Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction
Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographi...
Uloženo v:
| Vydáno v: | Nature communications Ročník 13; číslo 1; s. 3003 - 10 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
30.05.2022
Nature Publishing Group Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {
hkl
} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O
2
adsorption or desorption during O
2
exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.
Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry. |
|---|---|
| AbstractList | Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry. Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice displacement and strain evolution depend on the crystallographic facets of Pt nanoparticles during CO oxidation reaction, providing new insights in the relationship between facet-related surface strain and chemistry. Abstract Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O adsorption or desorption during O exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical { hkl } facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O 2 adsorption or desorption during O 2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields.Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in widespread applications in catalysis, energy conversion or sensing. Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here, we reveal in situ, in three-dimensions and at the nanoscale, the volume, surface and interface strain evolution of single supported platinum nanocrystals during reaction using coherent x-ray diffractive imaging. Interestingly, identical {hkl} facets show equivalent catalytic response during non-stoichiometric cycles. Periodic strain variations are rationalised in terms of O2 adsorption or desorption during O2 exposure or CO oxidation under reducing conditions, respectively. During stoichiometric CO oxidation, the strain evolution is, however, no longer facet dependent. Large strain variations are observed in localised areas, in particular in the vicinity of the substrate/particle interface, suggesting a significant influence of the substrate on the reactivity. These findings will improve the understanding of dynamic properties in catalysis and related fields. |
| ArticleNumber | 3003 |
| Author | Li, Ni Westermeier, Fabian Richard, Marie-Ingrid Thomas, Olivier Sprung, Michael Dupraz, Maxime van de Poll, Rim Rabkin, Eugen Wu, Longfei Carnis, Jérôme Chatelier, Corentin Hensen, Emiel J. M. Almog, Ehud Hofmann, Jan P. Watier, Yves Labat, Stéphane Leake, Steven J. Lazarev, Sergey |
| Author_xml | – sequence: 1 givenname: Maxime orcidid: 0000-0003-3213-6255 surname: Dupraz fullname: Dupraz, Maxime email: maxime.dupraz@esrf.fr organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron – sequence: 2 givenname: Ni surname: Li fullname: Li, Ni organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron – sequence: 3 givenname: Jérôme orcidid: 0000-0001-7270-6211 surname: Carnis fullname: Carnis, Jérôme organization: ESRF - The European Synchrotron, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334 – sequence: 4 givenname: Longfei surname: Wu fullname: Wu, Longfei organization: ESRF - The European Synchrotron, Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334 – sequence: 5 givenname: Stéphane surname: Labat fullname: Labat, Stéphane organization: Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334 – sequence: 6 givenname: Corentin surname: Chatelier fullname: Chatelier, Corentin organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron – sequence: 7 givenname: Rim surname: van de Poll fullname: van de Poll, Rim organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology – sequence: 8 givenname: Jan P. orcidid: 0000-0002-5765-1096 surname: Hofmann fullname: Hofmann, Jan P. organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt – sequence: 9 givenname: Ehud surname: Almog fullname: Almog, Ehud organization: Department of Materials Science and Engineering, Technion-Israel Institute of Technology – sequence: 10 givenname: Steven J. orcidid: 0000-0003-1640-0386 surname: Leake fullname: Leake, Steven J. organization: ESRF - The European Synchrotron – sequence: 11 givenname: Yves surname: Watier fullname: Watier, Yves organization: ESRF - The European Synchrotron – sequence: 12 givenname: Sergey surname: Lazarev fullname: Lazarev, Sergey organization: Deutsches Elektronen-Synchrotron (DESY) – sequence: 13 givenname: Fabian orcidid: 0000-0003-0696-206X surname: Westermeier fullname: Westermeier, Fabian organization: Deutsches Elektronen-Synchrotron (DESY) – sequence: 14 givenname: Michael surname: Sprung fullname: Sprung, Michael organization: Deutsches Elektronen-Synchrotron (DESY) – sequence: 15 givenname: Emiel J. M. orcidid: 0000-0002-9754-2417 surname: Hensen fullname: Hensen, Emiel J. M. organization: Laboratory for Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology – sequence: 16 givenname: Olivier orcidid: 0000-0002-0583-9257 surname: Thomas fullname: Thomas, Olivier organization: Aix Marseille Université, CNRS, Université de Toulon, IM2NP UMR 7334 – sequence: 17 givenname: Eugen orcidid: 0000-0001-5545-1261 surname: Rabkin fullname: Rabkin, Eugen organization: Department of Materials Science and Engineering, Technion-Israel Institute of Technology – sequence: 18 givenname: Marie-Ingrid orcidid: 0000-0002-8172-3141 surname: Richard fullname: Richard, Marie-Ingrid email: mrichard@esrf.fr organization: Univ. Grenoble Alpes, CEA Grenoble, IRIG, MEM, NRS, ESRF - The European Synchrotron |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35637233$$D View this record in MEDLINE/PubMed https://hal.science/hal-03788875$$DView record in HAL |
| BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxAUOAX_buSBVFdCVVoIDnC3HednNKmsH26nUf4-z2UK7h_ry7OeZ8chvXhdnzjsoircYfcKIqs-RYSZkhQipKOI1qfCL4oIghissCT17tD8vrmLcobxojRVjr4pzygXNN_SiaFZ7s-ndpkxbKDtjIZVxCvOmjCmY3uViEpS-y_1x9CFBW-6nIfXVAZ1PP1PpjPOjCam3A8SyncKsGMDY1Hv3pnjZmSHC1bFeFr-_ff11c1utf3xf3VyvK8slS5VArAHbWiFFbnBODLFCtaBsZ2sCgBpQ2DaYQ41rYwW0qsO8kVxIZoBgelmsFt3Wm50eQ7834V570-tDw4eNPlrUtDFStqzprGUMSKtsYyVR1mDRsFbVWevLojVOzR5aCy5_xvBE9OmN67d64-90jTkWjGeBj4vA9oR2e73Wcw9RqZSS_G42_uH4WPB_JohJ7_toYRiMAz9FTYTEdS0onaHvT6A7PwWXv_WAYhxJJjLq3WP3_95_GHsGqAVgg48xQKdtn8echzXPfNAY6TlkegmZziHTh5Dp2QE5oT6oP0uiCymOczQg_Lf9DOsvCank4Q |
| CitedBy_id | crossref_primary_10_1002_aenm_202405320 crossref_primary_10_1021_acsaem_5c00228 crossref_primary_10_1039_D5TA05486A crossref_primary_10_1107_S1600576724004163 crossref_primary_10_1002_aenm_202301647 crossref_primary_10_1039_D4NR02634A crossref_primary_10_1107_S1600576723007720 crossref_primary_10_1039_D3NR00456B crossref_primary_10_1021_jacs_3c08619 crossref_primary_10_1016_j_nanoen_2022_107919 crossref_primary_10_1016_j_checat_2025_101302 crossref_primary_10_1039_D3NR04342H crossref_primary_10_1021_acs_jpclett_5c00481 crossref_primary_10_1002_adma_202418146 crossref_primary_10_1002_aenm_202202097 crossref_primary_10_1002_adma_202312524 crossref_primary_10_1038_s41524_024_01340_4 crossref_primary_10_1002_smll_202308408 crossref_primary_10_1002_smtd_202500740 crossref_primary_10_34133_research_0842 |
| Cites_doi | 10.1103/PhysRevB.69.144113 10.1038/sdata.2016.80 10.1021/acsnano.5b02986 10.1103/PhysRevLett.81.2819 10.1038/s41598-020-57561-2 10.1038/s41467-018-05464-2 10.1021/acs.jpcc.5b04511 10.1107/S1600576720010985 10.1038/srep29941 10.1021/acscatal.8b02371 10.1016/S0360-0564(08)60366-1 10.1016/j.actamat.2019.12.030 10.1016/0039-6028(94)90701-3 10.1038/s41467-020-18622-2 10.1107/S0021889813017214 10.1006/jcph.1995.1039 10.1126/science.aaf7680 10.1088/0266-5611/21/1/004 10.1021/jp804051e 10.1039/D0TC00265H 10.1038/natrevmats.2017.59 10.1038/ncomms1994 10.1002/anie.201102619 10.1364/AO.21.002758 10.1021/acs.jpclett.6b01038 10.1038/376238a0 10.1038/nmat4033 10.1107/S1600576716012279 10.1364/JOSAA.23.001179 10.1039/C5NR02529J 10.1038/s41598-019-53774-2 10.1063/1.5055235 10.1107/S0021889811009009 10.1038/nmat2607 10.1103/PhysRevLett.93.146104 10.1103/PhysRevB.33.7983 10.1016/j.ultramic.2012.07.024 10.1016/j.nanoen.2016.04.047 10.1021/nl402875m 10.1103/PhysRevB.83.134118 10.1038/nmat2132 10.1088/0965-0393/18/1/015012 10.1364/OL.3.000027 10.1002/smll.201804726 10.1038/nmat3458 10.1088/0953-8984/20/18/184018 10.1126/science.aah6133 10.5281/zenodo.3257616 10.1021/nl0495256 10.1021/cr5002657 10.1038/nmat2400 10.1103/PhysRevB.68.140101 10.1016/j.coche.2018.12.012 10.1021/acscatal.9b03692 10.1016/S0360-0564(02)45013-4 10.1103/PhysRevLett.120.126101 10.1038/s41467-018-06575-6 10.1038/s41929-019-0364-x 10.1021/jz4024699 10.1016/j.susc.2019.05.002 10.1021/nl903717z |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1038/s41467-022-30592-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Physics |
| EISSN | 2041-1723 |
| EndPage | 10 |
| ExternalDocumentID | oai_doaj_org_article_3ba77d4bfcc44e2d8cbc728ca16b4d89 PMC9151645 oai:HAL:hal-03788875v1 35637233 10_1038_s41467_022_30592_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 818823 funderid: https://doi.org/10.13039/100010663 – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 818823 – fundername: ; grantid: 818823 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 1XC 4.4 BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH VOOES 5PM |
| ID | FETCH-LOGICAL-c574t-604becdc676c57552a2c68de8cfc92ee0be81cb15e919ac6ed8f15b75674ae213 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805647600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Fri Oct 03 12:50:45 EDT 2025 Tue Nov 04 02:00:51 EST 2025 Tue Oct 14 20:58:19 EDT 2025 Fri Sep 05 06:19:14 EDT 2025 Tue Oct 07 07:01:47 EDT 2025 Thu Apr 03 06:57:49 EDT 2025 Sat Nov 29 02:11:07 EST 2025 Tue Nov 18 21:08:05 EST 2025 Fri Feb 21 02:38:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2022. The Author(s). Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c574t-604becdc676c57552a2c68de8cfc92ee0be81cb15e919ac6ed8f15b75674ae213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5765-1096 0000-0001-7270-6211 0000-0002-9754-2417 0000-0003-1640-0386 0000-0001-5545-1261 0000-0002-0583-9257 0000-0002-8172-3141 0000-0003-0696-206X 0000-0003-3213-6255 0000-0002-0821-8309 |
| OpenAccessLink | https://www.proquest.com/docview/2671450746?pq-origsite=%requestingapplication% |
| PMID | 35637233 |
| PQID | 2671450746 |
| PQPubID | 546298 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ba77d4bfcc44e2d8cbc728ca16b4d89 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9151645 hal_primary_oai_HAL_hal_03788875v1 proquest_miscellaneous_2671996331 proquest_journals_2671450746 pubmed_primary_35637233 crossref_citationtrail_10_1038_s41467_022_30592_1 crossref_primary_10_1038_s41467_022_30592_1 springer_journals_10_1038_s41467_022_30592_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-30 |
| PublicationDateYYYYMMDD | 2022-05-30 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2022 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | ZhouXWJohnsonRAWadleyHNGMisfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayersPhys. Rev. B20046914411310.1103/PhysRevB.69.1441132004PhRvB..69n4113Z1:CAS:528:DC%2BD2cXktVGru7k%3D Favre-NicolinVLeakeSChushkinYFree log-likelihood as an unbiased metric for coherent diffraction imagingSci. Rep.2020101:CAS:528:DC%2BB3cXkvVahtLw%3D32060293702179610.1038/s41598-020-57561-22020NatSR..10.2664F RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNat. Mater.200982912981:CAS:528:DC%2BD1MXjsFKntb8%3D1930808810.1038/nmat24002009NatMa...8..291R ZhangJYangHFangJZouSSynthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedraNano Lett.2010106386441:CAS:528:DC%2BC3cXnt1Sqsw%3D%3D2007806810.1021/nl903717z2010NanoL..10..638Z WangHDirect and continuous strain control of catalysts with tunable battery electrode materialsScience2016354103110361:CAS:528:DC%2BC28XhvV2gsLjI2788502810.1126/science.aaf76802016Sci...354.1031W TranRSurface energies of elemental crystalsSci. Data201631:CAS:528:DC%2BC28XhsFCmsLzO27622853502087310.1038/sdata.2016.80 LuoMGuoSStrain-controlled electrocatalysis on multimetallic nanomaterialsNat. Rev. Mater.20172170591:CAS:528:DC%2BC2sXhsFOitbzP10.1038/natrevmats.2017.592017NatRM...217059L BuLBiaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysisScience2016354141014141:CAS:528:DC%2BC28XitVyjtrvN2798020710.1126/science.aah61332016Sci...354.1410B ZhengHGrain boundary properties of elemental metalsActa Mater.202018640491:CAS:528:DC%2BB3cXnvFWkug%3D%3D10.1016/j.actamat.2019.12.0302020AcMat.186...40Z WangDStructurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalystsNat. Mater.20131281871:CAS:528:DC%2BC38XhsFOmtLbI2310415410.1038/nmat34582013JNuM..440...81W KimDActive site localization of methane oxidation on Pt nanocrystalsNat. Commun.2018930143615610903810.1038/s41467-018-05464-22018NatCo...9.3422K1:CAS:528:DC%2BC1cXhs1Wiu77O LukeDRRelaxed averaged alternating reflections for diffraction imagingInverse Probl.2004213750214616310.1088/0266-5611/21/1/0042005InvPr..21...37L1146.78008 SunXJiangKZhangNGuoSHuangXCrystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic propertiesACS Nano20159763476401:CAS:528:DC%2BC2MXhtFKjtL7E2617205610.1021/acsnano.5b02986 KriegnerDWintersbergerEStanglJxrayutilities : a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectorsJ. Appl. Crystallogr.201346116211701:CAS:528:DC%2BC3sXhtFChsbvJ24046508376907210.1107/S0021889813017214 Favre-NicolinVPyNX: high-performance computing toolkit for coherent X-ray imaging based on operatorsJ. Appl. Crystallogr.202053140414131:CAS:528:DC%2BB3cXhvF2hsrbM10.1107/S1600576720010985 MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B20036814010110.1103/PhysRevB.68.1401012003PhRvB..68n0101M1:CAS:528:DC%2BD3sXovVSrtrg%3D ZhangXLuGComputational design of core/shell nanoparticles for oxygen reduction reactionsJ. Phys. Chem. Lett.201452922971:CAS:528:DC%2BC3sXitVWnsLvO2627070210.1021/jz4024699 CherukaraMJChaWHarderRJAnisotropic nano-scale resolution in 3D bragg coherent diffraction imagingAppl. Phys. Lett.201811320310110.1063/1.50552352018ApPhL.113t3101C1:CAS:528:DC%2BC1cXit1Chtr%2FK Castellanos-GomezALocal strain engineering in atomically thin MoS2Nano Lett.201313536153661:CAS:528:DC%2BC3sXhsFelt77N2408352010.1021/nl402875m2013NanoL..13.5361C TaoFFCrozierPAAtomic-scale observations of catalyst structures under reaction conditions and during catalysisChem. Rev.2016116348735391:CAS:528:DC%2BC28Xjsl2gsr8%3D2695585010.1021/cr5002657 NewtonMCLeakeSJHarderRRobinsonIKThree-dimensional imaging of strain in a single ZnO nanorodNat. Mater.201091201241:CAS:528:DC%2BC3cXhtVOnt7w%3D2002363210.1038/nmat26072010NatMa...9..120N StrasserPKühlSDealloyed Pt-based core-shell oxygen reduction electrocatalystsNano Energy2016291661771:CAS:528:DC%2BC28Xnslalu7o%3D10.1016/j.nanoen.2016.04.047 van DeelenTWHernández MejíaCde JongKPControl of metal-support interactions in heterogeneous catalysts to enhance activity and selectivityNat. Catal.2019295597010.1038/s41929-019-0364-x1:CAS:528:DC%2BC1MXisVWqtLfJ GerchbergRSaxtonOA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246 HammerBNørskovJKWhy gold is the noblest of all the metalsNature19953762382401:CAS:528:DyaK2MXntFSmurk%3D10.1038/376238a01995Natur.376..238H SharmaAHickmanJGazitNRabkinEMishinYNickel nanoparticles set a new record of strengthNat. Commun.201891:STN:280:DC%2BB3czmtlKjtQ%3D%3D30291239617375010.1038/s41467-018-06575-62018NatCo...9.4102S ShengHWKramerMJCadienAFujitaTChenMWHighly optimized embedded-atom-method potentials for fourteen fcc metalsPhys. Rev. B20118313411810.1103/PhysRevB.83.1341182011PhRvB..83m4118S1:CAS:528:DC%2BC3MXlsV2ksrw%3D SneedBTYoungAPTsungC-KBuilding up strain in colloidal metal nanoparticle catalystsNanoscale2015712248122651:CAS:528:DC%2BC2MXosFKmsbY%3D2614748610.1039/C5NR02529J2015Nanos...712248S PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comp. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.10391995JCoPh.117....1P0830.65120 ZhouKLiYCatalysis based on nanocrystals with well-defined facetsAngew. Chem. Int. Ed.2012516026131:CAS:528:DC%2BC3MXhsFGrsr7K10.1002/anie.201102619 HsiehP-LWuS-HLiangT-YChenL-JHuangMHGaAs wafers possessing facet-dependent electrical conductivity propertiesJ. Mater. Chem. C20208545654601:CAS:528:DC%2BB3cXls1GntLo%3D10.1039/D0TC00265H WesterströmRStructure and reactivity of a model catalyst alloy under realistic conditionsJ. Condens. Matter Phys.20082018401810.1088/0953-8984/20/18/1840182008JPCM...20r4018W1:CAS:528:DC%2BD1cXmsVWmsro%3D ClarkJNHuangXHarderRRobinsonIKHigh-resolution three-dimensional partially coherent diffraction imagingNat. Commun.201231:STN:280:DC%2BC38fmt1Chtg%3D%3D2287181210.1038/ncomms19942012NatCo...3..993C GoodmanDCatalysis: from single crystals to the “real world”Surf. Sci.1994299-3008378481:CAS:528:DyaK2cXhsVGgu7g%3D10.1016/0039-6028(94)90701-31994SurSc.299..837G FoilesSMBaskesMIDawMSEmbedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloysPhys. Rev. B198633798379911:CAS:528:DyaL28XksVOgsbk%3D10.1103/PhysRevB.33.79831986PhRvB..33.7983F FienupJRReconstruction of an object from the modulus of its Fourier transformOpt. Lett.1978327291:STN:280:DC%2BD1MrlvVaqug%3D%3D1968468510.1364/OL.3.0000271978OptL....3...27F MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys. Rev. Lett.1998812819282210.1103/PhysRevLett.81.28191998PhRvL..81.2819M LiuFWuCYangGYangSCO oxidation over strained Pt(100) surface: A DFT studyJ. Phys. Chem. C201511915500155051:CAS:528:DC%2BC2MXhtVakurnE10.1021/acs.jpcc.5b04511 ChapmanHNHigh-resolution Ab Initio three-dimensional x-ray diffraction microscopyJ. Opt. Soc. Am. A2006231179120010.1364/JOSAA.23.0011792006OSAJ...23.1179C TianNZhouZ-YSunS-GPlatinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticlesJ. Phys. Chem. C200811219801198171:CAS:528:DC%2BD1cXhtlGrs7%2FL10.1021/jp804051e StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.20091801501210.1088/0965-0393/18/1/0150122010MSMSE..18a5012S CarnisJTowards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: Artefacts and sign convention in reconstructionsSci. Rep.201991131:CAS:528:DC%2BC1MXit1KrtrbN10.1038/s41598-019-53774-2 LiWXOxidation of Pt(110)Phys. Rev. Lett.2004931461041:STN:280:DC%2BD2crlslemtQ%3D%3D1552481610.1103/PhysRevLett.93.1461042004PhRvL..93n6104L VendelboSBVisualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidationNat. Mater.2014138848901:CAS:528:DC%2BC2cXhtFGqu77E2503873010.1038/nmat40332014NatMa..13..884V NarayananREl-SayedMAShape-dependent catalytic activity of platinum nanoparticles in colloidal solutionNano Lett.20044610.1021/nl04952561:CAS:528:DC%2BD2cXktlahsLc%3D UlvestadAIn situ 3D imaging of catalysis induced strain in gold nanoparticlesJ. Phys. Chem. Lett.20167300830131:CAS:528:DC%2BC28XhtFOktbrF2742921910.1021/acs.jpclett.6b01038 MandulaOElzo AizarnaMEymeryJBurghammerMFavre-NicolinVPyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructuresJ. Appl. Crystallogr.201649184218481:CAS:528:DC%2BC28Xhs1WqurrP10.1107/S1600576716012279 RuYDislocation network with pair-coupling structure in {111} γ/γ’ interface of Ni-based single crystal superalloySci. Rep.201661:CAS:528:DC%2BC28XhtlCit7rE27511822498069410.1038/srep299412016NatSR...629941R WeissmüllerJAdsorption-strain coupling at solid surfacesCurr. Opin. Chem. Eng.201924455310.1016/j.coche.2018.12.012 HuangMHFacet-dependent optical properties of semiconductor nanocrystalsSmall201915180472610.1002/smll.2018047261:CAS:528:DC%2BC1MXht1ehsbg%3D GrothausmannRAutomated quantitative 3D analysis of faceting of particles in tomographic datasetsUltramicroscopy201212265751:CAS:528:DC%2BC38XhslKgt7nN2301066510.1016/j.ultramic.2012.07.024 Favre-NicolinVCorauxJRichardM-IRenevierHFast computation of scattering maps of nanostructures using graphical processing unitsJ. Appl. Crystallogr.2011446356401:CAS:528:DC%2BC3MXmt1Gntb4%3D10.1107/S0021889811009009 PassosARThree-dimensional strain dynamics govern the hysteresis in heterogeneous catalysisNat. Commun.2020111:CAS:528:DC%2BB3cXhvFSisL%2FP32948780750185110.1038/s41467-020-18622-22020NatCo..11.4733P TranRAnisotropic work function of elemental crystalsSurf. Sci.201968748551:CAS:528:DC%2BC1MXpvVymt7Y%3D10.1016/j.susc.2019.05.0022019SurSc.687...48T PlodinecMNerlHCGirgsdiesFSchlöglRLunkenbeinTInsights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEMACS Catal.202010318331931:C SB Vendelbo (30592_CR11) 2014; 13 R Gerchberg (30592_CR51) 1972; 35 V Favre-Nicolin (30592_CR61) 2011; 44 M Mavrikakis (30592_CR15) 1998; 81 MC Newton (30592_CR33) 2010; 9 B Hammer (30592_CR17) 1995; 376 MH Huang (30592_CR6) 2019; 15 I Robinson (30592_CR26) 2009; 8 K Zhou (30592_CR5) 2012; 51 L Bu (30592_CR23) 2016; 354 HW Sheng (30592_CR60) 2011; 83 M Plodinec (30592_CR12) 2020; 10 D Wang (30592_CR9) 2013; 12 M Luo (30592_CR21) 2017; 2 R Narayanan (30592_CR4) 2004; 4 D Kim (30592_CR28) 2018; 9 MJ Cherukara (30592_CR32) 2018; 113 R Tran (30592_CR39) 2016; 3 A Sharma (30592_CR18) 2018; 9 WJ Huang (30592_CR24) 2008; 7 SM Foiles (30592_CR34) 1986; 33 X Sun (30592_CR10) 2015; 9 H Wang (30592_CR14) 2016; 354 X Zhang (30592_CR19) 2014; 5 J Carnis (30592_CR35) 2019; 9 D Kriegner (30592_CR48) 2013; 46 A Stukowski (30592_CR62) 2009; 18 JN Clark (30592_CR55) 2012; 3 A Ulvestad (30592_CR27) 2016; 7 HN Chapman (30592_CR31) 2006; 23 JR Fienup (30592_CR54) 1982; 21 30592_CR57 N Tian (30592_CR3) 2008; 112 30592_CR1 D Goodman (30592_CR2) 1994; 299-300 JR Fienup (30592_CR52) 1978; 3 V Favre-Nicolin (30592_CR56) 2020; 10 S Plimpton (30592_CR58) 1995; 117 TW van Deelen (30592_CR45) 2019; 2 S Marchesini (30592_CR53) 2003; 68 WX Li (30592_CR37) 2004; 93 J Weissmüller (30592_CR42) 2019; 24 30592_CR16 H Zheng (30592_CR41) 2020; 186 A Castellanos-Gomez (30592_CR22) 2013; 13 P-L Hsieh (30592_CR7) 2020; 8 J Zhang (30592_CR8) 2010; 10 R Tran (30592_CR40) 2019; 687 F Liu (30592_CR25) 2015; 119 GTKK Gunasooriya (30592_CR36) 2018; 8 FF Tao (30592_CR13) 2016; 116 R Westerström (30592_CR47) 2008; 20 DR Luke (30592_CR50) 2004; 21 XW Zhou (30592_CR59) 2004; 69 U Hejral (30592_CR46) 2018; 120 Y Ru (30592_CR38) 2016; 6 P Strasser (30592_CR20) 2016; 29 V Favre-Nicolin (30592_CR49) 2020; 53 O Mandula (30592_CR30) 2016; 49 R Grothausmann (30592_CR43) 2012; 122 AR Passos (30592_CR29) 2020; 11 BT Sneed (30592_CR44) 2015; 7 |
| References_xml | – reference: RuYDislocation network with pair-coupling structure in {111} γ/γ’ interface of Ni-based single crystal superalloySci. Rep.201661:CAS:528:DC%2BC28XhtlCit7rE27511822498069410.1038/srep299412016NatSR...629941R – reference: Hammer, B. & Nørskov, J. Theoretical Surf. Sci. and catalysis – calculations and concepts. In Impact of Surface Science on Catalysis, vol. 45 of Adv. Catal., 71–129 (Academic Press, 2000). – reference: MavrikakisMHammerBNørskovJKEffect of strain on the reactivity of metal surfacesPhys. Rev. Lett.1998812819282210.1103/PhysRevLett.81.28191998PhRvL..81.2819M – reference: Ertl, G. Oscillatory Catalytic Reactions at Single-Crystal Surfaces. In Eley, D. D., Pines, H. & Weisz, P. B. (eds.) Adv. Catal., vol. 37, 213–277 (Academic Press, 1990). – reference: GrothausmannRAutomated quantitative 3D analysis of faceting of particles in tomographic datasetsUltramicroscopy201212265751:CAS:528:DC%2BC38XhslKgt7nN2301066510.1016/j.ultramic.2012.07.024 – reference: NarayananREl-SayedMAShape-dependent catalytic activity of platinum nanoparticles in colloidal solutionNano Lett.20044610.1021/nl04952561:CAS:528:DC%2BD2cXktlahsLc%3D – reference: VendelboSBVisualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidationNat. Mater.2014138848901:CAS:528:DC%2BC2cXhtFGqu77E2503873010.1038/nmat40332014NatMa..13..884V – reference: StukowskiAVisualization and analysis of atomistic simulation data with OVITO-the Open Visualization ToolModel. Simul. Mater. Sci. Eng.20091801501210.1088/0965-0393/18/1/0150122010MSMSE..18a5012S – reference: CarnisJTowards a quantitative determination of strain in Bragg Coherent X-ray Diffraction Imaging: Artefacts and sign convention in reconstructionsSci. Rep.201991131:CAS:528:DC%2BC1MXit1KrtrbN10.1038/s41598-019-53774-2 – reference: ChapmanHNHigh-resolution Ab Initio three-dimensional x-ray diffraction microscopyJ. Opt. Soc. Am. A2006231179120010.1364/JOSAA.23.0011792006OSAJ...23.1179C – reference: TianNZhouZ-YSunS-GPlatinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticlesJ. Phys. Chem. C200811219801198171:CAS:528:DC%2BD1cXhtlGrs7%2FL10.1021/jp804051e – reference: TranRSurface energies of elemental crystalsSci. Data201631:CAS:528:DC%2BC28XhsFCmsLzO27622853502087310.1038/sdata.2016.80 – reference: MarchesiniSX-ray image reconstruction from a diffraction pattern alonePhys. Rev. B20036814010110.1103/PhysRevB.68.1401012003PhRvB..68n0101M1:CAS:528:DC%2BD3sXovVSrtrg%3D – reference: ZhangJYangHFangJZouSSynthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedraNano Lett.2010106386441:CAS:528:DC%2BC3cXnt1Sqsw%3D%3D2007806810.1021/nl903717z2010NanoL..10..638Z – reference: KimDActive site localization of methane oxidation on Pt nanocrystalsNat. Commun.2018930143615610903810.1038/s41467-018-05464-22018NatCo...9.3422K1:CAS:528:DC%2BC1cXhs1Wiu77O – reference: GunasooriyaGTKKSaeysMCO adsorption on Pt(111): From isolated molecules to ordered high-coverage structuresACS Catal.2018810225102331:CAS:528:DC%2BC1cXhslKqtrrE10.1021/acscatal.8b02371 – reference: TranRAnisotropic work function of elemental crystalsSurf. Sci.201968748551:CAS:528:DC%2BC1MXpvVymt7Y%3D10.1016/j.susc.2019.05.0022019SurSc.687...48T – reference: LukeDRRelaxed averaged alternating reflections for diffraction imagingInverse Probl.2004213750214616310.1088/0266-5611/21/1/0042005InvPr..21...37L1146.78008 – reference: Favre-NicolinVCorauxJRichardM-IRenevierHFast computation of scattering maps of nanostructures using graphical processing unitsJ. Appl. Crystallogr.2011446356401:CAS:528:DC%2BC3MXmt1Gntb4%3D10.1107/S0021889811009009 – reference: PlodinecMNerlHCGirgsdiesFSchlöglRLunkenbeinTInsights into chemical dynamics and their impact on the reactivity of Pt nanoparticles during CO oxidation by operando TEMACS Catal.202010318331931:CAS:528:DC%2BB3cXjtlSqsL8%3D10.1021/acscatal.9b03692 – reference: MandulaOElzo AizarnaMEymeryJBurghammerMFavre-NicolinVPyNX.Ptycho: a computing library for X-ray coherent diffraction imaging of nanostructuresJ. Appl. Crystallogr.201649184218481:CAS:528:DC%2BC28Xhs1WqurrP10.1107/S1600576716012279 – reference: HuangWJCoordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffractionNat. Mater.200873083131:CAS:528:DC%2BD1cXjsFOgtLo%3D1832726310.1038/nmat21322008NatMa...7..308H – reference: ZhangXLuGComputational design of core/shell nanoparticles for oxygen reduction reactionsJ. Phys. Chem. Lett.201452922971:CAS:528:DC%2BC3sXitVWnsLvO2627070210.1021/jz4024699 – reference: Favre-NicolinVPyNX: high-performance computing toolkit for coherent X-ray imaging based on operatorsJ. Appl. Crystallogr.202053140414131:CAS:528:DC%2BB3cXhvF2hsrbM10.1107/S1600576720010985 – reference: ZhouKLiYCatalysis based on nanocrystals with well-defined facetsAngew. Chem. Int. Ed.2012516026131:CAS:528:DC%2BC3MXhsFGrsr7K10.1002/anie.201102619 – reference: CherukaraMJChaWHarderRJAnisotropic nano-scale resolution in 3D bragg coherent diffraction imagingAppl. Phys. Lett.201811320310110.1063/1.50552352018ApPhL.113t3101C1:CAS:528:DC%2BC1cXit1Chtr%2FK – reference: Carnis, J. Bcdi python package, https://github.com/carnisj/bcdi, https://doi.org/10.5281/zenodo.3257616 (2021). – reference: GerchbergRSaxtonOA practical algorithm for the determination of the phase from image and diffraction plane picturesOptik197235237246 – reference: FienupJRPhase retrieval algorithms: a comparisonAppl. Opt.198221275827691:STN:280:DC%2BC3c3ms1GhtQ%3D%3D2039611410.1364/AO.21.0027581982ApOpt..21.2758F – reference: PlimptonSFast parallel algorithms for short-range molecular dynamicsJ. Comp. Phys.19951171191:CAS:528:DyaK2MXlt1ejs7Y%3D10.1006/jcph.1995.10391995JCoPh.117....1P0830.65120 – reference: HejralUIdentification of a catalytically highly active surface phase for co oxidation over ptrh nanoparticles under operando reaction conditionsPhys. Rev. Lett.20181201261011:CAS:528:DC%2BC1MXltFSrt7g%3D2969408210.1103/PhysRevLett.120.1261012018PhRvL.120l6101H – reference: BuLBiaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysisScience2016354141014141:CAS:528:DC%2BC28XitVyjtrvN2798020710.1126/science.aah61332016Sci...354.1410B – reference: PassosARThree-dimensional strain dynamics govern the hysteresis in heterogeneous catalysisNat. Commun.2020111:CAS:528:DC%2BB3cXhvFSisL%2FP32948780750185110.1038/s41467-020-18622-22020NatCo..11.4733P – reference: KriegnerDWintersbergerEStanglJxrayutilities : a versatile tool for reciprocal space conversion of scattering data recorded with linear and area detectorsJ. Appl. Crystallogr.201346116211701:CAS:528:DC%2BC3sXhtFChsbvJ24046508376907210.1107/S0021889813017214 – reference: WangDStructurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalystsNat. Mater.20131281871:CAS:528:DC%2BC38XhsFOmtLbI2310415410.1038/nmat34582013JNuM..440...81W – reference: LuoMGuoSStrain-controlled electrocatalysis on multimetallic nanomaterialsNat. Rev. Mater.20172170591:CAS:528:DC%2BC2sXhsFOitbzP10.1038/natrevmats.2017.592017NatRM...217059L – reference: LiuFWuCYangGYangSCO oxidation over strained Pt(100) surface: A DFT studyJ. Phys. Chem. C201511915500155051:CAS:528:DC%2BC2MXhtVakurnE10.1021/acs.jpcc.5b04511 – reference: ShengHWKramerMJCadienAFujitaTChenMWHighly optimized embedded-atom-method potentials for fourteen fcc metalsPhys. Rev. B20118313411810.1103/PhysRevB.83.1341182011PhRvB..83m4118S1:CAS:528:DC%2BC3MXlsV2ksrw%3D – reference: UlvestadAIn situ 3D imaging of catalysis induced strain in gold nanoparticlesJ. Phys. Chem. Lett.20167300830131:CAS:528:DC%2BC28XhtFOktbrF2742921910.1021/acs.jpclett.6b01038 – reference: LiWXOxidation of Pt(110)Phys. Rev. Lett.2004931461041:STN:280:DC%2BD2crlslemtQ%3D%3D1552481610.1103/PhysRevLett.93.1461042004PhRvL..93n6104L – reference: FienupJRReconstruction of an object from the modulus of its Fourier transformOpt. Lett.1978327291:STN:280:DC%2BD1MrlvVaqug%3D%3D1968468510.1364/OL.3.0000271978OptL....3...27F – reference: HsiehP-LWuS-HLiangT-YChenL-JHuangMHGaAs wafers possessing facet-dependent electrical conductivity propertiesJ. Mater. Chem. C20208545654601:CAS:528:DC%2BB3cXls1GntLo%3D10.1039/D0TC00265H – reference: ZhengHGrain boundary properties of elemental metalsActa Mater.202018640491:CAS:528:DC%2BB3cXnvFWkug%3D%3D10.1016/j.actamat.2019.12.0302020AcMat.186...40Z – reference: GoodmanDCatalysis: from single crystals to the “real world”Surf. Sci.1994299-3008378481:CAS:528:DyaK2cXhsVGgu7g%3D10.1016/0039-6028(94)90701-31994SurSc.299..837G – reference: NewtonMCLeakeSJHarderRRobinsonIKThree-dimensional imaging of strain in a single ZnO nanorodNat. Mater.201091201241:CAS:528:DC%2BC3cXhtVOnt7w%3D2002363210.1038/nmat26072010NatMa...9..120N – reference: Favre-NicolinVLeakeSChushkinYFree log-likelihood as an unbiased metric for coherent diffraction imagingSci. Rep.2020101:CAS:528:DC%2BB3cXkvVahtLw%3D32060293702179610.1038/s41598-020-57561-22020NatSR..10.2664F – reference: WesterströmRStructure and reactivity of a model catalyst alloy under realistic conditionsJ. Condens. Matter Phys.20082018401810.1088/0953-8984/20/18/1840182008JPCM...20r4018W1:CAS:528:DC%2BD1cXmsVWmsro%3D – reference: WeissmüllerJAdsorption-strain coupling at solid surfacesCurr. Opin. Chem. Eng.201924455310.1016/j.coche.2018.12.012 – reference: van DeelenTWHernández MejíaCde JongKPControl of metal-support interactions in heterogeneous catalysts to enhance activity and selectivityNat. Catal.2019295597010.1038/s41929-019-0364-x1:CAS:528:DC%2BC1MXisVWqtLfJ – reference: ClarkJNHuangXHarderRRobinsonIKHigh-resolution three-dimensional partially coherent diffraction imagingNat. Commun.201231:STN:280:DC%2BC38fmt1Chtg%3D%3D2287181210.1038/ncomms19942012NatCo...3..993C – reference: TaoFFCrozierPAAtomic-scale observations of catalyst structures under reaction conditions and during catalysisChem. Rev.2016116348735391:CAS:528:DC%2BC28Xjsl2gsr8%3D2695585010.1021/cr5002657 – reference: HuangMHFacet-dependent optical properties of semiconductor nanocrystalsSmall201915180472610.1002/smll.2018047261:CAS:528:DC%2BC1MXht1ehsbg%3D – reference: ZhouXWJohnsonRAWadleyHNGMisfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayersPhys. Rev. B20046914411310.1103/PhysRevB.69.1441132004PhRvB..69n4113Z1:CAS:528:DC%2BD2cXktVGru7k%3D – reference: HammerBNørskovJKWhy gold is the noblest of all the metalsNature19953762382401:CAS:528:DyaK2MXntFSmurk%3D10.1038/376238a01995Natur.376..238H – reference: StrasserPKühlSDealloyed Pt-based core-shell oxygen reduction electrocatalystsNano Energy2016291661771:CAS:528:DC%2BC28Xnslalu7o%3D10.1016/j.nanoen.2016.04.047 – reference: SneedBTYoungAPTsungC-KBuilding up strain in colloidal metal nanoparticle catalystsNanoscale2015712248122651:CAS:528:DC%2BC2MXosFKmsbY%3D2614748610.1039/C5NR02529J2015Nanos...712248S – reference: Castellanos-GomezALocal strain engineering in atomically thin MoS2Nano Lett.201313536153661:CAS:528:DC%2BC3sXhsFelt77N2408352010.1021/nl402875m2013NanoL..13.5361C – reference: WangHDirect and continuous strain control of catalysts with tunable battery electrode materialsScience2016354103110361:CAS:528:DC%2BC28XhvV2gsLjI2788502810.1126/science.aaf76802016Sci...354.1031W – reference: SunXJiangKZhangNGuoSHuangXCrystalline control of {111} bounded Pt3Cu nanocrystals: Multiply-twinned Pt3Cu icosahedra with enhanced electrocatalytic propertiesACS Nano20159763476401:CAS:528:DC%2BC2MXhtFKjtL7E2617205610.1021/acsnano.5b02986 – reference: RobinsonIHarderRCoherent X-ray diffraction imaging of strain at the nanoscaleNat. Mater.200982912981:CAS:528:DC%2BD1MXjsFKntb8%3D1930808810.1038/nmat24002009NatMa...8..291R – reference: SharmaAHickmanJGazitNRabkinEMishinYNickel nanoparticles set a new record of strengthNat. Commun.201891:STN:280:DC%2BB3czmtlKjtQ%3D%3D30291239617375010.1038/s41467-018-06575-62018NatCo...9.4102S – reference: FoilesSMBaskesMIDawMSEmbedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloysPhys. Rev. B198633798379911:CAS:528:DyaL28XksVOgsbk%3D10.1103/PhysRevB.33.79831986PhRvB..33.7983F – volume: 69 start-page: 144113 year: 2004 ident: 30592_CR59 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.144113 – volume: 3 year: 2016 ident: 30592_CR39 publication-title: Sci. Data doi: 10.1038/sdata.2016.80 – volume: 9 start-page: 7634 year: 2015 ident: 30592_CR10 publication-title: ACS Nano doi: 10.1021/acsnano.5b02986 – volume: 81 start-page: 2819 year: 1998 ident: 30592_CR15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.2819 – volume: 10 year: 2020 ident: 30592_CR56 publication-title: Sci. Rep. doi: 10.1038/s41598-020-57561-2 – volume: 9 year: 2018 ident: 30592_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05464-2 – volume: 119 start-page: 15500 year: 2015 ident: 30592_CR25 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b04511 – volume: 53 start-page: 1404 year: 2020 ident: 30592_CR49 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576720010985 – volume: 6 year: 2016 ident: 30592_CR38 publication-title: Sci. Rep. doi: 10.1038/srep29941 – volume: 8 start-page: 10225 year: 2018 ident: 30592_CR36 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02371 – ident: 30592_CR1 doi: 10.1016/S0360-0564(08)60366-1 – volume: 186 start-page: 40 year: 2020 ident: 30592_CR41 publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.12.030 – volume: 299-300 start-page: 837 year: 1994 ident: 30592_CR2 publication-title: Surf. Sci. doi: 10.1016/0039-6028(94)90701-3 – volume: 11 year: 2020 ident: 30592_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18622-2 – volume: 46 start-page: 1162 year: 2013 ident: 30592_CR48 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813017214 – volume: 117 start-page: 1 year: 1995 ident: 30592_CR58 publication-title: J. Comp. Phys. doi: 10.1006/jcph.1995.1039 – volume: 354 start-page: 1031 year: 2016 ident: 30592_CR14 publication-title: Science doi: 10.1126/science.aaf7680 – volume: 21 start-page: 37 year: 2004 ident: 30592_CR50 publication-title: Inverse Probl. doi: 10.1088/0266-5611/21/1/004 – volume: 112 start-page: 19801 year: 2008 ident: 30592_CR3 publication-title: J. Phys. Chem. C doi: 10.1021/jp804051e – volume: 8 start-page: 5456 year: 2020 ident: 30592_CR7 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC00265H – volume: 2 start-page: 17059 year: 2017 ident: 30592_CR21 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.59 – volume: 3 year: 2012 ident: 30592_CR55 publication-title: Nat. Commun. doi: 10.1038/ncomms1994 – volume: 51 start-page: 602 year: 2012 ident: 30592_CR5 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102619 – volume: 21 start-page: 2758 year: 1982 ident: 30592_CR54 publication-title: Appl. Opt. doi: 10.1364/AO.21.002758 – volume: 7 start-page: 3008 year: 2016 ident: 30592_CR27 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b01038 – volume: 376 start-page: 238 year: 1995 ident: 30592_CR17 publication-title: Nature doi: 10.1038/376238a0 – volume: 13 start-page: 884 year: 2014 ident: 30592_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat4033 – volume: 49 start-page: 1842 year: 2016 ident: 30592_CR30 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576716012279 – volume: 23 start-page: 1179 year: 2006 ident: 30592_CR31 publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.23.001179 – volume: 7 start-page: 12248 year: 2015 ident: 30592_CR44 publication-title: Nanoscale doi: 10.1039/C5NR02529J – volume: 9 start-page: 1 year: 2019 ident: 30592_CR35 publication-title: Sci. Rep. doi: 10.1038/s41598-019-53774-2 – volume: 113 start-page: 203101 year: 2018 ident: 30592_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5055235 – volume: 44 start-page: 635 year: 2011 ident: 30592_CR61 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811009009 – volume: 9 start-page: 120 year: 2010 ident: 30592_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat2607 – volume: 35 start-page: 237 year: 1972 ident: 30592_CR51 publication-title: Optik – volume: 93 start-page: 146104 year: 2004 ident: 30592_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.146104 – volume: 33 start-page: 7983 year: 1986 ident: 30592_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.7983 – volume: 122 start-page: 65 year: 2012 ident: 30592_CR43 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2012.07.024 – volume: 29 start-page: 166 year: 2016 ident: 30592_CR20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.047 – volume: 13 start-page: 5361 year: 2013 ident: 30592_CR22 publication-title: Nano Lett. doi: 10.1021/nl402875m – volume: 83 start-page: 134118 year: 2011 ident: 30592_CR60 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.134118 – volume: 7 start-page: 308 year: 2008 ident: 30592_CR24 publication-title: Nat. Mater. doi: 10.1038/nmat2132 – volume: 18 start-page: 015012 year: 2009 ident: 30592_CR62 publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/18/1/015012 – volume: 3 start-page: 27 year: 1978 ident: 30592_CR52 publication-title: Opt. Lett. doi: 10.1364/OL.3.000027 – volume: 15 start-page: 1804726 year: 2019 ident: 30592_CR6 publication-title: Small doi: 10.1002/smll.201804726 – volume: 12 start-page: 81 year: 2013 ident: 30592_CR9 publication-title: Nat. Mater. doi: 10.1038/nmat3458 – volume: 20 start-page: 184018 year: 2008 ident: 30592_CR47 publication-title: J. Condens. Matter Phys. doi: 10.1088/0953-8984/20/18/184018 – volume: 354 start-page: 1410 year: 2016 ident: 30592_CR23 publication-title: Science doi: 10.1126/science.aah6133 – ident: 30592_CR57 doi: 10.5281/zenodo.3257616 – volume: 4 start-page: 6 year: 2004 ident: 30592_CR4 publication-title: Nano Lett. doi: 10.1021/nl0495256 – volume: 116 start-page: 3487 year: 2016 ident: 30592_CR13 publication-title: Chem. Rev. doi: 10.1021/cr5002657 – volume: 8 start-page: 291 year: 2009 ident: 30592_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat2400 – volume: 68 start-page: 140101 year: 2003 ident: 30592_CR53 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.140101 – volume: 24 start-page: 45 year: 2019 ident: 30592_CR42 publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2018.12.012 – volume: 10 start-page: 3183 year: 2020 ident: 30592_CR12 publication-title: ACS Catal. doi: 10.1021/acscatal.9b03692 – ident: 30592_CR16 doi: 10.1016/S0360-0564(02)45013-4 – volume: 120 start-page: 126101 year: 2018 ident: 30592_CR46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.126101 – volume: 9 year: 2018 ident: 30592_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06575-6 – volume: 2 start-page: 955 year: 2019 ident: 30592_CR45 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0364-x – volume: 5 start-page: 292 year: 2014 ident: 30592_CR19 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz4024699 – volume: 687 start-page: 48 year: 2019 ident: 30592_CR40 publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.05.002 – volume: 10 start-page: 638 year: 2010 ident: 30592_CR8 publication-title: Nano Lett. doi: 10.1021/nl903717z |
| SSID | ssj0000391844 |
| Score | 2.5370169 |
| Snippet | Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements, resulting in... Abstract Nanostructures with specific crystallographic planes display distinctive physico-chemical properties because of their unique atomic arrangements,... Understanding strain dynamics and their relationship with crystallographic facets have been largely unexplored. Here the authors demonstrate how the 3D lattice... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3003 |
| SubjectTerms | 639/301/119/1002 639/638/440/950 639/638/77/887 Carbon monoxide Catalysis Chemical properties Chemical Sciences Condensed Matter Cristallography Crystallography Displacements (lattice) Energy conversion Evolution Humanities and Social Sciences Material chemistry Materials Science Mechanics Mechanics of materials multidisciplinary Nanocrystals Nanoparticles Oxidation Physicochemical properties Physics Platinum Science Science (multidisciplinary) Stoichiometry Substrates X ray imagery |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahUxNEhRcCO-nbZKFHc6dPJOllUsFaR0odBdyJMWdG65d27Bv-9JZu61Y1E37mbymGTOIzmH80LoLXAMN5nwNoBs0fLETOslIy2wUhdJYNnlrhabUCcn-uzMnN4o9VV8wsb0wCPgDph3SkXucwicJxp18EFRHRyRnkddQ_dA6rmhTNUzmBlQXfgUJdMxfbDi9UyozusgUtCWzG6imrAf7pfz4g55W9a87TL5m920XkdHD9GDSY7Eh-P-H6E7qX-M7o2VJX8-Qf7zj1p-CIN8h7MLacCr9bI84FWtCoFrJBFeZGi_rMnNI67OhW0dDW-nA-5dDzr15DqHx4hGDFJmjYV4ir4dffr68bidyim0QSg-tLLjgLAYpJLQIAR1NEgdkw45GJpS55MmwRORDDEuyBR1JsIrIRV3iRL2DO30iz69QFgoUOOK0UZTw2GiiV6rmFXWUVLnfIPIBrQ2TLnGy899t9XmzbQd0WEBHbaiw5IGvdvOuRwzbfx19IeCse3IkiW7NgDt2Akw9l-006A3gO_ZN44Pv9jS1pU8-6DLXcFK-xtysBN_ryyVinBRarU06PW2GzizmFtcnxbrcQxok4zBJ56P1LNdignJFGWsQWpGV7O9zHv6i_Oa_duAjCa5aND7DQX-2taf4bX7P-C1h-7TwkDFeaLbRzvDcp1eorvharhYLV9VDrwG5Ww1mw priority: 102 providerName: Directory of Open Access Journals |
| Title | Imaging the facet surface strain state of supported multi-faceted Pt nanoparticles during reaction |
| URI | https://link.springer.com/article/10.1038/s41467-022-30592-1 https://www.ncbi.nlm.nih.gov/pubmed/35637233 https://www.proquest.com/docview/2671450746 https://www.proquest.com/docview/2671996331 https://hal.science/hal-03788875 https://pubmed.ncbi.nlm.nih.gov/PMC9151645 https://doaj.org/article/3ba77d4bfcc44e2d8cbc728ca16b4d89 |
| Volume | 13 |
| WOSCitedRecordID | wos000805647600019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Biological Science Database (NC LIVE) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection (NC LIVE) customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoC1IvvB-BsjKIG0SN384JtahVK8EqQiAtXCzHdmglml02u5X494yd7FZLRS9cosR2EtszY489428QegMSw8uG8NyBbpHzwMq8lozkIEqFJ441tilSsAk1HuvJpKyGDbducKtcjYlpoPZTF_fI96lUhIsYHeP97Fceo0ZF6-oQQmML7USUBJZc96r1HktEP9ecD2dlCqb3O55GhuTCDooFzcnGfJRg-2GWOYtOkdc1zuuOk39ZT9OkdHzvf5tzH90d1FF80PPPA3QrtA_RnT5A5e9HqD69SFGMMKiJuLEuLHC3nMcb3KXgEjgdSMLTBtJnCSPd4-SjmKfS8FQtcGtbWJoPHni4PxiJQVlNRyoeo6_HR18-nORDVIbcCcUXuSw40N07qSQkCEEtdVL7oF3jShpCUQdNXE1EKElpnQxeN0TUSkjFbaCEPUHb7bQNzxAWClaD0fajacnhxdLXWvlGNdpLam2dIbKijXEDZHls3E-TTOdMm56eBuhpEj0NydDb9TuzHrDjxtKHkeTrkhFsOyVM5z_M0DGG1VYpz-vGOc4D9drVTlHtLJE197rM0GtgmI1vnBx8NDGtiHD9sCS8hD_trRjBDMNEZ664IEOv1tkg4NFqY9swXfZlYFHKGHziac9-618xIZmijGVIbTDmRl02c9rzswQiXoKqJ7nI0LsVC19V69_99fzmVrxAuzTKVvSuKPbQ9mK-DC_RbXe5OO_mI7SlJipd9QjtHB6Nq8-jtAcySmIL10p8h5zq9FP17Q9FGkko |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCA4QdT4Eds5IFQe1a66rPZQpN5MYju0EiTLJlvUP8VvZOwkWy0VvfXAbeM4ju39ZjyOZ-ZD6CVIDM9KwmMDtkXMHcviQjASgygllhhW5mUSyCbkdKoODrLZBvo9xMJ4t8pBJwZFbWvjv5FvUyEJTz07xrv5z9izRvnT1YFCo4PFnjv5BVu25u34I_y_ryjd_bT_YRT3rAKxSSVvY5Fw6Lc1QgooSFOaUyOUdcqUJqPOJYVTxBQkdRnJciOcVSVJC5kKyXNHCYN2L6HLYEZQFVwFZ6tvOj7buuK8j81JmNpueNBEwWUeDBkak7X1L9AEwKp26J0wz1q4Zx01_zqtDYvg7s3_bfpuoRu9uY13Ovm4jTZcdQdd7Qg4T-6iYvwjsDRhMINxmRvX4ma58D9wE8gzcAi4wnUJ5fOQA97i4IMZh9pwNWtxlVf1fPAwxF3gJwZjPISM3ENfLmSA99FmVVfuIcKphN2uP9tSNOPwYGYLJW0pS2UFzfMiQmTAgjZ9SnY_uO86uAYwpTv8aMCPDvjRJEKvV8_Mu4Qk59Z-7yG2qumTiYeCevFN9xOjWZFLaXlRGsO5o1aZwkiqTE5Ewa3KIvQCALrWxmhnon1Z4ukIYMt7DG_aGoCnezXY6FPURej56jYoMH8qlVeuXnZ1YNPNGDTxoIP76lUsFUxSxiIk1wRhrS_rd6qjw5AkPQNTVvA0Qm8GkTnt1r_n69H5o3iGro32P0_0ZDzde4yuUy_X3pMk2UKb7WLpnqAr5rg9ahZPg2LA6OtFi9If-2qhKA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKeYgL70eggEFwgmjjR2zngFChrLpqtdoDSL25ie3QSpAsm2xR_xq_jrGTbLVU9NYDt8RxnNiZGY_jb-ZD6DVoDM9KwmMDvkXMHcviQjASgyollhhW5mUSyCbkdKoODrLZBvo9xMJ4WOVgE4OhtrXx_8hHVEjCU8-OMSp7WMRsZ_xh_jP2DFJ-p3Wg0-hEZM-d_oLlW_N-sgPf-g2l489fPu3GPcNAbFLJ21gkHPpgjZACCtKU5tQIZZ0ypcmoc0nhFDEFSV1GstwIZ1VJ0kKmQvLcUcKg3SvoqvRJywNscLb6v-MzryvO-zidhKlRw4NVCvB5cGpoTNbmwkAZADPckQdknvd2z4M2_9q5DRPi-Pb_PJR30K3eDcfbnd7cRRuuuoeud8Scp_dRMfkR2JswuMe4zI1rcbNc-APcBFINHAKxcF1C-Tzkhrc4YDPjUBvOZi2u8qqeD8hD3AWEYnDSQyjJA_T1Ujr4EG1WdeUeI5xKWAX7PS9FMw43ZrZQ0payVFbQPC8iRAa50KZP1e47910HyABTupMlDbKkgyxpEqG3q3vmXaKSC2t_9OK2qumTjIeCevFN9wOjWZFLaXlRGsO5o1aZwkiqTE5Ewa3KIvQKhHWtjd3tfe3LEk9TAEvhE3jS1iCEujePjT6TwAi9XF0Gw-Z3q_LK1cuuDizGGYMmHnWiv3oUSwWTlLEIyTWlWHuX9SvV8VFInp6Biyt4GqF3g_qcvda_x-vJxb14gW6ABun9yXTvKbpJvYp7gEmyhTbbxdI9Q9fMSXvcLJ4HG4HR4WVr0h_TnKnl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imaging+the+facet+surface+strain+state+of+supported+multi-faceted+Pt+nanoparticles+during+reaction&rft.jtitle=Nature+communications&rft.au=Dupraz%2C+Maxime&rft.au=Li%2C+Ni&rft.au=Carnis%2C+J%C3%A9r%C3%B4me&rft.au=Wu%2C+Longfei&rft.date=2022-05-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=13&rft_id=info:doi/10.1038%2Fs41467-022-30592-1&rft_id=info%3Apmid%2F35637233&rft.externalDocID=PMC9151645 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |