45 of Adv. Catal., 71–129 (Academic Press, 2000).
– reference: MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys. Rev. Lett.1998812819282210.1103/PhysRevLett.81.28191998PhRvL..81.2819M
– reference: Ertl, G. Oscillatory Catalytic Reactions at Single-Crystal Surfaces. In Eley, D. D., Pines, H. & Weisz, P. B. (eds.) Adv. Catal., vol. 37, 213–277 (Academic Press, 1990).
– reference: GrothausmannRAutomated quantitative 3D analysis of faceting of particles in tomographic datasetsUltramicroscopy201212265751:CAS:528:DC%2BC38XhslKgt7nN2301066510.1016/j.ultramic.2012.07.024
– reference: NarayananREl-SayedMAShape-dependent catalytic activity of platinum nanoparticles in colloidal solutionNano Lett.20044610.1021/nl04952561:CAS:528:DC%2BD2cXktlahsLc%3D
– reference: VendelboSBVisualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidationNat. Mater.2014138848901:CAS:528:DC%2BC2cXhtFGqu77E2503873010.1038/nmat40332014NatMa..13..884V
– reference: StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.20091801501210.1088/0965-0393/18/1/0150122010MSMSE..18a5012S
– reference: CarnisJTowards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: Artefacts and sign convention in reconstructionsSci. Rep.201991131:CAS:528:DC%2BC1MXit1KrtrbN10.1038/s41598-019-53774-2
– reference: ChapmanHNHigh-resolution Ab Initio three-dimensional x-ray diffraction microscopyJ. Opt. Soc. Am. A2006231179120010.1364/JOSAA.23.0011792006OSAJ...23.1179C
– reference: TianNZhouZ-YSunS-GPlatinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticlesJ. Phys. Chem. C200811219801198171:CAS:528:DC%2BD1cXhtlGrs7%2FL10.1021/jp804051e
– reference: TranRSurface energies of elemental crystalsSci. Data201631:CAS:528:DC%2BC28XhsFCmsLzO27622853502087310.1038/sdata.2016.80
– reference: MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B20036814010110.1103/PhysRevB.68.1401012003PhRvB..68n0101M1:CAS:528:DC%2BD3sXovVSrtrg%3D
– reference: ZhangJYangHFangJZouSSynthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedraNano Lett.2010106386441:CAS:528:DC%2BC3cXnt1Sqsw%3D%3D2007806810.1021/nl903717z2010NanoL..10..638Z
– reference: KimDActive site localization of methane oxidation on Pt nanocrystalsNat. Commun.2018930143615610903810.1038/s41467-018-05464-22018NatCo...9.3422K1:CAS:528:DC%2BC1cXhs1Wiu77O
– reference: GunasooriyaGTKKSaeysMCO adsorption on Pt(111): From isolated molecules to ordered high-coverage structuresACS Catal.2018810225102331:CAS:528:DC%2BC1cXhslKqtrrE10.1021/acscatal.8b02371
– reference: TranRAnisotropic work function of elemental crystalsSurf. Sci.201968748551:CAS:528:DC%2BC1MXpvVymt7Y%3D10.1016/j.susc.2019.05.0022019SurSc.687...48T
– reference: LukeDRRelaxed averaged alternating reflections for diffraction imagingInverse Probl.2004213750214616310.1088/0266-5611/21/1/0042005InvPr..21...37L1146.78008
– reference: Favre-NicolinVCorauxJRichardM-IRenevierHFast computation of scattering maps of nanostructures using graphical processing unitsJ. Appl. Crystallogr.2011446356401:CAS:528:DC%2BC3MXmt1Gntb4%3D10.1107/S0021889811009009
– reference: PlodinecMNerlHCGirgsdiesFSchlöglRLunkenbeinTInsights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEMACS Catal.202010318331931:CAS:528:DC%2BB3cXjtlSqsL8%3D10.1021/acscatal.9b03692
– reference: MandulaOElzo AizarnaMEymeryJBurghammerMFavre-NicolinVPyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructuresJ. Appl. Crystallogr.201649184218481:CAS:528:DC%2BC28Xhs1WqurrP10.1107/S1600576716012279
– reference: HuangWJCoordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffractionNat. Mater.200873083131:CAS:528:DC%2BD1cXjsFOgtLo%3D1832726310.1038/nmat21322008NatMa...7..308H
– reference: ZhangXLuGComputational design of core/shell nanoparticles for oxygen reduction reactionsJ. Phys. Chem. Lett.201452922971:CAS:528:DC%2BC3sXitVWnsLvO2627070210.1021/jz4024699
– reference: Favre-NicolinVPyNX: high-performance computing toolkit for coherent X-ray imaging based on operatorsJ. Appl. Crystallogr.202053140414131:CAS:528:DC%2BB3cXhvF2hsrbM10.1107/S1600576720010985
– reference: ZhouKLiYCatalysis based on nanocrystals with well-defined facetsAngew. Chem. Int. Ed.2012516026131:CAS:528:DC%2BC3MXhsFGrsr7K10.1002/anie.201102619
– reference: CherukaraMJChaWHarderRJAnisotropic nano-scale resolution in 3D bragg coherent diffraction imagingAppl. Phys. Lett.201811320310110.1063/1.50552352018ApPhL.113t3101C1:CAS:528:DC%2BC1cXit1Chtr%2FK
– reference: Carnis, J. Bcdi python package, https://github.com/carnisj/bcdi, https://doi.org/10.5281/zenodo.3257616 (2021).
– reference: GerchbergRSaxtonOA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246
– reference: FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221275827691:STN:280:DC%2BC3c3ms1GhtQ%3D%3D2039611410.1364/AO.21.0027581982ApOpt..21.2758F
– reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comp. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.10391995JCoPh.117....1P0830.65120
– reference: HejralUIdentification of a catalytically highly active surface phase for co oxidation over ptrh nanoparticles under operando reaction conditionsPhys. Rev. Lett.20181201261011:CAS:528:DC%2BC1MXltFSrt7g%3D2969408210.1103/PhysRevLett.120.1261012018PhRvL.120l6101H
– reference: BuLBiaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysisScience2016354141014141:CAS:528:DC%2BC28XitVyjtrvN2798020710.1126/science.aah61332016Sci...354.1410B
– reference: PassosARThree-dimensional strain dynamics govern the hysteresis in heterogeneous catalysisNat. Commun.2020111:CAS:528:DC%2BB3cXhvFSisL%2FP32948780750185110.1038/s41467-020-18622-22020NatCo..11.4733P
– reference: KriegnerDWintersbergerEStanglJxrayutilities : a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectorsJ. Appl. Crystallogr.201346116211701:CAS:528:DC%2BC3sXhtFChsbvJ24046508376907210.1107/S0021889813017214
– reference: WangDStructurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalystsNat. Mater.20131281871:CAS:528:DC%2BC38XhsFOmtLbI2310415410.1038/nmat34582013JNuM..440...81W
– reference: LuoMGuoSStrain-controlled electrocatalysis on multimetallic nanomaterialsNat. Rev. Mater.20172170591:CAS:528:DC%2BC2sXhsFOitbzP10.1038/natrevmats.2017.592017NatRM...217059L
– reference: LiuFWuCYangGYangSCO oxidation over strained Pt(100) surface: A DFT studyJ. Phys. Chem. C201511915500155051:CAS:528:DC%2BC2MXhtVakurnE10.1021/acs.jpcc.5b04511
– reference: ShengHWKramerMJCadienAFujitaTChenMWHighly optimized embedded-atom-method potentials for fourteen fcc metalsPhys. Rev. B20118313411810.1103/PhysRevB.83.1341182011PhRvB..83m4118S1:CAS:528:DC%2BC3MXlsV2ksrw%3D
– reference: UlvestadAIn situ 3D imaging of catalysis induced strain in gold nanoparticlesJ. Phys. Chem. Lett.20167300830131:CAS:528:DC%2BC28XhtFOktbrF2742921910.1021/acs.jpclett.6b01038
– reference: LiWXOxidation of Pt(110)Phys. Rev. Lett.2004931461041:STN:280:DC%2BD2crlslemtQ%3D%3D1552481610.1103/PhysRevLett.93.1461042004PhRvL..93n6104L
– reference: FienupJRReconstruction of an object from the modulus of its Fourier transformOpt. Lett.1978327291:STN:280:DC%2BD1MrlvVaqug%3D%3D1968468510.1364/OL.3.0000271978OptL....3...27F
– reference: HsiehP-LWuS-HLiangT-YChenL-JHuangMHGaAs wafers possessing facet-dependent electrical conductivity propertiesJ. Mater. Chem. C20208545654601:CAS:528:DC%2BB3cXls1GntLo%3D10.1039/D0TC00265H
– reference: ZhengHGrain boundary properties of elemental metalsActa Mater.202018640491:CAS:528:DC%2BB3cXnvFWkug%3D%3D10.1016/j.actamat.2019.12.0302020AcMat.186...40Z
– reference: GoodmanDCatalysis: from single crystals to the “real world”Surf. Sci.1994299-3008378481:CAS:528:DyaK2cXhsVGgu7g%3D10.1016/0039-6028(94)90701-31994SurSc.299..837G
– reference: NewtonMCLeakeSJHarderRRobinsonIKThree-dimensional imaging of strain in a single ZnO nanorodNat. Mater.201091201241:CAS:528:DC%2BC3cXhtVOnt7w%3D2002363210.1038/nmat26072010NatMa...9..120N
– reference: Favre-NicolinVLeakeSChushkinYFree log-likelihood as an unbiased metric for coherent diffraction imagingSci. Rep.2020101:CAS:528:DC%2BB3cXkvVahtLw%3D32060293702179610.1038/s41598-020-57561-22020NatSR..10.2664F
– reference: WesterströmRStructure and reactivity of a model catalyst alloy under realistic conditionsJ. Condens. Matter Phys.20082018401810.1088/0953-8984/20/18/1840182008JPCM...20r4018W1:CAS:528:DC%2BD1cXmsVWmsro%3D
– reference: WeissmüllerJAdsorption-strain coupling at solid surfacesCurr. Opin. Chem. Eng.201924455310.1016/j.coche.2018.12.012
– reference: van DeelenTWHernández MejíaCde JongKPControl of metal-support interactions in heterogeneous catalysts to enhance activity and selectivityNat. Catal.2019295597010.1038/s41929-019-0364-x1:CAS:528:DC%2BC1MXisVWqtLfJ
– reference: ClarkJNHuangXHarderRRobinsonIKHigh-resolution three-dimensional partially coherent diffraction imagingNat. Commun.201231:STN:280:DC%2BC38fmt1Chtg%3D%3D2287181210.1038/ncomms19942012NatCo...3..993C
– reference: TaoFFCrozierPAAtomic-scale observations of catalyst structures under reaction conditions and during catalysisChem. Rev.2016116348735391:CAS:528:DC%2BC28Xjsl2gsr8%3D2695585010.1021/cr5002657
– reference: HuangMHFacet-dependent optical properties of semiconductor nanocrystalsSmall201915180472610.1002/smll.2018047261:CAS:528:DC%2BC1MXht1ehsbg%3D
– reference: ZhouXWJohnsonRAWadleyHNGMisfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayersPhys. Rev. B20046914411310.1103/PhysRevB.69.1441132004PhRvB..69n4113Z1:CAS:528:DC%2BD2cXktVGru7k%3D
– reference: HammerBNørskovJKWhy gold is the noblest of all the metalsNature19953762382401:CAS:528:DyaK2MXntFSmurk%3D10.1038/376238a01995Natur.376..238H
– reference: StrasserPKühlSDealloyed Pt-based core-shell oxygen reduction electrocatalystsNano Energy2016291661771:CAS:528:DC%2BC28Xnslalu7o%3D10.1016/j.nanoen.2016.04.047
– reference: SneedBTYoungAPTsungC-KBuilding up strain in colloidal metal nanoparticle catalystsNanoscale2015712248122651:CAS:528:DC%2BC2MXosFKmsbY%3D2614748610.1039/C5NR02529J2015Nanos...712248S
– reference: Castellanos-GomezALocal strain engineering in atomically thin MoS2Nano Lett.201313536153661:CAS:528:DC%2BC3sXhsFelt77N2408352010.1021/nl402875m2013NanoL..13.5361C
– reference: WangHDirect and continuous strain control of catalysts with tunable battery electrode materialsScience2016354103110361:CAS:528:DC%2BC28XhvV2gsLjI2788502810.1126/science.aaf76802016Sci...354.1031W
– reference: SunXJiangKZhangNGuoSHuangXCrystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic propertiesACS Nano20159763476401:CAS:528:DC%2BC2MXhtFKjtL7E2617205610.1021/acsnano.5b02986
– reference: RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNat. Mater.200982912981:CAS:528:DC%2BD1MXjsFKntb8%3D1930808810.1038/nmat24002009NatMa...8..291R
– reference: SharmaAHickmanJGazitNRabkinEMishinYNickel nanoparticles set a new record of strengthNat. Commun.201891:STN:280:DC%2BB3czmtlKjtQ%3D%3D30291239617375010.1038/s41467-018-06575-62018NatCo...9.4102S
– reference: FoilesSMBaskesMIDawMSEmbedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloysPhys. Rev. B198633798379911:CAS:528:DyaL28XksVOgsbk%3D10.1103/PhysRevB.33.79831986PhRvB..33.7983F
– volume: 69
  start-page: 144113
  year: 2004
  ident: 30592_CR59
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.144113
– volume: 3
  year: 2016
  ident: 30592_CR39
  publication-title: Sci. Data
  doi: 10.1038/sdata.2016.80
– volume: 9
  start-page: 7634
  year: 2015
  ident: 30592_CR10
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02986
– volume: 81
  start-page: 2819
  year: 1998
  ident: 30592_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 10
  year: 2020
  ident: 30592_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-57561-2
– volume: 9
  year: 2018
  ident: 30592_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05464-2
– volume: 119
  start-page: 15500
  year: 2015
  ident: 30592_CR25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b04511
– volume: 53
  start-page: 1404
  year: 2020
  ident: 30592_CR49
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576720010985
– volume: 6
  year: 2016
  ident: 30592_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep29941
– volume: 8
  start-page: 10225
  year: 2018
  ident: 30592_CR36
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02371
– ident: 30592_CR1
  doi: 10.1016/S0360-0564(08)60366-1
– volume: 186
  start-page: 40
  year: 2020
  ident: 30592_CR41
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.12.030
– volume: 299-300
  start-page: 837
  year: 1994
  ident: 30592_CR2
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(94)90701-3
– volume: 11
  year: 2020
  ident: 30592_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18622-2
– volume: 46
  start-page: 1162
  year: 2013
  ident: 30592_CR48
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813017214
– volume: 117
  start-page: 1
  year: 1995
  ident: 30592_CR58
  publication-title: J. Comp. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 354
  start-page: 1031
  year: 2016
  ident: 30592_CR14
  publication-title: Science
  doi: 10.1126/science.aaf7680
– volume: 21
  start-page: 37
  year: 2004
  ident: 30592_CR50
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/21/1/004
– volume: 112
  start-page: 19801
  year: 2008
  ident: 30592_CR3
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804051e
– volume: 8
  start-page: 5456
  year: 2020
  ident: 30592_CR7
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC00265H
– volume: 2
  start-page: 17059
  year: 2017
  ident: 30592_CR21
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.59
– volume: 3
  year: 2012
  ident: 30592_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1994
– volume: 51
  start-page: 602
  year: 2012
  ident: 30592_CR5
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201102619
– volume: 21
  start-page: 2758
  year: 1982
  ident: 30592_CR54
  publication-title: Appl. Opt.
  doi: 10.1364/AO.21.002758
– volume: 7
  start-page: 3008
  year: 2016
  ident: 30592_CR27
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b01038
– volume: 376
  start-page: 238
  year: 1995
  ident: 30592_CR17
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 13
  start-page: 884
  year: 2014
  ident: 30592_CR11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4033
– volume: 49
  start-page: 1842
  year: 2016
  ident: 30592_CR30
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576716012279
– volume: 23
  start-page: 1179
  year: 2006
  ident: 30592_CR31
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.23.001179
– volume: 7
  start-page: 12248
  year: 2015
  ident: 30592_CR44
  publication-title: Nanoscale
  doi: 10.1039/C5NR02529J
– volume: 9
  start-page: 1
  year: 2019
  ident: 30592_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53774-2
– volume: 113
  start-page: 203101
  year: 2018
  ident: 30592_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5055235
– volume: 44
  start-page: 635
  year: 2011
  ident: 30592_CR61
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811009009
– volume: 9
  start-page: 120
  year: 2010
  ident: 30592_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2607
– volume: 35
  start-page: 237
  year: 1972
  ident: 30592_CR51
  publication-title: Optik
– volume: 93
  start-page: 146104
  year: 2004
  ident: 30592_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.146104
– volume: 33
  start-page: 7983
  year: 1986
  ident: 30592_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.7983
– volume: 122
  start-page: 65
  year: 2012
  ident: 30592_CR43
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2012.07.024
– volume: 29
  start-page: 166
  year: 2016
  ident: 30592_CR20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.047
– volume: 13
  start-page: 5361
  year: 2013
  ident: 30592_CR22
  publication-title: Nano Lett.
  doi: 10.1021/nl402875m
– volume: 83
  start-page: 134118
  year: 2011
  ident: 30592_CR60
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.134118
– volume: 7
  start-page: 308
  year: 2008
  ident: 30592_CR24
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2132
– volume: 18
  start-page: 015012
  year: 2009
  ident: 30592_CR62
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015012
– volume: 3
  start-page: 27
  year: 1978
  ident: 30592_CR52
  publication-title: Opt. Lett.
  doi: 10.1364/OL.3.000027
– volume: 15
  start-page: 1804726
  year: 2019
  ident: 30592_CR6
  publication-title: Small
  doi: 10.1002/smll.201804726
– volume: 12
  start-page: 81
  year: 2013
  ident: 30592_CR9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 20
  start-page: 184018
  year: 2008
  ident: 30592_CR47
  publication-title: J. Condens. Matter Phys.
  doi: 10.1088/0953-8984/20/18/184018
– volume: 354
  start-page: 1410
  year: 2016
  ident: 30592_CR23
  publication-title: Science
  doi: 10.1126/science.aah6133
– ident: 30592_CR57
  doi: 10.5281/zenodo.3257616
– volume: 4
  start-page: 6
  year: 2004
  ident: 30592_CR4
  publication-title: Nano Lett.
  doi: 10.1021/nl0495256
– volume: 116
  start-page: 3487
  year: 2016
  ident: 30592_CR13
  publication-title: Chem. Rev.
  doi: 10.1021/cr5002657
– volume: 8
  start-page: 291
  year: 2009
  ident: 30592_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2400
– volume: 68
  start-page: 140101
  year: 2003
  ident: 30592_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.140101
– volume: 24
  start-page: 45
  year: 2019
  ident: 30592_CR42
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2018.12.012
– volume: 10
  start-page: 3183
  year: 2020
  ident: 30592_CR12
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b03692
– ident: 30592_CR16
  doi: 10.1016/S0360-0564(02)45013-4
– volume: 120
  start-page: 126101
  year: 2018
  ident: 30592_CR46
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.126101
– volume: 9
  year: 2018
  ident: 30592_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06575-6
– volume: 2
  start-page: 955
  year: 2019
  ident: 30592_CR45
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 5
  start-page: 292
  year: 2014
  ident: 30592_CR19
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz4024699
– volume: 687
  start-page: 48
  year: 2019
  ident: 30592_CR40
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2019.05.002
– volume: 10
  start-page: 638
  year: 2010
  ident: 30592_CR8
  publication-title: Nano Lett.
  doi: 10.1021/nl903717z
SSID ssj0000391844
Score 2.5370169
Snippet Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in...
Abstract Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements,...
Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3003
SubjectTerms 639/301/119/1002
639/638/440/950
639/638/77/887
Carbon monoxide
Catalysis
Chemical properties
Chemical Sciences
Condensed Matter
Cristallography
Crystallography
Displacements (lattice)
Energy conversion
Evolution
Humanities and Social Sciences
Material chemistry
Materials Science
Mechanics
Mechanics of materials
multidisciplinary
Nanocrystals
Nanoparticles
Oxidation
Physicochemical properties
Physics
Platinum
Science
Science (multidisciplinary)
Stoichiometry
Substrates
X ray imagery
SummonAdditionalLinks – databaseName: Open Access: DOAJ - Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SKngR6-e2VaJ406Wb7-yxFUsFKT0o9BbySQu6r7zdV_C_7yS777VrUS_edpNskp2ZJDNk5jcIvbe2CSxk8EGrZM2JV7XjraoD8V7SKLxsU0k2oU5P9fl5e3Yn1Vf2CRvhgUfCHTBnlQrcJe85jzRo77yi2lsiHQ-6hO6B1nPHmCp7MGvBdOFTlEzD9EHPy55QnNdBpaA1mZ1EBbAfzpeL7A55X9e87zL5271pOY6On6DHkx6JD8f576AHsXuKHo6ZJX89Q-7Lz5J-CIN-h5P1ccD9apkfcF-yQuASSYQXCcqvCrh5wMW5sC6t4e1swJ3twKaeXOfwGNGIQcsssRDP0ffjz98-ndRTOoXaC8WHWjYcGBa8VBIKhKCWeqlD1D75lsbYuKiJd0TElrTWyxh0IsIpIRW3kRL2Am11iy6-QjjYZMHUiaA_JDjibZtIE6lLxEVJEtMVImvSGj9hjeef-2HKnTfTZmSHAXaYwg5DKvRh883ViLTx19ZHmWOblhkluxSA7JiJMOZfslOhd8DvWR8nh19NLmsyzj7Yctcw0v5aHMy0vntDpSJc5FwtFXq7qYaVma9bbBcXq7ENWJOMQRcvR-nZDMWEZIoyViE1k6vZXOY13eVFQf9uQUeTXFTo41oCb6f1Z3rt_g967aFHNC-g7DzR7KOtYbmKr9G2vx4u--WbsgJvAJNONcE
  priority: 102
  providerName: Directory of Open Access Journals
Title Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction
URI https://link.springer.com/article/10.1038/s41467-022-30592-1
https://www.ncbi.nlm.nih.gov/pubmed/35637233
https://www.proquest.com/docview/2671450746
https://www.proquest.com/docview/2671996331
https://hal.science/hal-03788875
https://pubmed.ncbi.nlm.nih.gov/PMC9151645
https://doaj.org/article/3ba77d4bfcc44e2d8cbc728ca16b4d89
Volume 13
WOSCitedRecordID wos000805647600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC1IvvB-BsjKIG0SN384JtahVK8EqQiAtXCw_aSWaXTa7lfj32E52q6WiFy5RYjt-zXg8tsffAPBG68oRl8AHteAlRVaUhtaidMhajj2zvA7Z2YQYj-VkUjfDhls3mFWuZGIW1G5q0x75PuYCUZa8Y7yf_SqT16h0ujq40NgCOwklgWTTvWa9x5LQzyWlw12Zisj9jmbJkE3Yo2KBS7QxH2XY_jjLnCWjyOsa53XDyb9OT_OkdHzvf5tzH9wd1FF40PPPA3DLtw_Bnd5B5e9HwJxeZC9GMKqJMGjrF7BbztML7LJzCZgvJMFpiOGzjJHuYLZRLHPq-NUsYKvbuDQfLPBgfzESRmU1X6l4DL4eH335cFIOXhlKywRdlLyike7OcsFjAGNYY8ul89IGW2PvK-MlsgYxX6NaW-6dDIgZwbig2mNEnoDtdtr6ZwA6HXRcMfmohoSoKeg6oMpjE5DxHAUiC4BWtFF2gCxPjfup8tE5kaqnp4r0VJmeChXg7fqfWQ_YcWPqw0TydcoEtp0DpvMfaugYRYwWwlETrKXUYyetsQJLqxE31Mm6AK8jw2zkcXLwUaWwKsH1xyXhZSxpb8UIahATnbriggK8WkfHAZ5ObXTrp8s-TVyUEhKzeNqz37oowjgRmJACiA3G3KjLZkx7fpZBxOuo6nHKCvBuxcJX1fp3fz2_uRUvwC5OYytZV1R7YHsxX_qX4La9XJx38xHYEhORn3IEdg6Pxs3nUd4DGeVhG58N-x5jmtNPzbc_2OBJTg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF92OhgEFwgqjxI7ZzQKg8ql11We2hSL0Zx3ZoJUiWzW5R_xS_kbGTbLVU9NYDt43jdWznm_E4npkPoZfGpI65kHzQSJFwYmVS8FwmjlgrqM-syMtINiEnE3VwkE830O8-Fia4VfY6MSpqV9vwjXybCkl4Ftgx3s1-JoE1Kpyu9hQaLSz2_Mkv2LI1b0cf4f2-onT30_6HYdKxCiQ2k3yRiJRDv50VUkBBllFDrVDOK1vanHqfFl4RW5DM5yQ3VninSpIVMhOSG08Jg3YvoctgRlAVXQWnq286Idu64ryLzUmZ2m541ETRZR4MGZqQtfUv0gTAqnYYnDDPWrhnHTX_Oq2Ni-Duzf9t-m6hG525jXda-biNNnx1B11tCThP7qJi9COyNGEwg3FprF_gZjkPP3ATyTNwDLjCdQnls5gD3uHog5nE2nA1XeDKVPWs9zDEbeAnBmM8hozcQ18uZID30WZVV_4hws6UBnaEHsysEiwhk5ck9bQoSeEFKZkaINJjQdsuJXsY3HcdXQOY0i1-NOBHR_xoMkCvV_-ZtQlJzq39PkBsVTMkE48F9fyb7iZGs8JI6XhRWsu5p07ZwkqqrCGi4E7lA_QCALrWxnBnrENZGugIYMt7DE_a6oGnOzXY6FPUDdDz1W1QYOFUylS-XrZ1YNPNGDTxoIX76lEsE0xSxgZIrgnCWl_W71RHhzFJeg6mrODZAL3pRea0W_-er0fnj-IZujbc_zzW49Fk7zG6ToNcB0-SdAttLuZL_wRdsceLo2b-NCoGjL5etCj9AUapoU4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLbGuIgX7pfAAIPgCaLGl9jOA0KDUa3aVPUBpL15ji9sEiSlSYf21_h12E7SqUzsbQ-8tY7rxO53jo_jz-cD4LVSmSEmJB9UnKUUaZ6WtOCpQVozbHPNChfFJvh0Kg4OitkG-D2chQm0ysEnRkdtah3ekY8w44jmQR1j5HpaxGxn_GH-Mw0KUmGndZDT6CCyZ09_-eVb836y4__rNxiPP3_5tJv2CgOpzjltU5ZR3wejGWe-IM-xwpoJY4V2usDWZqUVSJcotwUqlGbWCIfykueMU2UxIr7dK-AqD0nLI21wtnq_EzKvC0r7czoZEaOGRq8U6fM-qMEpWpsLo2SAn-GOAiHzfLR7nrT5185tnBDHt__nobwDbvVhONzu7OYu2LDVPXC9E-Y8vQ_KyY-o3gR9eAyd0raFzXIRPsAmimrAeBAL1s6Xz2NueAMjNzONtf23WQsrVdXzgXkIuwOh0Afp8SjJA_D1Ujr4EGxWdWUfA2iUU36laH345XyEpAqHMotLh0rLkCMiAWjAhdR9qvbQue8yUgaIkB2WpMeSjFiSKAFvV7-Zd4lKLqz9McBtVTMkGY8F9eKb7AdGklJxbmjptKbUYiN0qTkWWiFWUiOKBLzyYF1rY3d7X4ayLMgU-KXwib_T1gBC2bvHRp4hMAEvV5e9Ywu7Vaqy9bKr4xfjhPgmHnXQX92K5IxwTEgC-JpRrD3L-pXq-CgmTy98iMtonoB3g_mcPda_x-vJxb14AW54C5L7k-neU3ATBxMPBJNsC2y2i6V9Bq7pk_a4WTyPPgKCw8u2pD8VzaoL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+the+facet+surface+strain+state+of+supported+multi-faceted+Pt+nanoparticles+during+reaction&rft.jtitle=Nature+communications&rft.au=Dupraz%2C+Maxime&rft.au=Li%2C+Ni&rft.au=Carnis%2C+J%C3%A9r%C3%B4me&rft.au=Wu%2C+Longfei&rft.date=2022-05-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-30592-1&rft_id=info%3Apmid%2F35637233&rft.externalDocID=PMC9151645
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon