A life cycle approach to the management of household food waste – A Swedish full-scale case study

► The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Waste management (Elmsford) Ročník 31; číslo 8; s. 1879 - 1896
Hlavní autoři: Bernstad, A., la Cour Jansen, J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.08.2011
Elsevier
Témata:
ISSN:0956-053X, 1879-2456, 1879-2456
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ► The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. ► The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. ► Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods – both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO 2-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO 2-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
AbstractList ► The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. ► The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. ► Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods – both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO 2-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO 2-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods – both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6kg CO₂-eq/household and year if incineration is utilised, to an avoidance of 5.6kg CO₂-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in relation to global warming potential, acidification and ozone depilation compared to incineration and composting of food waste. Use of produced biogas as car fuel provides larger environmental benefits compared to a use of biogas for heat and power production. > The use of produced digestate from the anaerobic digestion as substitution for chemical fertilizer on farmland provides avoidance of environmental burdens in the same ratio as the substitution of fossil fuels with produced biogas. > Sensitivity analyses show that results are highly sensitive to assumptions regarding the environmental burdens connected to heat and energy supposedly substituted by the waste treatment. - Abstract: Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6 kg CO{sub 2}-eq/household and year if incineration is utilised, to an avoidance of 5.6 kg CO{sub 2}-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6kg CO2-eq/household and year if incineration is utilised, to an avoidance of 5.6kg CO2-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6kg CO(2)-eq/household and year if incineration is utilised, to an avoidance of 5.6kg CO(2)-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6kg CO(2)-eq/household and year if incineration is utilised, to an avoidance of 5.6kg CO(2)-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the EASEWASTE LCA-tool. The comparison is based on a full scale case study in southern Sweden and used input-data related to aspects such as source-separation behaviour, transport distances, etc. are site-specific. Results show that biological treatment methods - both anaerobic and aerobic, result in net avoidance of GHG-emissions, but give a larger contribution both to nutrient enrichment and acidification when compared to incineration. Results are to a high degree dependent on energy substitution and emissions during biological processes. It was seen that if it is assumed that produced biogas substitute electricity based on Danish coal power, this is preferable before use of biogas as car fuel. Use of biogas for Danish electricity substitution was also determined to be more beneficial compared to incineration of organic household waste. This is a result mainly of the use of plastic bags in the incineration alternative (compared to paper bags in the anaerobic) and the use of biofertiliser (digestate) from anaerobic treatment as substitution of chemical fertilisers used in an incineration alternative. Net impact related to GWP from the management chain varies from a contribution of 2.6kg CO(2)-eq/household and year if incineration is utilised, to an avoidance of 5.6kg CO(2)-eq/household and year if choosing anaerobic digestion and using produced biogas as car fuel. Impacts are often dependent on processes allocated far from the control of local decision-makers, indicating the importance of a holistic approach and extended collaboration between agents in the waste management chain.
Author Bernstad, A.
la Cour Jansen, J.
Author_xml – sequence: 1
  givenname: A.
  surname: Bernstad
  fullname: Bernstad, A.
  email: anna.bernstad@chemeng.lth.se
– sequence: 2
  givenname: J.
  surname: la Cour Jansen
  fullname: la Cour Jansen, J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24282071$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21511455$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/21578456$$D View this record in Osti.gov
BookMark eNqFkl2L1DAUhousuB_6D0QCInrTMUmTNt0LYVj8ggUvVPAupKcnNkOnGZvUYe78D_5Df4mpnVXwYhcCvXnOe-hz3vPsZPADZtljRleMsvLlZrU3YWuGFaeMrShPr7yXnTFV1TkXsjzJzmgty5zK4stpdh7ChlImFKMPslPOJGNCyrMM1qR3FgkcoEdidrvRG-hI9CR2SFK8-YpbHCLxlnR-Ctj5viXW-5ak9RHJrx8_yZp83GPrQkfs1Pd5AJOywAQkIU7t4WF235o-4KPj9yL7_Ob1p6t3-fWHt--v1tc5yErEXLKKI5NFiQVr66aUtm6rkjFqJVRAbVWWnDVUWQqgZInSAm-MrE1hK7DQFBeZWXLDHndTo3ej25rxoL1xeufHaHo9YkAzQqf7SQfUieodmOj8ELSxCLY0QovGohasRa1AKS3QCipLq9L-tOPpssOH6HQAFxE68MOAEHXSWqmkPlHPFyrp_DZhiHrrAmDfmwGTRK1UuoMUSt1NVlwWshBVIl_cSrKKUc5rJmVCnxzRqdli-1fEzdkT8OwImPlYdjQDuPCPE1xxWrHEXS4cjD6EEa1OP_xHVxyN6zWjeu6i3uili3ruoqY8vVmC-G_4Jv-OsVfLGKaqfHc4zpZxgFSwcZbcend7wG_QYPsI
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_140288
crossref_primary_10_1016_j_jenvman_2017_11_031
crossref_primary_10_1080_07373937_2012_693143
crossref_primary_10_1007_s10163_014_0300_8
crossref_primary_10_1016_j_jclepro_2016_06_085
crossref_primary_10_1007_s10163_016_0531_y
crossref_primary_10_1016_j_scitotenv_2020_138622
crossref_primary_10_1007_s13399_020_00883_y
crossref_primary_10_3390_su13126509
crossref_primary_10_1016_j_wasman_2025_114974
crossref_primary_10_1007_s10163_022_01552_0
crossref_primary_10_1016_j_wasman_2012_10_017
crossref_primary_10_1016_j_wasman_2014_06_011
crossref_primary_10_3390_su141911925
crossref_primary_10_1016_j_resconrec_2020_104908
crossref_primary_10_3390_su162411009
crossref_primary_10_1177_0734242X19879222
crossref_primary_10_1016_j_jhazmat_2020_122449
crossref_primary_10_3389_fsufs_2020_00023
crossref_primary_10_1007_s10098_021_02157_1
crossref_primary_10_1016_j_scitotenv_2019_135580
crossref_primary_10_1016_j_scitotenv_2019_133725
crossref_primary_10_1007_s11356_016_7159_2
crossref_primary_10_1007_s12649_019_00816_5
crossref_primary_10_1016_j_jenvman_2020_111459
crossref_primary_10_1007_s11356_020_11372_0
crossref_primary_10_1016_j_clwas_2023_100092
crossref_primary_10_1016_j_fuel_2024_131186
crossref_primary_10_1016_j_resconrec_2015_06_012
crossref_primary_10_3390_su13126894
crossref_primary_10_1108_BFJ_05_2021_0517
crossref_primary_10_1007_s10163_023_01708_6
crossref_primary_10_3390_su9050827
crossref_primary_10_1016_j_resconrec_2020_104687
crossref_primary_10_1016_j_jenvman_2016_01_001
crossref_primary_10_1016_j_jclepro_2019_117999
crossref_primary_10_1016_j_jclepro_2014_04_018
crossref_primary_10_1016_j_jclepro_2020_121908
crossref_primary_10_1016_j_habitatint_2014_07_012
crossref_primary_10_1007_s12649_015_9399_7
crossref_primary_10_1016_j_wasman_2013_12_004
crossref_primary_10_1007_s11367_015_1008_2
crossref_primary_10_1016_j_jenvman_2019_02_001
crossref_primary_10_1016_j_resconrec_2019_06_008
crossref_primary_10_1016_j_jenvman_2012_12_008
crossref_primary_10_1007_s43994_025_00266_x
crossref_primary_10_1016_j_jclepro_2016_06_050
crossref_primary_10_1016_j_rser_2013_02_043
crossref_primary_10_1016_j_resconrec_2018_05_030
crossref_primary_10_1016_j_wasman_2012_09_022
crossref_primary_10_3390_foods9121765
crossref_primary_10_1016_j_wasman_2021_05_004
crossref_primary_10_1016_j_scitotenv_2023_165372
crossref_primary_10_1016_j_jenvman_2019_03_119
crossref_primary_10_1016_j_energy_2016_04_081
crossref_primary_10_1016_j_jclepro_2020_120756
crossref_primary_10_1080_10408398_2013_821593
crossref_primary_10_1016_j_biortech_2019_122485
crossref_primary_10_1016_j_jenvman_2021_114364
crossref_primary_10_1007_s13399_021_01698_1
crossref_primary_10_1016_j_fuel_2022_126698
crossref_primary_10_1016_j_wasman_2012_07_023
crossref_primary_10_1007_s12649_012_9193_8
crossref_primary_10_1016_j_wasman_2020_07_047
crossref_primary_10_1007_s10668_022_02251_4
crossref_primary_10_1016_j_biortech_2016_07_017
crossref_primary_10_1016_j_rser_2016_05_076
crossref_primary_10_1016_j_jclepro_2014_05_081
crossref_primary_10_1016_j_rser_2015_06_037
crossref_primary_10_3390_app9173608
crossref_primary_10_1016_j_scitotenv_2020_141656
crossref_primary_10_1100_2012_862021
crossref_primary_10_1016_j_jenvman_2016_10_030
crossref_primary_10_1016_j_apenergy_2013_09_033
crossref_primary_10_1016_j_scitotenv_2020_140690
crossref_primary_10_1111_j_1365_2486_2012_02786_x
crossref_primary_10_1016_j_resconrec_2018_01_034
crossref_primary_10_1016_j_resconrec_2014_07_005
crossref_primary_10_1007_s13762_013_0187_2
crossref_primary_10_1016_j_proenv_2015_07_026
crossref_primary_10_1016_j_cej_2020_125757
crossref_primary_10_1002_ldr_2944
crossref_primary_10_1007_s11356_018_2479_z
crossref_primary_10_1016_j_energy_2019_05_191
crossref_primary_10_1016_j_jclepro_2021_126113
crossref_primary_10_1016_j_wasman_2018_11_031
crossref_primary_10_1016_j_apenergy_2018_05_062
crossref_primary_10_1016_j_wasman_2013_09_013
crossref_primary_10_32604_cmes_2024_050954
crossref_primary_10_1016_j_wasman_2016_01_035
crossref_primary_10_1088_1748_9326_ad6617
crossref_primary_10_1016_j_wasman_2015_03_001
crossref_primary_10_1007_s11356_023_28353_8
crossref_primary_10_1093_qopen_qoae030
crossref_primary_10_1016_j_jcou_2019_11_004
crossref_primary_10_17482_uumfd_1564378
crossref_primary_10_1016_j_rser_2015_06_021
crossref_primary_10_1016_j_engappai_2025_112111
crossref_primary_10_1177_0734242X211013405
crossref_primary_10_3390_en14061790
crossref_primary_10_1016_j_tifs_2015_03_004
crossref_primary_10_1016_j_cej_2014_01_066
crossref_primary_10_1016_j_jenvman_2024_122622
crossref_primary_10_1016_j_resconrec_2014_11_015
crossref_primary_10_1016_j_cec_2024_100114
crossref_primary_10_1016_j_wasman_2017_11_054
crossref_primary_10_3390_su13073733
crossref_primary_10_1016_j_rser_2015_11_036
crossref_primary_10_1007_s13399_020_01117_x
crossref_primary_10_1016_j_energy_2023_129856
crossref_primary_10_1016_j_jclepro_2016_04_077
crossref_primary_10_17221_2_2012_RAE
crossref_primary_10_1016_j_jclepro_2017_04_111
crossref_primary_10_1007_s11367_013_0603_3
crossref_primary_10_1016_j_jclepro_2020_122865
crossref_primary_10_1016_j_jclepro_2015_02_070
crossref_primary_10_1016_j_wasman_2019_11_042
crossref_primary_10_1016_j_tifs_2023_104287
crossref_primary_10_1007_s10163_012_0087_4
crossref_primary_10_1002_hpm_3586
crossref_primary_10_1016_j_envpol_2015_02_001
crossref_primary_10_1016_j_resconrec_2020_104751
crossref_primary_10_1007_s13399_022_02473_6
crossref_primary_10_1016_j_wasman_2020_01_005
crossref_primary_10_1016_j_jclepro_2020_121625
crossref_primary_10_1016_j_jenvman_2018_04_061
crossref_primary_10_1016_j_jer_2024_09_005
crossref_primary_10_1016_j_energy_2018_03_147
crossref_primary_10_1016_j_resconrec_2020_104723
crossref_primary_10_1016_j_jenvman_2022_115624
crossref_primary_10_1016_j_rser_2014_10_052
crossref_primary_10_1016_j_egypro_2017_08_258
crossref_primary_10_1016_j_apenergy_2019_113467
crossref_primary_10_1016_j_jclepro_2015_11_085
crossref_primary_10_1007_s10163_016_0510_3
crossref_primary_10_1016_j_resconrec_2022_106265
crossref_primary_10_1080_09593330_2015_1022230
crossref_primary_10_1016_j_asoc_2021_107657
crossref_primary_10_3390_fermentation9010002
crossref_primary_10_1016_j_jenvman_2015_04_008
crossref_primary_10_1007_s13762_013_0421_y
crossref_primary_10_1016_j_jclepro_2015_01_026
crossref_primary_10_1016_j_wasman_2016_04_009
crossref_primary_10_1016_j_compchemeng_2012_01_010
crossref_primary_10_1016_j_jclepro_2018_01_198
crossref_primary_10_1016_j_wasman_2017_06_020
crossref_primary_10_1016_j_psep_2014_03_008
crossref_primary_10_1007_s11367_015_0861_3
crossref_primary_10_1016_j_agsy_2017_12_005
crossref_primary_10_1016_j_resconrec_2023_107262
crossref_primary_10_1016_j_resconrec_2025_108273
crossref_primary_10_3390_pr9040696
crossref_primary_10_1016_j_wasman_2017_01_008
crossref_primary_10_1007_s10163_025_02283_8
crossref_primary_10_3390_pr9040572
crossref_primary_10_3390_resources11100080
crossref_primary_10_1016_j_fuel_2022_123585
crossref_primary_10_1007_s13762_022_04504_1
crossref_primary_10_1016_j_jclepro_2018_10_027
crossref_primary_10_1016_j_wasman_2012_05_012
crossref_primary_10_1016_j_resconrec_2011_10_003
crossref_primary_10_1016_j_scitotenv_2017_09_215
crossref_primary_10_3390_resources7040084
crossref_primary_10_1016_j_rser_2021_111781
crossref_primary_10_3390_ijerph17134798
crossref_primary_10_1016_j_apenergy_2016_03_036
crossref_primary_10_1007_s13399_022_03534_6
crossref_primary_10_1088_1748_9326_aa889b
crossref_primary_10_1007_s10705_025_10401_z
crossref_primary_10_1177_0734242X13507307
crossref_primary_10_1080_09593330_2022_2157756
crossref_primary_10_1016_j_jclepro_2018_04_165
crossref_primary_10_1016_j_resourpol_2023_103415
crossref_primary_10_1016_j_wasman_2012_01_008
crossref_primary_10_1177_0734242X16652965
crossref_primary_10_3390_info11060299
crossref_primary_10_1016_j_wasman_2013_10_045
crossref_primary_10_1016_j_rser_2018_12_056
crossref_primary_10_1016_j_wasman_2019_03_015
crossref_primary_10_1016_j_resconrec_2014_05_008
crossref_primary_10_1002_ep_13376
crossref_primary_10_1007_s11157_016_9405_y
crossref_primary_10_1590_0001_3765202320230046
crossref_primary_10_1016_j_chemosphere_2020_126043
crossref_primary_10_1016_j_jclepro_2016_01_079
crossref_primary_10_1016_j_wasman_2015_06_008
crossref_primary_10_1007_s11356_014_3844_1
crossref_primary_10_1016_j_jclepro_2022_134536
crossref_primary_10_1016_j_apenergy_2019_03_126
crossref_primary_10_1016_j_jenvman_2019_06_037
crossref_primary_10_1080_09593330_2022_2152733
crossref_primary_10_1007_s10163_023_01638_3
crossref_primary_10_1016_j_jclepro_2018_08_038
crossref_primary_10_1016_j_wasman_2016_08_020
crossref_primary_10_1016_j_resconrec_2019_05_006
crossref_primary_10_1007_s12649_022_01914_7
crossref_primary_10_1016_j_biortech_2012_06_109
crossref_primary_10_1016_j_envres_2024_118449
crossref_primary_10_1007_s13762_025_06653_5
crossref_primary_10_1016_j_resconrec_2017_06_005
crossref_primary_10_1016_j_jclepro_2018_12_321
crossref_primary_10_1016_j_egypro_2019_02_053
crossref_primary_10_1016_j_resconrec_2019_05_010
crossref_primary_10_1016_j_scitotenv_2019_07_322
crossref_primary_10_1016_j_scitotenv_2020_138555
Cites_doi 10.2134/jeq1999.00472425002800040032x
10.1017/S0021859604004514
10.1016/j.agee.2005.04.015
10.1016/j.wasman.2006.02.014
10.1109/TSTE.2010.2053261
10.1016/S0921-3449(97)00020-7
10.1016/j.jhazmat.2006.10.045
10.1177/0734242X09345276
10.1007/s10666-005-9028-0
10.1016/S0304-3894(00)00314-9
10.1029/2001GB001812
10.1177/0734242X06065704
10.1177/0734242X09345275
10.1080/01448765.2008.9755053
10.1177/0734242X06063053
10.1016/j.jclepro.2009.04.009
10.1016/S0950-4230(02)00093-1
10.1080/03067310701189067
10.1023/A:1006245227491
10.1016/j.wasman.2007.02.015
10.1177/0734242X07075635
10.1016/j.still.2006.08.014
10.1080/09593330309385611
10.1016/j.wasman.2007.02.022
10.1016/j.enpol.2009.10.066
10.1177/0734242X09344876
10.1016/S1161-0301(01)00112-5
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2014 INIST-CNRS
Copyright © 2011 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Copyright © 2011 Elsevier Ltd. All rights reserved.
CorporateAuthor Institutioner vid LTH
Institutionen för processteknik och tillämpad biovetenskap
Avdelningen för kemiteknik
Departments at LTH
Division of Chemical Engineering
Department of Process and Life Science Engineering
Lunds universitet
Faculty of Engineering, LTH
Lunds Tekniska Högskola
Lund University
CorporateAuthor_xml – name: Faculty of Engineering, LTH
– name: Lund University
– name: Avdelningen för kemiteknik
– name: Department of Process and Life Science Engineering
– name: Division of Chemical Engineering
– name: Institutionen för processteknik och tillämpad biovetenskap
– name: Institutioner vid LTH
– name: Lunds Tekniska Högskola
– name: Departments at LTH
– name: Lunds universitet
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7ST
7TV
C1K
SOI
OTOTI
ADTPV
AOWAS
D95
DOI 10.1016/j.wasman.2011.02.026
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
OSTI.GOV
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Pollution Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
AGRICOLA

Pollution Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Applied Sciences
EISSN 1879-2456
EndPage 1896
ExternalDocumentID oai_portal_research_lu_se_publications_afecf6a4_4bfe_41de_8c88_4ef4056f8662
21578456
21511455
24282071
10_1016_j_wasman_2011_02_026
S0956053X11001115
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29R
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SEN
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
WUQ
Y6R
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7ST
7TV
C1K
SOI
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c574t-5172e1536e31d9b65f9d76110f5c7c0f76621b08f0cc856e5fc2ba59a3f7cfcb3
ISICitedReferencesCount 223
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000292679100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0956-053X
1879-2456
IngestDate Mon Nov 24 03:10:39 EST 2025
Fri May 19 00:47:13 EDT 2023
Tue Oct 07 09:14:32 EDT 2025
Sat Sep 27 18:14:59 EDT 2025
Sun Sep 28 02:54:37 EDT 2025
Thu Apr 03 06:49:22 EDT 2025
Mon Jul 21 09:16:24 EDT 2025
Tue Nov 18 22:29:40 EST 2025
Sat Nov 29 08:08:43 EST 2025
Fri Feb 23 02:24:41 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Life cycle (environment)
Carbon dioxide
Acidification
Biogas
Paper bag
Aerobe
Pollutant emission
Anaerobic digestion
Food waste
Waste management
Transport process
Composting
Incineration
Anaerobe
Environment impact
Biological treatment
Domestic refuse
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c574t-5172e1536e31d9b65f9d76110f5c7c0f76621b08f0cc856e5fc2ba59a3f7cfcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21511455
PQID 1710229155
PQPubID 24069
PageCount 18
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_afecf6a4_4bfe_41de_8c88_4ef4056f8662
osti_scitechconnect_21578456
proquest_miscellaneous_888105488
proquest_miscellaneous_872535347
proquest_miscellaneous_1710229155
pubmed_primary_21511455
pascalfrancis_primary_24282071
crossref_citationtrail_10_1016_j_wasman_2011_02_026
crossref_primary_10_1016_j_wasman_2011_02_026
elsevier_sciencedirect_doi_10_1016_j_wasman_2011_02_026
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Waste management (Elmsford)
PublicationTitleAlternate Waste Manag
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ekvall, Assefa, Björklund, Eriksson, Finnveden (b0675) 2007; 27
County of Scania (2009). Climate and energy strategy for Scania County. Available at
Patyk, A., Reinhardt, G.A., 1997. Organic Fertilizers – Energy and Massbalance (in German). Heidelb Vieweg, Braunschweig. ISBN-3-528-06885-X.
Uppenberg, Brandel, Lindfors, Marcus, Wachtmeister, Zetterberg (b0560) 2001
Hansen, T., 2005. Quantification of Environmental Effects from Anaerobic Treatment of Source-sorted Organic Household Waste. Ph.D. Thesis, Institute of Environment and Resources. Technical University of Denmark.
Amlinger, F., Peyr, S., 2003. Environmental impacts of decentralized windrow composting—Greenhouse gas emissions, liquid emissions, mass balance, hygienisation potential. Forschungsprojekt im Auftrag von NÖ LReg., OÖ LReg., Tiroler LReg., Stm. LReg., Wiener LReg., Szb. LReg., BMLFUW.
Petersen, C., Domela, I., 2003. Composition of Household Waste and Home Composting (in Danish). Environmental Project, 868, Danish EPA, Copenhagen, Denmark.
Jensen T.K. and Kongshaug G. (2003). Energy consumption and greenhouse gas emissions in fertiliser production. Proceedings No. 509, Paper presented to The International Fertiliser Society at a Meeting in London, on 3rd April 2003. The International Fertiliser Society, York, United Kingdom. 28 s. ISBN 0 85310 145 0. ISSN 1466-1314.
Kirchmann (b0305) 1985
Norin, E., 2007. Alternative Methods for Hygienization. SGC Report No. 179.
SMHI, 2010. Swedish Methrological Institute. Swedish Precipitation Statistics.
Karpalund, 2009. Karpalund Biogas Production Plant Environmental Report 2009.
Prade, T., 2008. Researcher Swedish Agricultural Univeristy, SLU, Alnarp, Sweden, personal communication.
Karlsson, Rodhe (b0295) 2002
Hansen, la Cour Jansen, Davidsson, Christensen (b0680) 2007; 27
Sysav, 2008. Sysav Waste Management Facility Environmental Report 2008.
Gunnarsson, I., von Hoffman, V., Holmgren, M., Kristensson, I., Liljemark, S., Pettersson, A., Lindow, L., 2005. Methods for Measurements and Reduction of Emissions from Digestion and Up-Grading of Biogas in Sweden (in Swedish). Swedish Waste Management Association, Report 2005:7.
Lindén, Aronsson H., Engström, L., Torstensson, G., Rydberg, T., 2006. Mineralization and leaching of nitrogen from clay soil in Lanna, Västergötland (in Swedish). SLU Division of Water Quality Management, Ekohydrologi, p. 91.
Dalemo, M., Björklund, A., Oostra, H., Sonesson, U., 1998. System Analysis of Nutrient Recycling from Organic Waste. JTI Report No. 15, Swedish Institute of Agricultural Engineering (JTI), Uppsala, Sweden.
USEPA. 1995. Guidelines for Assessing the Quality of Life-Cycle Inventory Analysis. Office of Solid Waste, US Environmental Protection Agency, Washington, DC, USA.
Scania Average, 2008. Environmental profile of local district heating in the county of Scania. Climate strategy, County of Scania.
Whitehead, Raistrick (b0580) 1990; 41
Dahlén, L., 2008. Household Waste Collection – Factors and Variations. Ph.D. Thesis from Department of Civil, Mining and Environmental Engineering, Division of Waste Science and Technology, Luleå University of Technology, 2010. ISSN: 1402-1544.
Clemens, Cuhls (b0125) 2003; 24
Dalemo, Sonesson, Bjorklund, Mingarini, Frostell, Jonsson, Nybrant, Sundqvist, Thyselius (b0140) 1997; 21
Liang, Quan, Chen, Chung, Sung, Chen, Xue, Zhao (b0330) 2000; 80
.
Nordic Paper AB, 2008. Environmental Report 2008.
Effektiv, 2009. EFFem environmental impact calculator.
Andersson, Badeie, 2009. Certification of Digestate and Compost – Use of SPCR 120/SPCR 152 (in Swedish), Bachelor Thesis, Borås University, Sweden.
ISO, 1998. ISO 14041:1998. Environmental Management – Life Cycle Assessment – Goal and Scope Definition and Inventory Analysis.
Gomez, Grimes, Moore (b0200) 2008; 9
SPCR 152, 2009. Rules for certification of compost. Available at
Swedish Energy Agency, 2010. Energy in Sweden 2009.
Björklund, A., 2000. Environmental System Analysis of Waste Management – Experiences from Applications of the ORWARE Model. Doctoral Thesis, Department of Chemical Engineering and Technology, Division of Industrial Ecology, Royal Instituted of Technology.
SEPA, 2007. Interim Report on Waste (in Swedish). Swedish Environmental Protection Agency.
O emissions from managed soil as and CO
Svensk Fjärrvärme, 2009. Swedish District Heating Association. Energy input statistics 2008. <http://www.svenskfjarrvarme.se/Statistik--Pris/Fjarrvarme/Energitillforsel/Tillförd energi>.
Hallgren, E., 2000. The effect of flyfosphate on a sandy soil in Scania. SLU Växteko.
Simetric, 2009. Density of Materials.
Haugsted Petersen, P., Harekilde, D., Juul Hansen, P., 2003. Full Scale Experiment in the Capital Area – Collection and Biogas Production from Organic Household Waste (in Danish). Report No. 756 2003, Environmental Authority Denmark.
Sørensen, Birkmose (b0550) 2002
Bernstad, A. (2010). Environmental Evaluation of Solid Household Waste Management – the Augustenborg Ecocity Example Licentiate Thesis, Water and Environmental Engineering, Department for Chemical Engineering, Lund University.
Holmgren, 2009. Voluntary Undertakings – Mapping of Methane Emissions from Biogas Facilities 2007–2009 (in Swedish). ISSN 1103-4092. Swedish Waste Management Association. Report 2009 U:1.
Dotzauer (b0165) 2009; 38
Chung (b0120) 2007; 144
Davis, J., Haglund, C., 1999. Life cycle inventory (LCI) for fertilizer production. Fertilizer Products used in Sweden and Western Europe. SIK Report No. 654, Institute for Food and Biotechnology.
Båth, Elfstrand (b0110) 2008; 25
Berglund, Böjresson (b0055) 2003
Riber, Christensen (b0425) 2006; 87
Grönholm, R., 2009. Sysav, personal communication.
Lindahl, M., Rydh, C.J., Tingström, J., 2001. Book of Life-Cycle Assessment (in Swedish), third ed., Department of Technology, Kalmar University. ISBN 91-973906-1-5.
Profu, 2007. Data and assumptions used for calculating SYSAV’s impact on GHG emissions. Presented at ISWA Waste Site Stories Conference in Copenhagen.
Beck-Friis, Pell, Sonesson, Jönsson, Kirchmann (b0040) 2001; 62
Bjurling, K., Svärd, Å., 1998. Codigestion of Organic Waste – A Study of Swedish Biogas Production Plants. Master Thesis, Water and Environmental Engineering, Lund University.
Möller, Boldrin, Christensen (b0355) 2009; 27
SEPA, 2005. A Strategy for Sustainable Waste Managements. Sweden’s Waste Plan, (in Swedish). Swedish Environmental Protection Agency.
Krogstad, T., Sogn, T.A., Sæbø, A., Asdal, Å., 2004. Recirculation of phosphorus in sludge (in Danish). Grønn Kunnskap 8(7), 42.
Haug (b0250) 1993
Sommer, Hutchings (b0480) 2001; 15
Wikholm, N., 2001. Assessment of Heavy Metal Flow Caused by Different Solid Waste Treatment Alternatives. Royal Academy of Technology. TRITA 2001:25, ISSN 1402-7615.
SPCR 120 (2009). Rules for certification of digestate (in Swedish). Available at: http://www.sp.se/sv/units/certification/product/Documents/SPCR/SPCR120.pdf.
Bhattacharyya, Chandra, Singh, Kundu, Srivastva, Gupta (b0025) 2007; 94
Finnveden, G., Johansson, J., Lind, P., Moberg, Å., 2000. Life Cycle Assessments of Energy from Solid Waste. FMS Report 137.
Lindsjö, H., 2009. Energy from Waste Expert, Sysav, personal communication.
Nanh, Warren, Sistani (b0360) 2008
Persson, C., Olsson, J., 2002. Comparison Between Different Technologies for Combined Heat and Power Production. SGC Report 128.
SETAC, 2000. List of Definitions. Working Paper from SETAC LCA Workgroup: Data Availability and Data Quality.
Berg (b0030) 2005
Kärrman, E., Baky, A., Edström, M., Magnusson, Y., Malmqvist, P.-A., Palm, O., Rogsrand, G., 2004. Systems analysis of collection and treatment of organic household waste in Malmö (in Swedish). ECOLOOP.
SITA, 2008. Anders Bielsten, Manager at SITA, personal communication.
Borgshed, J., Leander J., Rönnquist, E.-M. and Steinwall, P. (2003). Systems analysis of household waste management in the Kalmar region (in Swedish). Carl Bro Energikonsult AB.
Cederberg, C., Darelius, K., 2000. Life-cycle assessment of beef – a study of different production forms (in Swedish). Halland County Forum for Natural Resources.
Nilsson, L., Larson, E.D., 1990. A System-Oriented Assessment of Electricity Use and Efficiency in Pumping and Air-Handling. IMES/EESS Report No. 1, Department of Environmental and Energy Systems Studies, Lund University, Sweden.
Rodhe, L., 2009. Researcher at JTI. Personal communication, spring 2009, from Lantz, M., Ekman, A., Börjesson, P. (2009). Systems optimizated production of vehicle gas – An environmental and energy assessment of the Söderåsen biogas production plant (in Swedish). Report 69. Envionmental and Energy Systems Studies, Lund University.
Mathiesen, Münster, Fruergaard (b0350) 2009; 17
Baky, A., Norberg, Å., Palm, O., Rodhe, L., Salomon, E., 2006. Digestate from Biogas Production Plant – Use in Agriculture (in Swedish), JTI Report No. 115.
Sonesson (b0485) 1996
Davidsson, Appelqvist, Gruvberger, Hallmer, la Cour Jansen (b0155) 2007; 25
Jansen la Cour, J., Christensen, T., Davidsson, Å., Lund Hansen, T., Jönsson, H., Kirkeby, J., 2007. Biowaste – Decision Support Tool for Collection and Treatment of Source-Sorted Organic Municipal Solid Waste. TemaNord 2007:602. Nordic Council of Ministers, Copenhagen.
SGC, 2008. Svenskt Gascentrum, webpage. Emissions at incineration of fossil gas in heavy vehicles.
Haraldsen, T.K., Andersen, U., Krogstad, K., Sørheim, R., 2010. Separated household waste as fertilizer for barley. In: Proceedings from the ORBIT 2010 Conference, Crete, Greece.
Johansson, C., 2009. Manager at Karpalund Biogas Production Plant, personal communication.
Persson, K., 2007. Manager at C4 Power Distribution Operator, personal communication, C4 City of Kristianstad.
Stangel, P., 1988. Technological Options Affecting Emissions. Paper Presented at U.S. Environmental Protection Agency Workshop on Agriculture and Climate Change, February, 28-March, 1, 1988, Washington DC.
Boldrin, Andersen, Möller, Christensen, Favoino (b0085) 2009; 27
Stranddorf, Hoffmann, Schmidt (b0515) 2005
Fruergaard, Astrup, Ekvall (b0190) 2009;
Riber (10.1016/j.wasman.2011.02.026_b0425) 2006; 87
Ekvall (10.1016/j.wasman.2011.02.026_b0675) 2007; 27
10.1016/j.wasman.2011.02.026_b0280
10.1016/j.wasman.2011.02.026_b0160
10.1016/j.wasman.2011.02.026_b0285
10.1016/j.wasman.2011.02.026_b0440
10.1016/j.wasman.2011.02.026_b0310
10.1016/j.wasman.2011.02.026_b0555
10.1016/j.wasman.2011.02.026_b0435
10.1016/j.wasman.2011.02.026_b0315
Uppenberg (10.1016/j.wasman.2011.02.026_b0560) 2001
Gabrielle (10.1016/j.wasman.2011.02.026_b0195) 2005; 110
Berglund (10.1016/j.wasman.2011.02.026_b0055) 2003
Sørensen (10.1016/j.wasman.2011.02.026_b0550) 2002
10.1016/j.wasman.2011.02.026_b0390
10.1016/j.wasman.2011.02.026_b0270
10.1016/j.wasman.2011.02.026_b0150
10.1016/j.wasman.2011.02.026_b0670
10.1016/j.wasman.2011.02.026_b0395
Busca (10.1016/j.wasman.2011.02.026_b0100) 2003; 16
10.1016/j.wasman.2011.02.026_b0275
10.1016/j.wasman.2011.02.026_b0430
10.1016/j.wasman.2011.02.026_b0420
10.1016/j.wasman.2011.02.026_b0300
10.1016/j.wasman.2011.02.026_b0665
10.1016/j.wasman.2011.02.026_b0545
Clemens (10.1016/j.wasman.2011.02.026_b0125) 2003; 24
Davidsson (10.1016/j.wasman.2011.02.026_b0155) 2007; 25
Gomez (10.1016/j.wasman.2011.02.026_b0200) 2008; 9
10.1016/j.wasman.2011.02.026_b0180
Fruergaard (10.1016/j.wasman.2011.02.026_b0190) 2009; 27
10.1016/j.wasman.2011.02.026_b0060
10.1016/j.wasman.2011.02.026_b0185
10.1016/j.wasman.2011.02.026_b0460
10.1016/j.wasman.2011.02.026_b0065
10.1016/j.wasman.2011.02.026_b0220
10.1016/j.wasman.2011.02.026_b0575
10.1016/j.wasman.2011.02.026_b0610
10.1016/j.wasman.2011.02.026_b0335
10.1016/j.wasman.2011.02.026_b0215
10.1016/j.wasman.2011.02.026_b0615
Bhattacharyya (10.1016/j.wasman.2011.02.026_b0025) 2007; 94
Karlsson (10.1016/j.wasman.2011.02.026_b0295) 2002
Möller (10.1016/j.wasman.2011.02.026_b0355) 2009; 27
Svensson (10.1016/j.wasman.2011.02.026_b0530) 2004; 142
10.1016/j.wasman.2011.02.026_b0290
10.1016/j.wasman.2011.02.026_b0050
Dalemo (10.1016/j.wasman.2011.02.026_b0140) 1997; 21
Hansen (10.1016/j.wasman.2011.02.026_b0240) 2006; 24
10.1016/j.wasman.2011.02.026_b0690
10.1016/j.wasman.2011.02.026_b0570
10.1016/j.wasman.2011.02.026_b0175
10.1016/j.wasman.2011.02.026_b0450
10.1016/j.wasman.2011.02.026_b0685
10.1016/j.wasman.2011.02.026_b0600
10.1016/j.wasman.2011.02.026_b0325
Kirchmann (10.1016/j.wasman.2011.02.026_b0305) 1985
den Boer (10.1016/j.wasman.2011.02.026_b0075) 2007; 27
10.1016/j.wasman.2011.02.026_b0605
Berg (10.1016/j.wasman.2011.02.026_b0030) 2005
10.1016/j.wasman.2011.02.026_b0475
10.1016/j.wasman.2011.02.026_b0630
10.1016/j.wasman.2011.02.026_b0235
10.1016/j.wasman.2011.02.026_b0510
10.1016/j.wasman.2011.02.026_b0115
Hansen (10.1016/j.wasman.2011.02.026_b0680) 2007; 27
10.1016/j.wasman.2011.02.026_b0635
Dotzauer (10.1016/j.wasman.2011.02.026_b0165) 2009; 38
Powelson (10.1016/j.wasman.2011.02.026_b0415) 2006; 24
10.1016/j.wasman.2011.02.026_b0070
Bruun (10.1016/j.wasman.2011.02.026_b0590) 2006; 11
Båth (10.1016/j.wasman.2011.02.026_b0110) 2008; 25
Starberg (10.1016/j.wasman.2011.02.026_b0505) 2005
10.1016/j.wasman.2011.02.026_b0230
10.1016/j.wasman.2011.02.026_b0595
10.1016/j.wasman.2011.02.026_b0585
10.1016/j.wasman.2011.02.026_b0465
10.1016/j.wasman.2011.02.026_b0620
10.1016/j.wasman.2011.02.026_b0225
10.1016/j.wasman.2011.02.026_b0500
Sommer (10.1016/j.wasman.2011.02.026_b0480) 2001; 15
Whitehead (10.1016/j.wasman.2011.02.026_b0580) 1990; 41
10.1016/j.wasman.2011.02.026_b0625
Lindfors (10.1016/j.wasman.2011.02.026_b0340) 1995
Nanh (10.1016/j.wasman.2011.02.026_b0360) 2008
Beck-Friis (10.1016/j.wasman.2011.02.026_b0040) 2001; 62
Haug (10.1016/j.wasman.2011.02.026_b0250) 1993
10.1016/j.wasman.2011.02.026_b0380
10.1016/j.wasman.2011.02.026_b0260
10.1016/j.wasman.2011.02.026_b0020
10.1016/j.wasman.2011.02.026_b0385
10.1016/j.wasman.2011.02.026_b0660
10.1016/j.wasman.2011.02.026_b0540
10.1016/j.wasman.2011.02.026_b0255
10.1016/j.wasman.2011.02.026_b0135
10.1016/j.wasman.2011.02.026_b0015
10.1016/j.wasman.2011.02.026_b0655
10.1016/j.wasman.2011.02.026_b0535
Bergström (10.1016/j.wasman.2011.02.026_b0035) 1999; 28
10.1016/j.wasman.2011.02.026_b0090
Stranddorf (10.1016/j.wasman.2011.02.026_b0515) 2005
10.1016/j.wasman.2011.02.026_b0490
10.1016/j.wasman.2011.02.026_b0095
10.1016/j.wasman.2011.02.026_b0130
10.1016/j.wasman.2011.02.026_b0010
10.1016/j.wasman.2011.02.026_b0495
Liang (10.1016/j.wasman.2011.02.026_b0330) 2000; 80
10.1016/j.wasman.2011.02.026_b0650
10.1016/j.wasman.2011.02.026_b0365
10.1016/j.wasman.2011.02.026_b0640
10.1016/j.wasman.2011.02.026_b0400
10.1016/j.wasman.2011.02.026_b0005
Chung (10.1016/j.wasman.2011.02.026_b0120) 2007; 144
10.1016/j.wasman.2011.02.026_b0645
10.1016/j.wasman.2011.02.026_b0525
Boldrin (10.1016/j.wasman.2011.02.026_b0085) 2009; 27
Mathiesen (10.1016/j.wasman.2011.02.026_b0350) 2009; 17
Sonesson (10.1016/j.wasman.2011.02.026_b0485) 1996
Lantz (10.1016/j.wasman.2011.02.026_b0320) 2009
References_xml – reference: Jansen la Cour, J., Christensen, T., Davidsson, Å., Lund Hansen, T., Jönsson, H., Kirkeby, J., 2007. Biowaste – Decision Support Tool for Collection and Treatment of Source-Sorted Organic Municipal Solid Waste. TemaNord 2007:602. Nordic Council of Ministers, Copenhagen.
– year: 2001
  ident: b0560
  article-title: Environmental facts for fuels Part 1. Resources consumption and emissions throughout the lifecycle (in Swedish)
– year: 2002
  ident: b0550
  article-title: Nitrogen Losses After Fertilization with Digestate (in Norwegean). Grøn Viden, Markbruk No. 266
– reference: Krogstad, T., Sogn, T.A., Sæbø, A., Asdal, Å., 2004. Recirculation of phosphorus in sludge (in Danish). Grønn Kunnskap 8(7), 42.
– year: 1995
  ident: b0340
  article-title: Nordic Guidelines on Life-Cycle Assessment. Nord 1995:20
– reference: O emissions from managed soil as and CO
– reference: Riber, C., Christensen, T.H., 2006b. Measurement of Heavy Metals in Danish MSW (in Danish). Report No. 1085, Danish EPA.
– reference: Petersen, C., Domela, I., 2003. Composition of Household Waste and Home Composting (in Danish). Environmental Project, 868, Danish EPA, Copenhagen, Denmark.
– reference: USEPA. 1995. Guidelines for Assessing the Quality of Life-Cycle Inventory Analysis. Office of Solid Waste, US Environmental Protection Agency, Washington, DC, USA.
– reference: Bjurling, K., Svärd, Å., 1998. Codigestion of Organic Waste – A Study of Swedish Biogas Production Plants. Master Thesis, Water and Environmental Engineering, Lund University.
– reference: Johansson, C., 2009. Manager at Karpalund Biogas Production Plant, personal communication.
– reference: Profu, 2007. Data and assumptions used for calculating SYSAV’s impact on GHG emissions. Presented at ISWA Waste Site Stories Conference in Copenhagen.
– volume: 15
  start-page: 1
  year: 2001
  end-page: 15
  ident: b0480
  article-title: Ammonia emission from field applied manure and its reduction – invited paper
  publication-title: European Journal of Agronomy
– reference: SPCR 152, 2009. Rules for certification of compost. Available at: <
– reference: Persson, C., Olsson, J., 2002. Comparison Between Different Technologies for Combined Heat and Power Production. SGC Report 128. <
– reference: Kärrman, E., Baky, A., Edström, M., Magnusson, Y., Malmqvist, P.-A., Palm, O., Rogsrand, G., 2004. Systems analysis of collection and treatment of organic household waste in Malmö (in Swedish). ECOLOOP.
– volume: 62
  start-page: 317
  year: 2001
  end-page: 331
  ident: b0040
  article-title: Formation and emission of N
  publication-title: Environmental Monitoring and Assessment
– reference: Danish EPA, 2005. Environmental and Economic Assessment of Methods for Handling of Fly Ash (in Danish).
– year: 1996
  ident: b0485
  article-title: Modelling of the compost and transport process in the ORWARE simulation model. Report 214
– reference: Bouwman, A.F., Boumans, L.J.M., Batjes, N.H., 2002. Modelling global annual N
– reference: Lindsjö, H., 2009. Energy from Waste Expert, Sysav, personal communication.
– reference: Andersson, Badeie, 2009. Certification of Digestate and Compost – Use of SPCR 120/SPCR 152 (in Swedish), Bachelor Thesis, Borås University, Sweden.
– volume: 21
  start-page: 17
  year: 1997
  end-page: 37
  ident: b0140
  article-title: ORWARE – a simulation model for organic waste handling systems. Part 1: model description
  publication-title: Resources, Conservation and Recycling
– reference: Simetric, 2009. Density of Materials. <
– reference: Cederberg, C., Darelius, K., 2000. Life-cycle assessment of beef – a study of different production forms (in Swedish). Halland County Forum for Natural Resources.
– reference: SEPA, 2005. A Strategy for Sustainable Waste Managements. Sweden’s Waste Plan, (in Swedish). Swedish Environmental Protection Agency.
– year: 2002
  ident: b0295
  article-title: Overview of the SCB Calculation of Ammonia-Losses from Farmland–Emission Factors for Ammonia Through Storage and Spreading of Manure
– reference: Patyk, A., Reinhardt, G.A., 1997. Organic Fertilizers – Energy and Massbalance (in German). Heidelb Vieweg, Braunschweig. ISBN-3-528-06885-X.
– reference: Graham, T., 2003. Decentralized compost facilities at Augustenborg (in Swedish). Municipality of Malmö. Unpublished.
– reference: SITA, 2008. Anders Bielsten, Manager at SITA, personal communication.
– reference: IPCC, 2006. N
– volume: 41
  start-page: 380
  year: 1990
  end-page: 394
  ident: b0580
  article-title: Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils
  publication-title: European Journal of Soil Science
– reference: Holmgren, 2009. Voluntary Undertakings – Mapping of Methane Emissions from Biogas Facilities 2007–2009 (in Swedish). ISSN 1103-4092. Swedish Waste Management Association. Report 2009 U:1.
– volume: 27
  start-page: 1032
  year: 2007
  end-page: 1045
  ident: b0075
  article-title: LCA-IWM: a decision support tool for sustainability assessment of waste management systems
  publication-title: Waste Management
– volume: 27
  start-page: 800
  year: 2009
  end-page: 812
  ident: b0085
  article-title: Composting and compost utilization: accounting of greenhouse gases and global warming contributions
  publication-title: Waste Management and Research
– reference: Prade, T., 2008. Researcher Swedish Agricultural Univeristy, SLU, Alnarp, Sweden, personal communication.
– reference: Effektiv, 2009. EFFem environmental impact calculator. <
– volume: 24
  start-page: 528
  year: 2006
  end-page: 536
  ident: b0415
  article-title: Methane oxidation in water-spreading and compost biofilters
  publication-title: Waste Management and Research
– volume: 38
  start-page: 701
  year: 2009
  end-page: 704
  ident: b0165
  article-title: Greenhouse gas emissions from power generation and consumption in a Nordic perspective
  publication-title: Energy Policy
– reference: Nordic Paper AB, 2008. Environmental Report 2008.
– reference: Scania Average, 2008. Environmental profile of local district heating in the county of Scania. Climate strategy, County of Scania. <
– volume: 94
  start-page: 386
  year: 2007
  end-page: 396
  ident: b0025
  article-title: Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat–soybean rotation
  publication-title: Soil and Tillage Research
– volume: 27
  start-page: 724
  year: 2009
  end-page: 737
  ident: b0190
  article-title: Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions
  publication-title: Waste Management and Research
– reference: Stangel, P., 1988. Technological Options Affecting Emissions. Paper Presented at U.S. Environmental Protection Agency Workshop on Agriculture and Climate Change, February, 28-March, 1, 1988, Washington DC.
– reference: Karpalund, 2009. Karpalund Biogas Production Plant Environmental Report 2009.
– year: 2005
  ident: b0030
  article-title: Storing and Handling of Biogas Residues from Big-scale Biogas Plants. JTI Report 22, ISSN 1401–4955
– volume: 27
  start-page: 989
  year: 2007
  end-page: 996
  ident: b0675
  article-title: What life-cycle assessment does and does not do in assessments of waste management
  publication-title: Waste Management
– reference: ISO, 1998. ISO 14041:1998. Environmental Management – Life Cycle Assessment – Goal and Scope Definition and Inventory Analysis. <
– reference: SEPA, 2007. Interim Report on Waste (in Swedish). Swedish Environmental Protection Agency.
– reference: Truedsson, C., 2010. Positive and Negative Environmental Aspects through Optimization of Food Waste Pretreatment at Sysav Biotec (in Swedish). Master Thesis, Department for Chemical Engineering, Lund University, Sweden.
– reference: Eklind, Y., Sundberg, C., Smårs, S., Steger, K., Sundh, I., Kirchmann, H., Jönsson, H., 2005. Carbon Turnover and Ammonia Emissions During Composting of Biowaste at Different Temperatures. From Sundberg C. Improving Compost Process Efficiency by Controlling Aeration, Temperature and pH. Ph.D. Thesis, SLU.
– reference: emissions from lime and urea application. Guidelines for National Greenhouse Gas Inventories, vol. 4, Chapter 11, Agriculture, Forestry and Other Land Use.
– reference: Davis, J., Haglund, C., 1999. Life cycle inventory (LCI) for fertilizer production. Fertilizer Products used in Sweden and Western Europe. SIK Report No. 654, Institute for Food and Biotechnology.
– reference: Finnveden, G., Johansson, J., Lind, P., Moberg, Å., 2000. Life Cycle Assessments of Energy from Solid Waste. FMS Report 137.
– reference: Rosén, P., 2008. Facility Manager at Malmö Kommunala Bostadsbolag (MKB), personal communication.
– reference: Norin, E., 2007. Alternative Methods for Hygienization. SGC Report No. 179. <
– reference: Audsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliet, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teuleon, H., Weidema, B., van Zejts, H., 1997. Harmonization of Environmental Life Cycle Assessment for Agriculture. Final Report Concerted Action AIR3-CT94-2028, European Commission DG VI Agriculture.
– reference: Hallmer, M. (2008). Sysav Biotech, personal communication.
– reference: Gunnarsson, I., von Hoffman, V., Holmgren, M., Kristensson, I., Liljemark, S., Pettersson, A., Lindow, L., 2005. Methods for Measurements and Reduction of Emissions from Digestion and Up-Grading of Biogas in Sweden (in Swedish). Swedish Waste Management Association, Report 2005:7.
– year: 1985
  ident: b0305
  article-title: Household Composts, Waste-Water Treatment Sludge and By-products from Industry in Agriculture; Problems, Demand and Research (in Swedish). ISBN 91–576-3283–9
– reference: Lindahl, M., Rydh, C.J., Tingström, J., 2001. Book of Life-Cycle Assessment (in Swedish), third ed., Department of Technology, Kalmar University. ISBN 91-973906-1-5.
– reference: ISO, 2000. ISO 14042:2000. Environmental Management – Life Cycle Assessment – Life Cycle Impact Assessment. <
– reference: SMHI, 2010. Swedish Methrological Institute. Swedish Precipitation Statistics. <
– volume: 110
  start-page: 289
  year: 2005
  end-page: 299
  ident: b0195
  article-title: Field scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts
  publication-title: Agriculture, Ecosystems and Environment
– volume: 25
  start-page: 269
  year: 2008
  end-page: 286
  ident: b0110
  article-title: Use of red clover-based green manure in leek cultivation
  publication-title: Biological Agriculture & Horticulture
– reference: County of Scania (2009). Climate and energy strategy for Scania County. Available at <
– reference: O and NO emissions from fertilised fields: summary of available measurement data. Global Biogeochemical Cycles 16(4), 28-1.
– reference: Edström, M., Nordberg, Å, Ringmar, A., 2005. Evaluation of Farmscale Biogas Production at Hagavik (in Swedish). JTI Report, Kretslopp och Avfall, 31, JTI Uppsala.
– reference: Hansen, T., 2005. Quantification of Environmental Effects from Anaerobic Treatment of Source-sorted Organic Household Waste. Ph.D. Thesis, Institute of Environment and Resources. Technical University of Denmark.
– reference: SETAC, 2000. List of Definitions. Working Paper from SETAC LCA Workgroup: Data Availability and Data Quality.
– reference: Amlinger, F., Peyr, S., 2003. Environmental impacts of decentralized windrow composting—Greenhouse gas emissions, liquid emissions, mass balance, hygienisation potential. Forschungsprojekt im Auftrag von NÖ LReg., OÖ LReg., Tiroler LReg., Stm. LReg., Wiener LReg., Szb. LReg., BMLFUW. <
– reference: Haugsted Petersen, P., Harekilde, D., Juul Hansen, P., 2003. Full Scale Experiment in the Capital Area – Collection and Biogas Production from Organic Household Waste (in Danish). Report No. 756 2003, Environmental Authority Denmark.
– volume: 25
  start-page: 162
  year: 2007
  end-page: 169
  ident: b0155
  article-title: Anaerobic digestion potential of urban organic waste: a case study in Malmö
  publication-title: Waste Management and Research
– reference: Björklund, A., 2000. Environmental System Analysis of Waste Management – Experiences from Applications of the ORWARE Model. Doctoral Thesis, Department of Chemical Engineering and Technology, Division of Industrial Ecology, Royal Instituted of Technology.
– reference: Lindén, Aronsson H., Engström, L., Torstensson, G., Rydberg, T., 2006. Mineralization and leaching of nitrogen from clay soil in Lanna, Västergötland (in Swedish). SLU Division of Water Quality Management, Ekohydrologi, p. 91.
– year: 2008
  ident: b0360
  article-title: Ammonia and Greenhouse Gases Emission from Land Application of Swine Slurry: A Comparison of Three Application Methods
– year: 2005
  ident: b0515
  article-title: Update on Impact Categories, Normalisation and Weighting in LCA – Selected EDIP97-data
– volume: 142
  start-page: 461
  year: 2004
  end-page: 467
  ident: b0530
  article-title: The fertilising effect of compost and biogas residues from source separated household waste
  publication-title: Journal of Agricultural Science
– reference: Grönholm, R., 2009. Sysav, personal communication.
– volume: 24
  start-page: 153
  year: 2006
  end-page: 166
  ident: b0240
  article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (Easewaste)
  publication-title: Waste Management and Research
– reference: Svensk Fjärrvärme, 2009. Swedish District Heating Association. Energy input statistics 2008. <http://www.svenskfjarrvarme.se/Statistik--Pris/Fjarrvarme/Energitillforsel/Tillförd energi>.
– reference: Boldrin, A., Hartling, K.R., Smidt, M.M., Christensen, T.H., 2008. Use of compost and peat in growth media preparation: an environmental comparison using LCA-modelling (EASEAWSTE). Submitted to Resource, Conservation and Recycling.
– reference: Sundqvist, J.-O., Baky, A., Clarlsson Reich, M., Eriksson, O., Granath, J., 2002. How Should Household Waste be Treated – Evaluation of Different Treatment Strategies (In Swedish). IVL, Swedish Environmental Institute.
– reference: Sysav, 2008. Sysav Waste Management Facility Environmental Report 2008.
– reference: Dalemo, M., Björklund, A., Oostra, H., Sonesson, U., 1998. System Analysis of Nutrient Recycling from Organic Waste. JTI Report No. 15, Swedish Institute of Agricultural Engineering (JTI), Uppsala, Sweden.
– reference: >. (20090503).
– reference: Stenkvist AB, 2007. Environmental Report 2007.
– reference: Persson, K., 2007. Manager at C4 Power Distribution Operator, personal communication, C4 City of Kristianstad.
– reference: Borgshed, J., Leander J., Rönnquist, E.-M. and Steinwall, P. (2003). Systems analysis of household waste management in the Kalmar region (in Swedish). Carl Bro Energikonsult AB.
– volume: 27
  start-page: 813
  year: 2009
  end-page: 824
  ident: b0355
  article-title: Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution
  publication-title: Waste Management and Research
– reference: Swedish Energy Agency, 2010. Energy in Sweden 2009. <
– reference: Volvo, 2003. Emission Data from Volvo Lastvagnar AB, Lorry with 40
– reference: Bernstad, A. (2010). Environmental Evaluation of Solid Household Waste Management – the Augustenborg Ecocity Example Licentiate Thesis, Water and Environmental Engineering, Department for Chemical Engineering, Lund University.
– reference: Haraldsen, T.K., Andersen, U., Krogstad, K., Sørheim, R., 2010. Separated household waste as fertilizer for barley. In: Proceedings from the ORBIT 2010 Conference, Crete, Greece.
– year: 2003
  ident: b0055
  article-title: Environmental Assessment of Biogas Production Systems (in Swedish), Report No. 45
– reference: SGC, 2008. Svenskt Gascentrum, webpage. Emissions at incineration of fossil gas in heavy vehicles. <
– volume: 28
  start-page: 1283
  year: 1999
  end-page: 1290
  ident: b0035
  article-title: Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertiliser
  publication-title: Journal of Environmental Quality
– reference: Green Account of the Aarhus Incinerator, (2008). AVÅ (Affald Varme Århus), Grønt regnskab 2007. Affaldscenter Århus. Forbrændingsanlægget (Green account 2007, Waste Centre Århus, The Incineration Plant), Århus Kommune (in Danish).
– reference: Nilsson, L., Larson, E.D., 1990. A System-Oriented Assessment of Electricity Use and Efficiency in Pumping and Air-Handling. IMES/EESS Report No. 1, Department of Environmental and Energy Systems Studies, Lund University, Sweden.
– volume: 144
  start-page: 377
  year: 2007
  end-page: 385
  ident: b0120
  article-title: Evaluation of gas removal and bacterial community diversity in a bio-filter developed to treat composting exhaust gases
  publication-title: Journal of Hazardous Materials
– reference: Dahlén, L., 2008. Household Waste Collection – Factors and Variations. Ph.D. Thesis from Department of Civil, Mining and Environmental Engineering, Division of Waste Science and Technology, Luleå University of Technology, 2010. ISSN: 1402-1544.
– reference: Börjesson, P., 2008. Researcher at Environmental and Energy System Studies at Lund University. Personal communication fall 2008.
– reference: Rodhe, L., 2009. Researcher at JTI. Personal communication, spring 2009, from Lantz, M., Ekman, A., Börjesson, P. (2009). Systems optimizated production of vehicle gas – An environmental and energy assessment of the Söderåsen biogas production plant (in Swedish). Report 69. Envionmental and Energy Systems Studies, Lund University.
– year: 2005
  ident: b0505
  article-title: Evaluation of Large Scale Systems for Compost and Digestion of Source Separated Biowaste (In Swedish). Report RVF Utveckling 2005:06
– volume: 24
  start-page: 745
  year: 2003
  end-page: 754
  ident: b0125
  article-title: Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste
  publication-title: Environmental Technology
– reference: Arnäs, P.-O., Blinge, M., Bäckström, S., Furnander, Å., Hovelius, K., 1997. Life-cycle Assessment of Car Fuels. Technical Report No 1997:5. The Swedish Transport and Communication Research Board.
– reference: Vogt, R., Knappe, F., Giegrich, J., Detzel, A., 2002. Ecobalance for Bio-waste Treatment – Examination of Environmental Impacts from Systmes of Valoraization of Organic Waste (in German). Ifeu, Insitute for Energy and Environmental Research, Heidelberg GmbH, Erich Schmidt Publishing House, Berlin, Germany.
– volume: 80
  start-page: 259
  year: 2000
  end-page: 269
  ident: b0330
  article-title: Long-term results of ammonia removal and transformation by biofiltration
  publication-title: Journal of Hazardous Materials
– reference: SPCR 120 (2009). Rules for certification of digestate (in Swedish). Available at: http://www.sp.se/sv/units/certification/product/Documents/SPCR/SPCR120.pdf.
– volume: 16
  start-page: 157
  year: 2003
  end-page: 163
  ident: b0100
  article-title: Abatement of ammonia and amines from waste gases: a summary
  publication-title: Journal of Loss Prevention in the Process Industries
– year: 2009
  ident: b0320
  article-title: Systems optimized production of vehicle gas–An environmental and energy assessment of the Söderåsen biogas production plant (in Swedish). Report 69
– reference: Jensen T.K. and Kongshaug G. (2003). Energy consumption and greenhouse gas emissions in fertiliser production. Proceedings No. 509, Paper presented to The International Fertiliser Society at a Meeting in London, on 3rd April 2003. The International Fertiliser Society, York, United Kingdom. 28 s. ISBN 0 85310 145 0. ISSN 1466-1314.
– year: 1993
  ident: b0250
  article-title: The Practical Handbook of Compost Engineering
– reference: ton Loading Capacity. <
– reference: Baky, A., Norberg, Å., Palm, O., Rodhe, L., Salomon, E., 2006. Digestate from Biogas Production Plant – Use in Agriculture (in Swedish), JTI Report No. 115.
– reference: >.
– volume: 87
  start-page: 321
  year: 2006
  end-page: 336
  ident: b0425
  article-title: Method for fractional solid waste sampling and chemical analysis
  publication-title: International Journal of Environmental Analytical Chemistry
– volume: 27
  start-page: 398
  year: 2007
  end-page: 405
  ident: b0680
  article-title: Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery
  publication-title: Waste Management
– volume: 11
  start-page: 251
  year: 2006
  end-page: 265
  ident: b0590
  article-title: Application of processed organic municipal solid waste on agricultural land – a scenario analysis
  publication-title: Environmental Modeling and Assessment
– reference: Hallgren, E., 2000. The effect of flyfosphate on a sandy soil in Scania. SLU Växteko.
– volume: 17
  start-page: 1331
  year: 2009
  end-page: 1338
  ident: b0350
  article-title: Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments
  publication-title: Journal of Cleaner Production
– reference: Nielsen, M., Illerup, J.B., 2003. Emission factors and emission monitoring from decentraliced heat and power plants. Eltra PSO Project 3141. Mapping of Emissions from Decentralized Heat and Power Plants. Report 6. Danish Environmental Protection Agency. Scientific Report No. 442.(In Danish, with an English summary). Available at <
– reference: > (06.07.04).
– reference: Wikholm, N., 2001. Assessment of Heavy Metal Flow Caused by Different Solid Waste Treatment Alternatives. Royal Academy of Technology. TRITA 2001:25, ISSN 1402-7615.
– volume: 9
  start-page: 19
  year: 2008
  end-page: 23
  ident: b0200
  article-title: In-vessel composting of food waste – a catering waste management solution
  publication-title: Communication in Waste and Resource Management (CWRM)
– reference: Swedish Waste Management Association, 2009. Swedish Waste Management 2008. Available at <
– ident: 10.1016/j.wasman.2011.02.026_b0440
– ident: 10.1016/j.wasman.2011.02.026_b0010
– ident: 10.1016/j.wasman.2011.02.026_b0595
– volume: 28
  start-page: 1283
  year: 1999
  ident: 10.1016/j.wasman.2011.02.026_b0035
  article-title: Leaching of total nitrogen from nitrogen-15-labeled poultry manure and inorganic nitrogen fertiliser
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq1999.00472425002800040032x
– volume: 142
  start-page: 461
  year: 2004
  ident: 10.1016/j.wasman.2011.02.026_b0530
  article-title: The fertilising effect of compost and biogas residues from source separated household waste
  publication-title: Journal of Agricultural Science
  doi: 10.1017/S0021859604004514
– ident: 10.1016/j.wasman.2011.02.026_b0600
– ident: 10.1016/j.wasman.2011.02.026_b0325
– ident: 10.1016/j.wasman.2011.02.026_b0280
– ident: 10.1016/j.wasman.2011.02.026_b0260
– volume: 110
  start-page: 289
  year: 2005
  ident: 10.1016/j.wasman.2011.02.026_b0195
  article-title: Field scale modelling of carbon and nitrogen dynamics in soils amended with urban waste composts
  publication-title: Agriculture, Ecosystems and Environment
  doi: 10.1016/j.agee.2005.04.015
– ident: 10.1016/j.wasman.2011.02.026_b0620
– ident: 10.1016/j.wasman.2011.02.026_b0180
– ident: 10.1016/j.wasman.2011.02.026_b0605
– ident: 10.1016/j.wasman.2011.02.026_b0380
– year: 2003
  ident: 10.1016/j.wasman.2011.02.026_b0055
– ident: 10.1016/j.wasman.2011.02.026_b0540
– volume: 27
  start-page: 398
  issue: 3
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0680
  article-title: Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2006.02.014
– volume: 9
  start-page: 19
  issue: 1
  year: 2008
  ident: 10.1016/j.wasman.2011.02.026_b0200
  article-title: In-vessel composting of food waste – a catering waste management solution
  publication-title: Communication in Waste and Resource Management (CWRM)
– ident: 10.1016/j.wasman.2011.02.026_b0690
– ident: 10.1016/j.wasman.2011.02.026_b0535
  doi: 10.1109/TSTE.2010.2053261
– ident: 10.1016/j.wasman.2011.02.026_b0670
– ident: 10.1016/j.wasman.2011.02.026_b0395
– ident: 10.1016/j.wasman.2011.02.026_b0625
– year: 1993
  ident: 10.1016/j.wasman.2011.02.026_b0250
– ident: 10.1016/j.wasman.2011.02.026_b0575
– ident: 10.1016/j.wasman.2011.02.026_b0420
– ident: 10.1016/j.wasman.2011.02.026_b0015
– ident: 10.1016/j.wasman.2011.02.026_b0465
– ident: 10.1016/j.wasman.2011.02.026_b0115
– volume: 21
  start-page: 17
  year: 1997
  ident: 10.1016/j.wasman.2011.02.026_b0140
  article-title: ORWARE – a simulation model for organic waste handling systems. Part 1: model description
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/S0921-3449(97)00020-7
– volume: 144
  start-page: 377
  issue: 1–2
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0120
  article-title: Evaluation of gas removal and bacterial community diversity in a bio-filter developed to treat composting exhaust gases
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2006.10.045
– ident: 10.1016/j.wasman.2011.02.026_b0220
– ident: 10.1016/j.wasman.2011.02.026_b0650
– ident: 10.1016/j.wasman.2011.02.026_b0635
– ident: 10.1016/j.wasman.2011.02.026_b0545
– ident: 10.1016/j.wasman.2011.02.026_b0310
– ident: 10.1016/j.wasman.2011.02.026_b0050
– volume: 27
  start-page: 724
  issue: 8
  year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0190
  article-title: Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X09345276
– ident: 10.1016/j.wasman.2011.02.026_b0570
– year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0320
– ident: 10.1016/j.wasman.2011.02.026_b0655
– year: 2005
  ident: 10.1016/j.wasman.2011.02.026_b0030
– volume: 11
  start-page: 251
  issue: 3
  year: 2006
  ident: 10.1016/j.wasman.2011.02.026_b0590
  article-title: Application of processed organic municipal solid waste on agricultural land – a scenario analysis
  publication-title: Environmental Modeling and Assessment
  doi: 10.1007/s10666-005-9028-0
– volume: 80
  start-page: 259
  year: 2000
  ident: 10.1016/j.wasman.2011.02.026_b0330
  article-title: Long-term results of ammonia removal and transformation by biofiltration
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/S0304-3894(00)00314-9
– ident: 10.1016/j.wasman.2011.02.026_b0225
– ident: 10.1016/j.wasman.2011.02.026_b0500
– ident: 10.1016/j.wasman.2011.02.026_b0630
– ident: 10.1016/j.wasman.2011.02.026_b0095
  doi: 10.1029/2001GB001812
– ident: 10.1016/j.wasman.2011.02.026_b0525
– year: 2002
  ident: 10.1016/j.wasman.2011.02.026_b0550
– ident: 10.1016/j.wasman.2011.02.026_b0160
– ident: 10.1016/j.wasman.2011.02.026_b0185
– ident: 10.1016/j.wasman.2011.02.026_b0290
– ident: 10.1016/j.wasman.2011.02.026_b0460
– year: 2001
  ident: 10.1016/j.wasman.2011.02.026_b0560
– ident: 10.1016/j.wasman.2011.02.026_b0270
– ident: 10.1016/j.wasman.2011.02.026_b0610
– ident: 10.1016/j.wasman.2011.02.026_b0335
– ident: 10.1016/j.wasman.2011.02.026_b0175
– ident: 10.1016/j.wasman.2011.02.026_b0450
– volume: 24
  start-page: 528
  year: 2006
  ident: 10.1016/j.wasman.2011.02.026_b0415
  article-title: Methane oxidation in water-spreading and compost biofilters
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X06065704
– ident: 10.1016/j.wasman.2011.02.026_b0430
– volume: 27
  start-page: 800
  year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0085
  article-title: Composting and compost utilization: accounting of greenhouse gases and global warming contributions
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X09345275
– ident: 10.1016/j.wasman.2011.02.026_b0685
– ident: 10.1016/j.wasman.2011.02.026_b0090
– volume: 25
  start-page: 269
  year: 2008
  ident: 10.1016/j.wasman.2011.02.026_b0110
  article-title: Use of red clover-based green manure in leek cultivation
  publication-title: Biological Agriculture & Horticulture
  doi: 10.1080/01448765.2008.9755053
– ident: 10.1016/j.wasman.2011.02.026_b0255
– volume: 24
  start-page: 153
  issue: 2
  year: 2006
  ident: 10.1016/j.wasman.2011.02.026_b0240
  article-title: Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (Easewaste)
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X06063053
– volume: 17
  start-page: 1331
  year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0350
  article-title: Uncertainties related to the identification of the marginal energy technology in consequential life cycle assessments
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2009.04.009
– volume: 16
  start-page: 157
  issue: 2003
  year: 2003
  ident: 10.1016/j.wasman.2011.02.026_b0100
  article-title: Abatement of ammonia and amines from waste gases: a summary
  publication-title: Journal of Loss Prevention in the Process Industries
  doi: 10.1016/S0950-4230(02)00093-1
– volume: 87
  start-page: 321
  issue: 5
  year: 2006
  ident: 10.1016/j.wasman.2011.02.026_b0425
  article-title: Method for fractional solid waste sampling and chemical analysis
  publication-title: International Journal of Environmental Analytical Chemistry
  doi: 10.1080/03067310701189067
– volume: 62
  start-page: 317
  year: 2001
  ident: 10.1016/j.wasman.2011.02.026_b0040
  article-title: Formation and emission of N2O and CH4 from compost heaps of organic household waste
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1023/A:1006245227491
– ident: 10.1016/j.wasman.2011.02.026_b0135
– volume: 27
  start-page: 989
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0675
  article-title: What life-cycle assessment does and does not do in assessments of waste management
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2007.02.015
– ident: 10.1016/j.wasman.2011.02.026_b0435
– ident: 10.1016/j.wasman.2011.02.026_b0005
– year: 2005
  ident: 10.1016/j.wasman.2011.02.026_b0515
– volume: 25
  start-page: 162
  issue: 2
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0155
  article-title: Anaerobic digestion potential of urban organic waste: a case study in Malmö
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X07075635
– ident: 10.1016/j.wasman.2011.02.026_b0070
– volume: 94
  start-page: 386
  issue: 2
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0025
  article-title: Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat–soybean rotation
  publication-title: Soil and Tillage Research
  doi: 10.1016/j.still.2006.08.014
– ident: 10.1016/j.wasman.2011.02.026_b0585
– volume: 24
  start-page: 745
  year: 2003
  ident: 10.1016/j.wasman.2011.02.026_b0125
  article-title: Greenhouse gas emissions from mechanical and biological waste treatment of municipal waste
  publication-title: Environmental Technology
  doi: 10.1080/09593330309385611
– volume: 27
  start-page: 1032
  year: 2007
  ident: 10.1016/j.wasman.2011.02.026_b0075
  article-title: LCA-IWM: a decision support tool for sustainability assessment of waste management systems
  publication-title: Waste Management
  doi: 10.1016/j.wasman.2007.02.022
– ident: 10.1016/j.wasman.2011.02.026_b0615
– volume: 38
  start-page: 701
  issue: 2
  year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0165
  article-title: Greenhouse gas emissions from power generation and consumption in a Nordic perspective
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.10.066
– ident: 10.1016/j.wasman.2011.02.026_b0315
– ident: 10.1016/j.wasman.2011.02.026_b0275
– year: 2002
  ident: 10.1016/j.wasman.2011.02.026_b0295
– ident: 10.1016/j.wasman.2011.02.026_b0490
– year: 1996
  ident: 10.1016/j.wasman.2011.02.026_b0485
– ident: 10.1016/j.wasman.2011.02.026_b0230
– year: 1995
  ident: 10.1016/j.wasman.2011.02.026_b0340
– year: 2008
  ident: 10.1016/j.wasman.2011.02.026_b0360
– ident: 10.1016/j.wasman.2011.02.026_b0150
– ident: 10.1016/j.wasman.2011.02.026_b0060
– ident: 10.1016/j.wasman.2011.02.026_b0300
– ident: 10.1016/j.wasman.2011.02.026_b0285
– ident: 10.1016/j.wasman.2011.02.026_b0475
– ident: 10.1016/j.wasman.2011.02.026_b0130
– ident: 10.1016/j.wasman.2011.02.026_b0645
– ident: 10.1016/j.wasman.2011.02.026_b0215
– ident: 10.1016/j.wasman.2011.02.026_b0390
– volume: 27
  start-page: 813
  year: 2009
  ident: 10.1016/j.wasman.2011.02.026_b0355
  article-title: Anaerobic digestion and digestate use: accounting of greenhouse gases and global warming contribution
  publication-title: Waste Management and Research
  doi: 10.1177/0734242X09344876
– ident: 10.1016/j.wasman.2011.02.026_b0385
– ident: 10.1016/j.wasman.2011.02.026_b0660
– ident: 10.1016/j.wasman.2011.02.026_b0400
– ident: 10.1016/j.wasman.2011.02.026_b0555
– volume: 15
  start-page: 1
  year: 2001
  ident: 10.1016/j.wasman.2011.02.026_b0480
  article-title: Ammonia emission from field applied manure and its reduction – invited paper
  publication-title: European Journal of Agronomy
  doi: 10.1016/S1161-0301(01)00112-5
– year: 2005
  ident: 10.1016/j.wasman.2011.02.026_b0505
– volume: 41
  start-page: 380
  issue: 3
  year: 1990
  ident: 10.1016/j.wasman.2011.02.026_b0580
  article-title: Ammonia volatilization from five nitrogen compounds used as fertilizers following surface application to soils
  publication-title: European Journal of Soil Science
– ident: 10.1016/j.wasman.2011.02.026_b0065
– ident: 10.1016/j.wasman.2011.02.026_b0020
– ident: 10.1016/j.wasman.2011.02.026_b0235
– ident: 10.1016/j.wasman.2011.02.026_b0510
– ident: 10.1016/j.wasman.2011.02.026_b0365
– ident: 10.1016/j.wasman.2011.02.026_b0640
– ident: 10.1016/j.wasman.2011.02.026_b0495
– year: 1985
  ident: 10.1016/j.wasman.2011.02.026_b0305
– ident: 10.1016/j.wasman.2011.02.026_b0665
SSID ssj0014810
Score 2.4531472
Snippet ► The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater environmental benefits in...
Environmental impacts from incineration, decentralised composting and centralised anaerobic digestion of solid organic household waste are compared using the...
Research Highlights: > The comparison of three different methods for management of household food waste show that anaerobic digestion provides greater...
SourceID swepub
osti
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1879
SubjectTerms 09 BIOMASS FUELS
ACIDIFICATION
Aerobiosis
ALKANES
ANAEROBIC DIGESTION
Anaerobiosis
Applied sciences
BIOCONVERSION
Biodegradation, Environmental
biofertilizers
Biofuels
biogas
biological treatment
CARBON COMPOUNDS
CARBON DIOXIDE
Carbon Footprint
CARBON OXIDES
CARBONACEOUS MATERIALS
case studies
CHALCOGENIDES
Chemical Engineering
CLIMATIC CHANGE
COAL
COMPOSTING
DEVELOPED COUNTRIES
DIGESTION
electricity
emissions
energy
ENERGY SOURCES
ENERGY SUBSTITUTION
Energy-Generating Resources
Engineering and Technology
environmental impact
ENVIRONMENTAL IMPACTS
EUROPE
Exact sciences and technology
FERTILIZERS
food waste
FOSSIL FUELS
FUELS
Garbage
General treatment and storage processes
GREENHOUSE EFFECT
HOUSEHOLDS
HYDROCARBONS
Incineration
Kemiteknik
LIFE CYCLE
MANAGEMENT
MATERIALS
METHANE
MUNICIPAL WASTES
NUTRIENTS
ORGANIC COMPOUNDS
ORGANIC POLYMERS
Other wastes and particular components of wastes
OXIDES
OXYGEN COMPOUNDS
OZONE
PETROCHEMICALS
PETROLEUM PRODUCTS
plastic bags
PLASTICS
Pollution
POLYMERS
POWER GENERATION
PROCESSING
Refuse Disposal - methods
SCANDINAVIA
SENSITIVITY ANALYSIS
Soil
SWEDEN
SYNTHETIC MATERIALS
Teknik
Transportation
Urban and domestic wastes
WASTE MANAGEMENT
WASTE PROCESSING
WASTES
WESTERN EUROPE
Title A life cycle approach to the management of household food waste – A Swedish full-scale case study
URI https://dx.doi.org/10.1016/j.wasman.2011.02.026
https://www.ncbi.nlm.nih.gov/pubmed/21511455
https://www.proquest.com/docview/1710229155
https://www.proquest.com/docview/872535347
https://www.proquest.com/docview/888105488
https://www.osti.gov/biblio/21578456
Volume 31
WOSCitedRecordID wos000292679100027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2456
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014810
  issn: 0956-053X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELb6QAIOCMproVRG4rZKlYdjO8elKoIeKiSKtOJiOY6tttpmq-72wY0Lv4B_yC9hJo6zoaUUkJBW0cprZx1_X8bj8XiGkFcpLzQqopGINYtYEuuozIyNDOjWppIsLau4STYhdnfleFy8X1r6Gs7CnE1EXcuLi-L4v0INZQA2Hp39C7i7m0IBfAfQ4Qqww_WPgB8NJwfODs1nKO9ChgcV86jzdmm0RFj2W9x_GjoMbnyuAfJhcH_IQGZ8OMdju_tDNNJHM4ATvcRm_aC0hyGLDDbt3R0U1-3J0cy7znfGhtf2BNVRb8veDKUT3aTOG-7ourUH7Wz2rRHevNqzRnTHZBY-Sd7WyCN428d-0vGSVgrc2vFRxYMobicETznZk6tYuzdHJ9Knwb0i_70p4nATBgweuY3QmsLnUrjtZgL_gP3CbmHYPJD5-TJZTUVegHBcHb3bHu9021FMNmEtuucIZzAbR8Gr_3WdjrMyBbGN3rcaEXM-c8qvljaX4tY2us7efXKvXaTQkSfXA7Jk6zVyeyvkBlwjd3thLB8SM6JIOdpQjgbK0fmUAuXoghR06mhHOYqUow3l6Pcv3-iItmSjC7JRJBttyPaIfHyzvbf1NmqTd0QmF2we5aAZW5hOuc2Sqih57opKcBhplxthYic4T5Myli42Rubc5s6kpc4LnTlhnCmzx2Slntb2KaHcSZeXqS0qJ5m2meQy5lVcccZZLE0yIFkYbmXayPaYYGWiggvjofIgKQRJxSl8-IBEXatjH9nlhvoiIKla7dRrnQrId0PLdQQeW2FgZoMebNAMlG0h4QUYkI2fCNH1BrRn0M8FPN_LwBAFOOOOnq4twKUSXB-kmOJhQOg1daRI8yzPmPhNFQn8zmEqH5AnnoCLPsCKAHMZDMgnz8juF4xL700Eqo1Ltq8mp2pm1XFvw0FpZ43jmilWOqtYUlkljZSKWQdrRYAWePDsn4f2ObmzkELrZGV-cmpfkFvmbH4wO9kgy2IsN9qX-QffmhZ_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+life+cycle+approach+to+the+management+of+household+food+waste+%E2%80%93+A+Swedish+full-scale+case+study&rft.jtitle=Waste+management+%28Elmsford%29&rft.au=Bernstad%2C+A.&rft.au=la+Cour+Jansen%2C+J.&rft.date=2011-08-01&rft.pub=Elsevier+Ltd&rft.issn=0956-053X&rft.eissn=1879-2456&rft.volume=31&rft.issue=8&rft.spage=1879&rft.epage=1896&rft_id=info:doi/10.1016%2Fj.wasman.2011.02.026&rft.externalDocID=S0956053X11001115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-053X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-053X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-053X&client=summon