Comprehensive ensemble in QSAR prediction for drug discovery

Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based mach...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:BMC bioinformatics Ročník 20; číslo 1; s. 521 - 12
Hlavní autoři: Kwon, Sunyoung, Bae, Ho, Jo, Jeonghee, Yoon, Sungroh
Médium: Journal Article
Jazyk:angličtina
Vydáno: London BioMed Central 26.10.2019
BMC
Témata:
ISSN:1471-2105, 1471-2105
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. Results The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ . Conclusions We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.
AbstractList Abstract Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. Results The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/. Conclusions We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.
Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject.BACKGROUNDQuantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject.The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ .RESULTSThe proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ .We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.CONCLUSIONSWe propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.
Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ . We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.
Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical compounds and biological activities. QSAR modeling is essential for drug discovery, but it has many constraints. Ensemble-based machine learning approaches have been used to overcome constraints and obtain reliable predictions. Ensemble learning builds a set of diversified models and combines them. However, the most prevalent approach random forest and other ensemble approaches in QSAR prediction limit their model diversity to a single subject. Results The proposed ensemble method consistently outperformed thirteen individual models on 19 bioassay datasets and demonstrated superiority over other ensemble approaches that are limited to a single subject. The comprehensive ensemble method is publicly available at http://data.snu.ac.kr/QSAR/ . Conclusions We propose a comprehensive ensemble method that builds multi-subject diversified models and combines them through second-level meta-learning. In addition, we propose an end-to-end neural network-based individual classifier that can automatically extract sequential features from a simplified molecular-input line-entry system (SMILES). The proposed individual models did not show impressive results as a single model, but it was considered the most important predictor when combined, according to the interpretation of the meta-learning.
ArticleNumber 521
Author Yoon, Sungroh
Jo, Jeonghee
Bae, Ho
Kwon, Sunyoung
Author_xml – sequence: 1
  givenname: Sunyoung
  surname: Kwon
  fullname: Kwon, Sunyoung
  organization: Department of Electrical and Computer Engineering, Seoul National University, Clova AI Research, NAVER Corp
– sequence: 2
  givenname: Ho
  surname: Bae
  fullname: Bae, Ho
  organization: Interdisciplinary Program in Bioinformatics, Seoul National University
– sequence: 3
  givenname: Jeonghee
  surname: Jo
  fullname: Jo, Jeonghee
  organization: Interdisciplinary Program in Bioinformatics, Seoul National University
– sequence: 4
  givenname: Sungroh
  orcidid: 0000-0002-2367-197X
  surname: Yoon
  fullname: Yoon, Sungroh
  email: sryoon@snu.ac.kr
  organization: Department of Electrical and Computer Engineering, Seoul National University, Interdisciplinary Program in Bioinformatics, Seoul National University, Biological Sciences, Seoul National University, ASRI and INMC, Seoul National University, Institute of Engineering Research, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31655545$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVJaJJpf0A3xctunOptGUohDGkTCJT0sRaydD3RYEtTyR7Iv6-mTkPSRVZX6N5zjnS_M3QUYgCE3hF8ToiSHzOhSrQ1Jm3NCBM1f4VOCW9ITQkWR0_OJ-gs5y3GpFFYvEYnjEghBBen6NM6jrsEdxCy30NVCozdAJUP1e2Pi-9V6TlvJx9D1cdUuTRvKuezjXtI92_QcW-GDG8f6gr9-nL5c31V33z7er2-uKmtaPhU8wZaJZhRkjsumeXc0q7DGLgE2xHbcIcbWrpUtpaDACkNs31HWfkd9Jit0PXi66LZ6l3yo0n3Ohqv_17EtNEmTd4OoIlqOSjTcSUUdy0Yyh1zzlhpmWDCFa_Pi9du7kZwFsKUzPDM9Hkn-Du9iXstFSkbE8Xgw4NBir9nyJMeyz5gGEyAOGdNGW4VIbQQWaH3T7MeQ_6tvwyQZcCmmHOC_nGEYH1ArBfEuiDWB8SaF03zn8b6yRwIlef64UUlXZS5pIQNJL2NcwqF3AuiP5n8ufg
CitedBy_id crossref_primary_10_1080_17460441_2022_1985108
crossref_primary_10_1016_j_chemolab_2024_105145
crossref_primary_10_1080_07391102_2023_2256869
crossref_primary_10_3390_biomedicines12010201
crossref_primary_10_1080_07391102_2023_2175260
crossref_primary_10_1007_s10989_025_10745_8
crossref_primary_10_1007_s42044_025_00297_x
crossref_primary_10_3390_ijms25052646
crossref_primary_10_3390_molecules28093906
crossref_primary_10_1016_j_toxlet_2023_10_013
crossref_primary_10_1016_j_compbiolchem_2025_108452
crossref_primary_10_1016_j_comptc_2023_114262
crossref_primary_10_1080_17425247_2025_2502022
crossref_primary_10_1186_s12301_024_00469_4
crossref_primary_10_1016_j_chemolab_2025_105318
crossref_primary_10_1186_s43094_024_00701_6
crossref_primary_10_3389_fphar_2025_1605722
crossref_primary_10_1016_j_cofs_2022_100973
crossref_primary_10_3390_biomedicines11071972
crossref_primary_10_1016_j_molliq_2022_120250
crossref_primary_10_1109_JBHI_2020_2977009
crossref_primary_10_3233_THC_230650
crossref_primary_10_1038_s41467_024_49372_0
crossref_primary_10_3390_ijms21155308
crossref_primary_10_1002_qua_27042
crossref_primary_10_3390_ph15070791
crossref_primary_10_3389_fchem_2023_1292027
crossref_primary_10_1002_adpr_202300036
crossref_primary_10_1007_s11030_021_10217_3
crossref_primary_10_1007_s44371_025_00135_w
crossref_primary_10_1007_s11030_022_10489_3
crossref_primary_10_1007_s11030_021_10274_8
crossref_primary_10_1016_j_microc_2023_109549
crossref_primary_10_1007_s10928_025_09995_2
crossref_primary_10_3390_molecules28196807
crossref_primary_10_1007_s00204_025_04000_8
crossref_primary_10_3389_fphar_2021_641111
crossref_primary_10_1016_j_ipha_2024_05_005
crossref_primary_10_1371_journal_pone_0331837
crossref_primary_10_1007_s40203_024_00278_1
crossref_primary_10_1038_s42256_023_00683_9
crossref_primary_10_1080_1062936X_2023_2239149
crossref_primary_10_1371_journal_pone_0319673
crossref_primary_10_1002_slct_202406013
crossref_primary_10_1016_j_jsps_2023_101836
crossref_primary_10_1016_j_molstruc_2022_134786
crossref_primary_10_3390_toxins17080423
crossref_primary_10_1016_j_chemolab_2024_105278
crossref_primary_10_1016_j_chembiol_2022_03_009
crossref_primary_10_1038_s41598_022_22992_6
crossref_primary_10_1038_s41598_020_80113_7
crossref_primary_10_2174_0115748855266001231026063520
crossref_primary_10_3390_ijms26146807
crossref_primary_10_1016_j_compbiomed_2024_107927
crossref_primary_10_3390_info16010034
crossref_primary_10_1038_s41598_023_37931_2
crossref_primary_10_1016_j_cis_2022_102639
crossref_primary_10_1016_j_cmpbup_2025_100208
crossref_primary_10_1080_07391102_2022_2110156
crossref_primary_10_1016_j_ipha_2024_03_001
crossref_primary_10_1038_s41598_022_23203_y
crossref_primary_10_1007_s11030_021_10292_6
crossref_primary_10_1039_D3SC03613H
crossref_primary_10_1002_slct_202501020
crossref_primary_10_1038_s41598_024_58394_z
crossref_primary_10_1016_j_scitotenv_2023_168913
crossref_primary_10_1016_j_imu_2023_101225
crossref_primary_10_1016_j_toxlet_2021_01_002
crossref_primary_10_1002_cbdv_202400932
crossref_primary_10_1016_j_ejmech_2024_117164
crossref_primary_10_1016_j_csbj_2024_04_030
crossref_primary_10_3390_ddc4010009
crossref_primary_10_3390_s24113519
crossref_primary_10_1007_s11030_024_10811_1
crossref_primary_10_1007_s40203_024_00284_3
crossref_primary_10_3390_ph16091259
crossref_primary_10_1016_j_coph_2021_07_012
crossref_primary_10_3390_ai3040052
crossref_primary_10_1002_med_21764
crossref_primary_10_1016_j_csbj_2024_10_019
crossref_primary_10_1039_D4FO00591K
crossref_primary_10_3390_a14040120
crossref_primary_10_52711_0974_4150_2023_00076
crossref_primary_10_3389_fphar_2023_1265573
crossref_primary_10_1039_D4RA04502E
crossref_primary_10_26538_tjnpr_v9i8_38
crossref_primary_10_1140_epjp_s13360_023_03920_7
crossref_primary_10_14710_jksa_28_6_316_326
crossref_primary_10_1007_s11224_022_02035_6
crossref_primary_10_4155_fmc_2023_0093
crossref_primary_10_1080_08927022_2022_2101673
crossref_primary_10_1007_s13721_025_00598_y
crossref_primary_10_1007_s44163_025_00330_9
crossref_primary_10_1080_07391102_2023_2248509
crossref_primary_10_1016_j_dmd_2025_100137
crossref_primary_10_3390_ijms26157344
crossref_primary_10_1016_j_amolm_2025_100064
crossref_primary_10_3390_jpm13040664
crossref_primary_10_1088_1402_4896_ad79a4
crossref_primary_10_1016_j_aichem_2025_100087
crossref_primary_10_1007_s42250_022_00565_4
crossref_primary_10_3390_antibiotics11111674
crossref_primary_10_3390_molecules27041226
crossref_primary_10_1016_j_comtox_2025_100356
crossref_primary_10_3390_ijms25147951
crossref_primary_10_1109_ACCESS_2025_3546925
crossref_primary_10_3390_ph14050482
crossref_primary_10_3390_math10091543
crossref_primary_10_3390_pharmaceutics14071415
crossref_primary_10_1093_toxres_tfae119
crossref_primary_10_1007_s42979_024_03166_9
crossref_primary_10_1016_j_fitote_2024_105921
crossref_primary_10_1016_j_jscs_2022_101473
Cites_doi 10.1080/095400996116839
10.1021/ci960487o
10.1021/ci010132r
10.1186/s13321-016-0164-0
10.1007/3-540-45014-9_1
10.1016/j.ecoenv.2015.02.027
10.1021/ci000450a
10.2174/156802610790232260
10.1109/TSMCC.2011.2161285
10.1016/j.compbiolchem.2016.01.005
10.1109/icdm.2001.989524
10.1039/C8SC04175J
10.1371/journal.pone.0189538
10.1016/j.artmed.2017.02.005
10.1021/ci500747n
10.1007/978-1-4757-3264-1
10.1021/acs.molpharmaceut.5b00762
10.1016/j.cmpb.2017.09.005
10.1039/C7SC02664A
10.1007/s10462-009-9124-7
10.1021/jm980697n
10.1016/S0893-6080(05)80023-1
10.1021/ci034160g
10.1021/ci0203702
10.1080/02664763.2018.1441383
10.1038/s41598-017-02365-0
10.1093/nar/gkp456
10.1016/j.ymeth.2014.08.005
10.1021/ci00057a005
10.1007/s11095-015-1687-1
10.1007/978-94-007-6169-8_37-3
10.1109/34.58871
10.1038/s41598-017-02114-3
10.1021/c160017a018
10.1007/978-1-4939-8955-3_14
10.1023/A:1010933404324
10.1214/aos/1013203451
10.1038/s41598-018-24483-z
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1186/s12859-019-3135-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 12
ExternalDocumentID oai_doaj_org_article_1894e8ab48584d9ea24d3ddac6c3535d
PMC6815455
31655545
10_1186_s12859_019_3135_4
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
ALIPV
C24
CGR
CUY
CVF
ECM
EIF
M0N
NPM
7X8
5PM
ID FETCH-LOGICAL-c574t-47e9853a864d463c44c2bb00e46ecb1c74d072864269c4e5e66a3cfb23859ef03
IEDL.DBID RSV
ISICitedReferencesCount 138
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000492876200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:36:00 EST 2025
Tue Nov 04 01:45:24 EST 2025
Thu Sep 04 18:03:26 EDT 2025
Wed Feb 19 02:32:04 EST 2025
Tue Nov 18 22:31:07 EST 2025
Sat Nov 29 05:40:04 EST 2025
Sat Sep 06 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ensemble-learning
Drug-prediction
Meta-learning
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-47e9853a864d463c44c2bb00e46ecb1c74d072864269c4e5e66a3cfb23859ef03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2367-197X
OpenAccessLink https://link.springer.com/10.1186/s12859-019-3135-4
PMID 31655545
PQID 2309811231
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1894e8ab48584d9ea24d3ddac6c3535d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6815455
proquest_miscellaneous_2309811231
pubmed_primary_31655545
crossref_primary_10_1186_s12859_019_3135_4
crossref_citationtrail_10_1186_s12859_019_3135_4
springer_journals_10_1186_s12859_019_3135_4
PublicationCentury 2000
PublicationDate 2019-10-26
PublicationDateYYYYMMDD 2019-10-26
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2019
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References L Zhang (3135_CR21) 2017; 7
W Wang (3135_CR18) 2015; 32
3135_CR10
3135_CR11
M Galar (3135_CR28) 2012; 42
R Winter (3135_CR44) 2019; 10
L Rokach (3135_CR33) 2010; 33
LK Hansen (3135_CR12) 1990; 12
3135_CR35
3135_CR36
J Ma (3135_CR2) 2015; 55
H Morgan (3135_CR23) 1965; 5
Y Xiao (3135_CR32) 2018; 153
DK Agrafiotis (3135_CR15) 2002; 42
L Breiman (3135_CR37) 1996; 24
L Breiman (3135_CR38) 2001; 45
Vladimir N. Vapnik (3135_CR39) 2000
JL Durant (3135_CR24) 2002; 42
David Weininger (3135_CR25) 1988; 28
JH Friedman (3135_CR40) 2001; 29
P Thomas (3135_CR16) 2011; 4
C Ju (3135_CR13) 2018; 45
V Svetnik (3135_CR8) 2003; 43
P Pradeep (3135_CR7) 2016; 8
3135_CR20
J-S Choi (3135_CR46) 2018; 8
3135_CR43
L Wei (3135_CR30) 2017; 83
J Verma (3135_CR1) 2010; 10
Ali Ezzat (3135_CR14) 2018
A Cereto-Massagué (3135_CR42) 2015; 71
M-W Huang (3135_CR31) 2017; 12
B Peric (3135_CR45) 2015; 115
AV Zakharov (3135_CR9) 2016; 13
N Basant (3135_CR17) 2016; 61
JM Luco (3135_CR4) 1997; 37
FR Burden (3135_CR6) 2000; 40
3135_CR26
Y Wang (3135_CR22) 2009; 37
3135_CR27
DH Wolpert (3135_CR41) 1992; 5
FR Burden (3135_CR5) 1999; 42
LT Afolabi (3135_CR19) 2018; 13
Alexander Golbraikh (3135_CR3) 2016
K Tumer (3135_CR34) 1996; 8
Z Wu (3135_CR29) 2018; 9
References_xml – volume: 8
  start-page: 385
  issue: 3-4
  year: 1996
  ident: 3135_CR34
  publication-title: Connect Sci
  doi: 10.1080/095400996116839
– volume: 37
  start-page: 392
  issue: 2
  year: 1997
  ident: 3135_CR4
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci960487o
– volume: 42
  start-page: 1273
  issue: 6
  year: 2002
  ident: 3135_CR24
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci010132r
– volume: 8
  start-page: 48
  issue: 1
  year: 2016
  ident: 3135_CR7
  publication-title: J Cheminformatics
  doi: 10.1186/s13321-016-0164-0
– ident: 3135_CR11
  doi: 10.1007/3-540-45014-9_1
– volume: 115
  start-page: 257
  year: 2015
  ident: 3135_CR45
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2015.02.027
– volume: 40
  start-page: 1423
  issue: 6
  year: 2000
  ident: 3135_CR6
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci000450a
– volume: 10
  start-page: 95
  issue: 1
  year: 2010
  ident: 3135_CR1
  publication-title: Curr Top Med Chem
  doi: 10.2174/156802610790232260
– volume: 42
  start-page: 463
  issue: 4
  year: 2012
  ident: 3135_CR28
  publication-title: IEEE Trans Syst Man Cybern Part C (Appl Rev)
  doi: 10.1109/TSMCC.2011.2161285
– volume: 61
  start-page: 178
  year: 2016
  ident: 3135_CR17
  publication-title: Comput Biol Chem
  doi: 10.1016/j.compbiolchem.2016.01.005
– ident: 3135_CR36
  doi: 10.1109/icdm.2001.989524
– volume: 10
  start-page: 1692
  issue: 6
  year: 2019
  ident: 3135_CR44
  publication-title: Chem Sci
  doi: 10.1039/C8SC04175J
– volume: 13
  start-page: 0189538
  issue: 1
  year: 2018
  ident: 3135_CR19
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0189538
– volume: 83
  start-page: 82
  year: 2017
  ident: 3135_CR30
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2017.02.005
– volume: 55
  start-page: 263
  issue: 2
  year: 2015
  ident: 3135_CR2
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500747n
– ident: 3135_CR27
– volume-title: The Nature of Statistical Learning Theory
  year: 2000
  ident: 3135_CR39
  doi: 10.1007/978-1-4757-3264-1
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 3135_CR37
  publication-title: Mach Learn
– volume: 13
  start-page: 545
  issue: 2
  year: 2016
  ident: 3135_CR9
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.5b00762
– volume: 153
  start-page: 1
  year: 2018
  ident: 3135_CR32
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2017.09.005
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 3135_CR29
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– volume: 33
  start-page: 1
  issue: 1-2
  year: 2010
  ident: 3135_CR33
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-009-9124-7
– ident: 3135_CR35
– ident: 3135_CR43
– volume: 42
  start-page: 3183
  issue: 16
  year: 1999
  ident: 3135_CR5
  publication-title: J Med Chem
  doi: 10.1021/jm980697n
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 3135_CR41
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 43
  start-page: 1947
  issue: 6
  year: 2003
  ident: 3135_CR8
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034160g
– ident: 3135_CR10
– volume: 42
  start-page: 903
  issue: 4
  year: 2002
  ident: 3135_CR15
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci0203702
– volume: 45
  start-page: 2800
  issue: 15
  year: 2018
  ident: 3135_CR13
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2018.1441383
– volume: 7
  start-page: 2118
  issue: 1
  year: 2017
  ident: 3135_CR21
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-02365-0
– volume: 37
  start-page: 623
  issue: suppl 2
  year: 2009
  ident: 3135_CR22
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp456
– volume: 71
  start-page: 58
  year: 2015
  ident: 3135_CR42
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.08.005
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 3135_CR25
  publication-title: Journal of Chemical Information and Modeling
  doi: 10.1021/ci00057a005
– ident: 3135_CR26
– volume: 32
  start-page: 3055
  issue: 9
  year: 2015
  ident: 3135_CR18
  publication-title: Pharm Res
  doi: 10.1007/s11095-015-1687-1
– start-page: 1
  volume-title: Handbook of Computational Chemistry
  year: 2016
  ident: 3135_CR3
  doi: 10.1007/978-94-007-6169-8_37-3
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: 3135_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.58871
– ident: 3135_CR20
  doi: 10.1038/s41598-017-02114-3
– volume: 5
  start-page: 107
  issue: 2
  year: 1965
  ident: 3135_CR23
  publication-title: J Chem Doc
  doi: 10.1021/c160017a018
– volume: 12
  start-page: 0161501
  issue: 1
  year: 2017
  ident: 3135_CR31
  publication-title: PloS ONE
– start-page: 239
  volume-title: Methods in Molecular Biology
  year: 2018
  ident: 3135_CR14
  doi: 10.1007/978-1-4939-8955-3_14
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 3135_CR38
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 1189
  year: 2001
  ident: 3135_CR40
  publication-title: Ann Stat
  doi: 10.1214/aos/1013203451
– volume: 8
  start-page: 6110
  issue: 1
  year: 2018
  ident: 3135_CR46
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24483-z
– volume: 4
  start-page: 21
  issue: 2,402
  year: 2011
  ident: 3135_CR16
  publication-title: Training
SSID ssj0017805
Score 2.6410406
Snippet Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of...
Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural properties of chemical...
Abstract Background Quantitative structure-activity relationship (QSAR) is a computational modeling method for revealing relationships between structural...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 521
SubjectTerms Algorithms
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Drug Discovery - methods
Drug-prediction
Ensemble-learning
Life Sciences
Machine Learning
Machine Learning and Artificial Intelligence in Bioinformatics
Meta-learning
Methodology
Methodology Article
Microarrays
Quantitative Structure-Activity Relationship
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSKGX0qQvt0lQoacWE9uSRhLkkoSEHkrom9yEXm4WUqfso5B_n5HtXbpt2l56MliyLY1Gmm88o08AL9GpllCBL5MyWIoW69IJF8sQYtXG1rfY_4f88ladnenzc_Pup6O-ck7YQA88CG6_1kYk7bzQZCqjSa4RkcfoAgYuuYx59SXUs3SmxvhBZuofY5i1xv1ZnXnayG02tOZwWYo1K9ST9d-GMH9PlPwlWtobodMHcH9Ej-xwaPUW3EndNtwdzpO8fggHeXZP08WQlM7okr75y8QmHXv_8fADo7I46TcyMMKqLE4XX1nelpvTOK8fwefTk0_Hb8rxeIQySCXmpVDJkLF1GkUUyIMQofE0i5LAFHwdlIiVaqi0QRNEkgnR8dB6MtLSpLbij2Gju-rSU2DcI1aJoB29R5gQfVsHp4xsNC2IoaoKqJbismHkDs9HWFza3ofQaAcJW5KwzRK2ooBXq0e-D8QZf6t8lMdgVTFzXvc3SBPsqAn2X5pQwIvlCFqaIznw4bp0tZhZcrOMJmDJ6wKeDCO6-hSvURKkkgWotbFea8t6STe56Hm4UWf8SU--XmqFHReA2Z-7-ux_dPU53GuyMpMNbXAHNubTRdqFzfBjPplN9_qpcAN6pAu2
  priority: 102
  providerName: Directory of Open Access Journals
Title Comprehensive ensemble in QSAR prediction for drug discovery
URI https://link.springer.com/article/10.1186/s12859-019-3135-4
https://www.ncbi.nlm.nih.gov/pubmed/31655545
https://www.proquest.com/docview/2309811231
https://pubmed.ncbi.nlm.nih.gov/PMC6815455
https://doaj.org/article/1894e8ab48584d9ea24d3ddac6c3535d
Volume 20
WOSCitedRecordID wos000492876200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB7RFiReylkIRxQknkAROXxKvLSoFQhYhS1UCy9WYjvtSiVbJbtI_feMnWSlhYIEL46UsRPHmeOzZzwGeM5KXiMqqGLLJYtJzdK4JKWJtTZJbeqqZn4d8uQDn0zEbCaLYR93N0a7jy5Jr6m9WAv2qktdrjWc-krUGzmNyRbsoLUTThqnxydr14FL0j-4L69stmGAfJ7-q8Dl7zGSvzhKvf05uvVfPb8NuwPcjPZ7_rgD12xzF270B1Be3oPXTh209qyPYo_wYr9X5zaaN9Gn4_1phDQz9zsfIgS3kWlXp5Hbx-viPi_vw5ejw89v3sbDeQqxppwsY8KtROtcCkYMYbkmRGcVip0lzOoq1ZyYhGdIzZjUxFLLWJnrukKrTqWtk3wPtptFYx9ClFeMJRaxID6HSG2qOtUllzQTqEF1kgSQjIOs9JBs3J15ca78pEMw1Q-KwkFRblAUCeDFuslFn2njb5UP3J9bV3RJsv2NRXuqBplTqZDEirIiAlGWkbbMiMmNKTXTOc2pCeDZ-N8VCpXzlJSNXaw6hfMyZCw06mkAD3o-WL8qTxlFDEYD4BscstGXTUozP_OJu5lwgBVbvhz5RA0ao_vzpz76p9qP4WbmGA2ta8aewPayXdmncF3_WM67NoQtPuO-FCHsHBxOimnoVyGwfM_j0EW-FlgW9BvSi3cfi6-hl66fdKoXrQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB5BAcEL95GWw0g8gSKS2HFsiZcWURWxrKAtVd8sX2lXKlmU7CL133fsJCstFCR4ihTbiTOe45vMeAzwiuuqRlRgUl9JnrKa56lm2qXWuqx2tal5_A95NKmmU3F8LL8M-7i7Mdt9DElGTR3FWvC3XR5qraHrK1Fv0DJlV-EaQ4MV8vj2D45WoYNQpH8IX146bM0AxTr9l4HL33MkfwmURvuze-e_Zn4Xbg9wk2z3_HEPrvjmPtzoD6A8fwDvgjpo_WmfxU7w4r-bM09mDfl6sL1PsM3N4s4HguCWuHZ5QsI-3pD3ef4Qvu1-OHy_lw7nKaS2rNgiZZWXaJ214MwxTi1jtjAodp5xb01uK-ayqsDWgkvLfOk519TWBq16KX2d0Uew0cwb_wQINZxnHrEgPodJ60ydW13JshCoQW2WJZCNRFZ2KDYezrw4U9HpEFz1RFFIFBWIolgCr1dDfvSVNv7WeSes3KpjKJIdb8zbEzXInMqFZF5owwSiLCe9LpijzmnLLS1p6RJ4Oa67QqEKkRLd-PmyU-iXSYFIlOYJPO75YPUqmvMSMViZQLXGIWtzWW9pZqexcDcXAbDiyDcjn6hBY3R__tTNf-r9Am7uHX6eqMnH6actuFUEpkNLW_CnsLFol_4ZXLc_F7OufR6l5gJTXxG8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5Bgaov3Ec4jcQTKGoSH7ElXsqxAlGtCoWqb5bjo12pzVbJbqX-e8Y5VlooSIinSLGdYzLHN5nxDMArYcqAqKBKfalEyoLIU8OMS611WXChCqL7D3mwW06n8vBQ7Q19Ttsx230MSfZ7GmKVpnqxfeZCL-JSbLd5rLuGbrBCHUJ5yq7CNRZ7BkV3ff9gFUaIBfuHUOaly9aMUVez_zKg-Xu-5C9B084WTW7991vchpsDDCU7Pd_cgSu-vgs3-saUF_fgbVQTjT_us9sJHvxpdeLJrCZf93e-ERxzs25HBEHQS1yzPCJxf2_MB724Dz8mH7-__5QOfRZSy0u2SFnpFVptIwVzTFDLmC0qFEfPhLdVbkvmsrLA0UIoyzz3QhhqQ4XWnisfMvoANup57R8BoZUQmUeMiNdhyroq5NaUihcSNavNsgSykeDaDkXIYy-ME905I1LonigaiaIjUTRL4PVqyVlfgeNvk9_Fr7iaGItndyfmzZEeZFHnUjEvTcUkoi-nvCmYo84ZKyzllLsEXo48oFHYYgTF1H6-bDX6a0oiQqV5Ag97nljdiuaCIzbjCZRr3LL2LOsj9ey4K-gtZASyuPLNyDN60CTtn1_18T_NfgGbex8mevfz9MsT2Coiz6EBLsRT2Fg0S_8MrtvzxaxtnncC9BPH7Rqg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+ensemble+in+QSAR+prediction+for+drug+discovery&rft.jtitle=BMC+bioinformatics&rft.au=Kwon%2C+Sunyoung&rft.au=Bae%2C+Ho&rft.au=Jo%2C+Jeonghee&rft.au=Yoon%2C+Sungroh&rft.date=2019-10-26&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=20&rft_id=info:doi/10.1186%2Fs12859-019-3135-4&rft_id=info%3Apmid%2F31655545&rft.externalDocID=PMC6815455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon