Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests
Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest struct...
Gespeichert in:
| Veröffentlicht in: | Carbon balance and management Jg. 19; H. 1; S. 41 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
20.12.2024
Springer Nature B.V BMC |
| Schlagworte: | |
| ISSN: | 1750-0680, 1750-0680 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Background
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.
Results
We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.
Conclusions
By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. |
|---|---|
| AbstractList | BackgroundUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.ResultsWe estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.ConclusionsBy applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.BACKGROUNDUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.RESULTSWe estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.CONCLUSIONSBy applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. BACKGROUND: Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. RESULTS: We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. CONCLUSIONS: By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. Abstract Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. Results We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. Conclusions By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. Results We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. Conclusions By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets. |
| ArticleNumber | 41 |
| Author | Winsemius, Sara Bormann, Kat J. Kane, Van R. Babcock, Chad Safford, Hugh D. Jin, Yufang |
| Author_xml | – sequence: 1 givenname: Sara surname: Winsemius fullname: Winsemius, Sara email: swinsemius@ucdavis.edu organization: Department of Land, Air and Water Resources, University of California – sequence: 2 givenname: Chad surname: Babcock fullname: Babcock, Chad organization: Department of Forest Resources, University of Minnesota – sequence: 3 givenname: Van R. surname: Kane fullname: Kane, Van R. organization: School of Environmental and Forest Sciences, University of Washington – sequence: 4 givenname: Kat J. surname: Bormann fullname: Bormann, Kat J. organization: Airborne Snow Observatories, Inc – sequence: 5 givenname: Hugh D. surname: Safford fullname: Safford, Hugh D. organization: Department of Environmental Science and Policy, University of California, Vibrant Planet – sequence: 6 givenname: Yufang surname: Jin fullname: Jin, Yufang organization: Department of Land, Air and Water Resources, University of California |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39704861$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUsluFDEUtFAQWeAHOCBLXLg0eG_3CaERy0iRuMDZcnuZeNRtD3Z3RrnxG_weX4IznUCSQ8TJT-Wq8nvPdQqOYooOgJcYvcVYincFU0RwgwhrECJSNPsn4AS3HDVISHR0pz4Gp6VsEWItQvQZOKZdi5gU-ATM63GX06WzUPf12OQ0Rwv7kEZdCnRlCqOeQopQVzi7TS31AOudK2V0cYL7MF1A7XKo8BCszjBEuNJD8CnHoH___FVgmXs97EJ0sILVszwHT70eintxc56B758-flt9ac6_fl6vPpw3hrdsaihiDGvfM2RQ1xNKjWxt1wkjLfGGGmR6Rm2nrWOWdYJoTLzAvsPMI-8spWdgvfjapLdql-sw-UolHdQBSHmjdJ6CGZyinuq-7ocTLpgVXHLpiGSm7WnvJTfV6_3itZv70VlTh896uGd6_yaGC7VJlwpjIQjjsjq8uXHI6cdc96DGUIwbBh1dmouiuD4rJKbkP6isZZIL3lXq6wfUbZpz_aWFxTtC0PXbr-52_7ft2yRUglwIJqdSsvPKhOnw9XWYMCiM1HXo1BI6VUOnDqFT-yolD6S37o-K6CIqlRw3Lv9r-xHVH8DQ7LU |
| CitedBy_id | crossref_primary_10_1016_j_foreco_2025_123002 crossref_primary_10_1371_journal_pone_0330768 |
| Cites_doi | 10.1186/1750-0680-4-2 10.1016/j.rse.2012.11.024 10.1016/j.rse.2013.07.041 10.18637/jss.v063.i13 10.2737/PSW-GTR-263 10.1016/j.quaint.2013.11.003 10.1139/X08-059 10.1016/j.rse.2012.11.010 10.1016/j.rse.2020.112061 10.3390/land3041214 10.32614/CRAN.package.terra 10.1002/9781119115151 10.1139/X09-025 10.1002/ecs2.4400 10.1890/ES13-00217.1 10.3390/rs13020261 10.1002/wrcr.20504 10.1016/j.rse.2018.03.032 10.1111/2041-210X.12189 10.1016/j.scitotenv.2023.164832 10.2136/sssaj2000.6451834x 10.1007/978-3-030-73267-7_9 10.1198/016214504000000250 10.1016/j.rse.2010.07.008 10.1016/j.rse.2009.12.018 10.1139/cjfr-2015-0464 10.3390/f10010035 10.1093/forestscience/49.1.12 10.1007/s10021-004-0136-5 10.1016/j.foreco.2015.09.001 10.1088/1748-9326/ab93f9 10.1139/X10-024 10.1016/j.srs.2021.100034 10.1016/j.rse.2012.10.017 10.1109/JPROC.2009.2034765 10.1109/AERO47225.2020.9172638 10.1016/j.rse.2016.06.018 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 10.1016/j.agrformet.2012.05.019 10.1016/j.rse.2010.10.008 10.1088/1748-9326/aa9d9e 10.1007/s004420050540 10.1371/journal.pone.0036131 10.1186/1750-0680-8-1 10.1016/j.rse.2021.112845 10.1002/eap.2888 10.1016/j.rse.2015.07.026 10.1016/j.foreco.2015.07.017 10.1186/s13021-018-0104-6 10.1080/17538947.2014.990526 10.1016/j.rse.2020.111779 10.1016/S0378-1127(01)00575-8 10.3390/land6010010 10.1186/s13021-018-0093-5 10.1111/gcb.15727 10.3390/f10090819 10.1073/pnas.0404500101 10.1890/12-1696.1 10.1111/j.1466-822X.2005.00168.x 10.1016/j.rse.2014.10.004 10.1139/x02-011 10.3390/rs10030442 10.3390/f10050455 10.1007/978-3-642-67107-4 10.1038/s41467-020-17214-4 10.1525/bio.2011.61.2.9 10.2737/PSW-GTR-169 10.1890/ES15-00003.1 10.1139/cjfr-2014-0405 10.1016/j.rse.2005.01.010 10.1016/j.rse.2016.10.022 10.1016/S0269-7491(01)00255-X 10.1093/jof/98.6.44 10.1002/ecs2.3263 10.1080/07038992.2018.1461557 10.1016/j.foreco.2020.118554 10.1073/pnas.1319316111 10.1017/CBO9781107415324.004 10.1139/x84-050 10.1111/gcb.12504 10.1080/01431161.2015.1101651 10.1016/j.rse.2018.04.044 10.5849/forsci.16-028 10.1007/s10021-008-9201-9 10.1073/pnas.2009717118 10.1525/california/9780520249554.003.0017 10.1111/j.1365-2486.2005.00955.x 10.1007/s00442-004-1689-x 10.18637/jss.v019.i04 10.2737/PNW-GTR-1004 10.1016/j.rse.2023.113678 10.4236/jep.2018.97051 10.1111/j.1466-8238.2011.00748.x 10.2737/NRS-GTR-88 10.1016/j.foreco.2016.10.028 10.1111/gcb.13881 10.1016/j.srs.2020.100002 10.1073/pnas.1221278110 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). Copyright Springer Nature B.V. Dec 2024 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: Copyright Springer Nature B.V. Dec 2024 – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7SN 7TG 7X7 7XB 8FE 8FG 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KL. M0S P5Z P62 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1186/s13021-024-00286-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Meteorological & Geoastrophysical Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Health & Medical Collection (Alumni) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry Environmental Sciences |
| EISSN | 1750-0680 |
| EndPage | 41 |
| ExternalDocumentID | oai_doaj_org_article_3f3ab47052564d65858e284c7b3bf85c PMC11662458 39704861 10_1186_s13021_024_00286_w |
| Genre | Journal Article |
| GeographicLocations | United States--US California Nevada |
| GeographicLocations_xml | – name: Nevada – name: United States--US – name: California |
| GrantInformation_xml | – fundername: Sequoia Science and Learning Center – fundername: California Department of Forestry and Fire Protection,United States grantid: 8GG18808 |
| GroupedDBID | -A0 0R~ 29B 2WC 2XV 3V. 4P2 5GY 5VS 6J9 7X7 7XC 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AAKKN ABDBF ABEEZ ABUWG ACACY ACGFS ACPRK ACUHS ACULB ADBBV ADINQ ADRAZ AEUYN AFGXO AFKRA AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS ATCPS BAPOH BAWUL BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C24 C6C CCPQU CS3 DIK DU5 E3Z EBLON EBS ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IGS IHR KQ8 M48 ML. M~E O5R O5S OK1 P2P P62 PATMY PGMZT PIMPY PQQKQ PROAC PYCSY RBZ RNS RPM RSV SEV SOJ TR2 TUS UKHRP WOQ ~02 ~8M AASML AAYXX ADUKV AFPKN CITATION OVT NPM PHGZT 7SN 7TG 7XB 8FK AZQEC C1K DWQXO GNUQQ K9. KL. PHGZM PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c574t-30441afb40c09b233c87d996c8d2fc3c0cb43d9ade4d4962a12f61f914f0fed33 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380739600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1750-0680 |
| IngestDate | Tue Oct 14 19:09:21 EDT 2025 Tue Nov 04 02:03:42 EST 2025 Fri Nov 14 18:43:08 EST 2025 Wed Oct 01 17:02:41 EDT 2025 Wed Oct 08 14:20:36 EDT 2025 Sun Mar 30 02:13:01 EDT 2025 Sat Nov 29 03:47:53 EST 2025 Tue Nov 18 20:47:26 EST 2025 Fri Feb 21 02:35:59 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Subalpine forests Bayesian hierarchical spatial modeling Vegetation structure Carbon monitoring Remote sensing Aboveground biomass |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c574t-30441afb40c09b233c87d996c8d2fc3c0cb43d9ade4d4962a12f61f914f0fed33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1186/s13021-024-00286-w |
| PMID | 39704861 |
| PQID | 3147592208 |
| PQPubID | 55243 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3f3ab47052564d65858e284c7b3bf85c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662458 proquest_miscellaneous_3165868132 proquest_miscellaneous_3147485659 proquest_journals_3147592208 pubmed_primary_39704861 crossref_citationtrail_10_1186_s13021_024_00286_w crossref_primary_10_1186_s13021_024_00286_w springer_journals_10_1186_s13021_024_00286_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-20 |
| PublicationDateYYYYMMDD | 2024-12-20 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: England – name: London |
| PublicationTitle | Carbon balance and management |
| PublicationTitleAbbrev | Carbon Balance Manage |
| PublicationTitleAlternate | Carbon Balance Manag |
| PublicationYear | 2024 |
| Publisher | Springer International Publishing Springer Nature B.V BMC |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: BMC |
| References | W Tranquillini (286_CR106) 1979 F-K Holtmeier (286_CR45) 2018; 9 ML Goulden (286_CR39) 2014; 111 JA Lutz (286_CR67) 2012; 7 HD Safford (286_CR94) 2021 J-R Roussel (286_CR92) 2020; 251 AO Finley (286_CR33) 2015; 63 MK Jakubowski (286_CR51) 2013; 130 JA Pearson (286_CR87) 1984; 14 RO Dubayah (286_CR24) 2000; 98 AT Hudak (286_CR49) 2020 286_CR95 286_CR93 DM Bell (286_CR11) 2015; 358 P Bebi (286_CR6) 2017; 388 286_CR7 K Tenneson (286_CR104) 2018; 10 CI Millar (286_CR78) 2015; 387 SJ Goetz (286_CR38) 2009; 4 286_CR5 TH Painter (286_CR85) 2016; 184 SJ Prichard (286_CR90) 2000; 64 M Macias-Fauria (286_CR69) 2013; 110 MA Lefsky (286_CR62) 2002; 52 BT Wilson (286_CR112) 2013; 8 EG Brodie (286_CR15) 2023; 33 DM Bell (286_CR9) 2014; 20 T Gobakken (286_CR37) 2009; 39 MR Slaton (286_CR98) 2019; 10 KD Morrison (286_CR80) 2014; 3 JL Ohmann (286_CR84) 2002; 32 J Breidenbach (286_CR13) 2016; 173 286_CR57 SL Powell (286_CR89) 2010; 114 C Mallek (286_CR70) 2013; 4 RA Houghton (286_CR47) 2005; 11 286_CR76 JD Lundquist (286_CR66) 2013; 49 MD Meyer (286_CR74) 2016; 46 286_CR73 MD Meyer (286_CR75) 2017 LM Kueppers (286_CR60) 2004; 141 286_CR72 286_CR71 MA Lefsky (286_CR63) 2005; 95 JF Franklin (286_CR35) 2002; 155 DS Lu (286_CR65) 2016; 9 L Breiman (286_CR14) 2001; 45 M Nilsson (286_CR82) 2017; 194 C Chen (286_CR17) 2004 AEL Stovall (286_CR103) 2020; 11 286_CR43 PA Fekety (286_CR29) 2015; 45 286_CR42 J Du (286_CR22) 2015; 36 DM Bell (286_CR8) 2021; 479 VR Kane (286_CR56) 2014; 151 DJN Young (286_CR114) 2023; 14 JCB Nesmith (286_CR81) 2019; 10 VR Kane (286_CR55) 2010; 40 JD Miller (286_CR79) 2009; 12 K Hayhoe (286_CR41) 2004; 101 DM Bell (286_CR10) 2018 P Jiang (286_CR53) 2023; 893 DA Potter (286_CR88) 1998 N Cressie (286_CR18) 1993 AEL Stovall (286_CR102) 2021; 4 JC Jenkins (286_CR52) 2003; 49 J Fites-Kaufman (286_CR34) 2007 S Banerjee (286_CR4) 2015 W Abdalati (286_CR1) 2010; 98 MD Hurteau (286_CR50) 2011; 61 GW Frazer (286_CR36) 2011; 115 S Huang (286_CR48) 2017; 63 DL Stevens (286_CR101) 2004; 99 L-T Tojal (286_CR105) 2019; 10L GG Parker (286_CR86) 2004; 7 MR Alizadeh (286_CR2) 2021; 118 R Core Team (286_CR91) 2017 RE Kennedy (286_CR58) 2018 C Körner (286_CR61) 1998; 115 AO Finley (286_CR32) 2014; 5 M Bouvier (286_CR12) 2015; 156 M Urbazaev (286_CR111) 2018 286_CR20 JA Lutz (286_CR68) 2017; 6 F Zhao (286_CR115) 2012; 165 286_CR110 SG Zolkos (286_CR116) 2013; 128 286_CR19 CI Millar (286_CR77) 2016 L Duncanson (286_CR26) 2022; 270 286_CR16 PA Fekety (286_CR30) 2018; 44 JC Dudney (286_CR25) 2020; 11 286_CR113 S Hooper (286_CR46) 2018; 210 KR Sherrill (286_CR97) 2008; 38 CB Halpern (286_CR40) 2013; 83 VR Kane (286_CR54) 2015; 358 CR Dolanc (286_CR21) 2013; 22 E Næsset (286_CR83) 2013; 130 AO Finley (286_CR31) 2007; 19 F-K Holtmeier (286_CR44) 2005; 14 USDA Forest Service (286_CR109) 2018 C Babcock (286_CR3) 2018; 212 BV Smithers (286_CR100) 2018; 24 WB Smith (286_CR99) 2002; 116 R Dubayah (286_CR23) 2020; 1 L Duncanson (286_CR27) 2020; 242 RE Kennedy (286_CR59) 2010; 114 MW Schwartz (286_CR96) 2015; 6 286_CR107 E Emick (286_CR28) 2023; 295 J Liu (286_CR64) 2021; 27 USDA Forest Service (286_CR108) 2022 |
| References_xml | – volume-title: R: A language and environment for statistical computing year: 2017 ident: 286_CR91 – volume: 4 start-page: 2 year: 2009 ident: 286_CR38 publication-title: Carbon Balance Manage doi: 10.1186/1750-0680-4-2 – volume: 130 start-page: 245 year: 2013 ident: 286_CR51 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2012.11.024 – ident: 286_CR72 – volume: 151 start-page: 89 year: 2014 ident: 286_CR56 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2013.07.041 – volume: 63 start-page: 1 year: 2015 ident: 286_CR33 publication-title: J Stat Softw doi: 10.18637/jss.v063.i13 – ident: 286_CR76 doi: 10.2737/PSW-GTR-263 – volume: 387 start-page: 106 year: 2015 ident: 286_CR78 publication-title: Quatern Int doi: 10.1016/j.quaint.2013.11.003 – volume: 38 start-page: 2081 year: 2008 ident: 286_CR97 publication-title: Can J For Res doi: 10.1139/X08-059 – volume: 130 start-page: 108 year: 2013 ident: 286_CR83 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2012.11.010 – volume: 251 year: 2020 ident: 286_CR92 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.112061 – volume: 3 start-page: 1214 year: 2014 ident: 286_CR80 publication-title: Land doi: 10.3390/land3041214 – ident: 286_CR43 doi: 10.32614/CRAN.package.terra – volume-title: Statistics for spatial data year: 1993 ident: 286_CR18 doi: 10.1002/9781119115151 – ident: 286_CR95 – volume: 39 start-page: 1036 year: 2009 ident: 286_CR37 publication-title: Can J For Res doi: 10.1139/X09-025 – volume-title: Field instructions for the annual inventory of California, Oregon, and Washington year: 2022 ident: 286_CR108 – volume: 14 year: 2023 ident: 286_CR114 publication-title: Ecosphere doi: 10.1002/ecs2.4400 – volume: 4 start-page: 1 year: 2013 ident: 286_CR70 publication-title: Ecosphere doi: 10.1890/ES13-00217.1 – ident: 286_CR71 doi: 10.3390/rs13020261 – volume: 49 start-page: 6356 year: 2013 ident: 286_CR66 publication-title: Water Resour Res doi: 10.1002/wrcr.20504 – volume: 210 start-page: 473 year: 2018 ident: 286_CR46 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.03.032 – ident: 286_CR7 – volume-title: Monographs on statistics and applied probability year: 2015 ident: 286_CR4 – volume: 5 start-page: 514 year: 2014 ident: 286_CR32 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12189 – volume: 893 year: 2023 ident: 286_CR53 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2023.164832 – volume: 64 start-page: 1834 year: 2000 ident: 286_CR90 publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6451834x – volume-title: Ecosystems of California year: 2016 ident: 286_CR77 – start-page: 337 volume-title: Fire ecology and management: past, present, and future of US forested ecosystems year: 2021 ident: 286_CR94 doi: 10.1007/978-3-030-73267-7_9 – ident: 286_CR16 – volume: 99 start-page: 262 year: 2004 ident: 286_CR101 publication-title: J Am Stat Assoc doi: 10.1198/016214504000000250 – volume: 114 start-page: 2897 year: 2010 ident: 286_CR59 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2010.07.008 – volume: 114 start-page: 1053 year: 2010 ident: 286_CR89 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2009.12.018 – volume: 46 start-page: 572 year: 2016 ident: 286_CR74 publication-title: Can J For Res doi: 10.1139/cjfr-2015-0464 – volume: 10 start-page: 35 year: 2019 ident: 286_CR81 publication-title: Forests doi: 10.3390/f10010035 – volume: 49 start-page: 12 year: 2003 ident: 286_CR52 publication-title: Forest Sci doi: 10.1093/forestscience/49.1.12 – volume-title: Using random forest to learn unbalanced data (Technical Report 666) year: 2004 ident: 286_CR17 – volume: 7 start-page: 440 year: 2004 ident: 286_CR86 publication-title: Ecosystems doi: 10.1007/s10021-004-0136-5 – volume: 358 start-page: 62 year: 2015 ident: 286_CR54 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2015.09.001 – year: 2020 ident: 286_CR49 publication-title: Environ Res Lett doi: 10.1088/1748-9326/ab93f9 – volume: 40 start-page: 761 year: 2010 ident: 286_CR55 publication-title: Can J For Res doi: 10.1139/X10-024 – volume: 4 year: 2021 ident: 286_CR102 publication-title: Sci Remote Sens doi: 10.1016/j.srs.2021.100034 – volume: 128 start-page: 289 year: 2013 ident: 286_CR116 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2012.10.017 – volume: 98 start-page: 735 year: 2010 ident: 286_CR1 publication-title: Proc IEEE doi: 10.1109/JPROC.2009.2034765 – ident: 286_CR57 doi: 10.1109/AERO47225.2020.9172638 – volume: 184 start-page: 139 year: 2016 ident: 286_CR85 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2016.06.018 – volume: 52 start-page: 19 year: 2002 ident: 286_CR62 publication-title: Bioscience doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2 – volume: 165 start-page: 64 year: 2012 ident: 286_CR115 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2012.05.019 – volume: 115 start-page: 636 year: 2011 ident: 286_CR36 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2010.10.008 – year: 2018 ident: 286_CR58 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa9d9e – ident: 286_CR5 – volume: 115 start-page: 445 year: 1998 ident: 286_CR61 publication-title: Oecologia doi: 10.1007/s004420050540 – volume: 7 year: 2012 ident: 286_CR67 publication-title: PLoS ONE doi: 10.1371/journal.pone.0036131 – volume: 8 start-page: 1 year: 2013 ident: 286_CR112 publication-title: Carbon Balance Manage doi: 10.1186/1750-0680-8-1 – ident: 286_CR107 – volume: 270 year: 2022 ident: 286_CR26 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2021.112845 – ident: 286_CR110 – volume: 33 year: 2023 ident: 286_CR15 publication-title: Ecol Appl doi: 10.1002/eap.2888 – volume: 173 start-page: 274 year: 2016 ident: 286_CR13 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2015.07.026 – volume: 358 start-page: 361 year: 2015 ident: 286_CR11 publication-title: Forest Ecol Manag doi: 10.1016/j.foreco.2015.07.017 – year: 2018 ident: 286_CR10 publication-title: Carbon Balance Manag doi: 10.1186/s13021-018-0104-6 – volume: 9 start-page: 63 year: 2016 ident: 286_CR65 publication-title: Int J Digital Earth doi: 10.1080/17538947.2014.990526 – volume: 242 year: 2020 ident: 286_CR27 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2020.111779 – volume-title: Whitebark Pine inventory and monitoring protocol—region 5 year: 2017 ident: 286_CR75 – volume: 155 start-page: 399 year: 2002 ident: 286_CR35 publication-title: Forest Ecol Manag Forest Ecol Next Millennium Putting Long View Pract doi: 10.1016/S0378-1127(01)00575-8 – volume: 6 start-page: 10 year: 2017 ident: 286_CR68 publication-title: Land doi: 10.3390/land6010010 – year: 2018 ident: 286_CR111 publication-title: Carbon Balance Manag doi: 10.1186/s13021-018-0093-5 – volume: 27 start-page: 4352 year: 2021 ident: 286_CR64 publication-title: Glob Change Biol doi: 10.1111/gcb.15727 – volume: 10L start-page: 819 year: 2019 ident: 286_CR105 publication-title: Forests doi: 10.3390/f10090819 – volume: 101 start-page: 12422 year: 2004 ident: 286_CR41 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0404500101 – volume: 83 start-page: 221 year: 2013 ident: 286_CR40 publication-title: Ecol Monogr doi: 10.1890/12-1696.1 – volume: 14 start-page: 395 year: 2005 ident: 286_CR44 publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-822X.2005.00168.x – volume: 156 start-page: 322 year: 2015 ident: 286_CR12 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2014.10.004 – volume: 32 start-page: 725 year: 2002 ident: 286_CR84 publication-title: Can J For Res doi: 10.1139/x02-011 – volume: 10 start-page: 1 year: 2018 ident: 286_CR104 publication-title: Remote Sens doi: 10.3390/rs10030442 – volume: 10 start-page: 455 year: 2019 ident: 286_CR98 publication-title: Forests doi: 10.3390/f10050455 – volume-title: Physiological ecology of the alpine timberline: tree existence at high altitudes with special reference to the European alps year: 1979 ident: 286_CR106 doi: 10.1007/978-3-642-67107-4 – volume: 11 start-page: 3401 year: 2020 ident: 286_CR103 publication-title: Nat Commun doi: 10.1038/s41467-020-17214-4 – volume: 61 start-page: 139 year: 2011 ident: 286_CR50 publication-title: Bisi doi: 10.1525/bio.2011.61.2.9 – volume-title: Forested Communities of the Upper Montane in the Central and Southern Sierra Nevada year: 1998 ident: 286_CR88 doi: 10.2737/PSW-GTR-169 – volume: 6 start-page: art121 year: 2015 ident: 286_CR96 publication-title: Ecosphere doi: 10.1890/ES15-00003.1 – volume: 45 start-page: 422 year: 2015 ident: 286_CR29 publication-title: Can J For Res doi: 10.1139/cjfr-2014-0405 – volume: 95 start-page: 532 year: 2005 ident: 286_CR63 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2005.01.010 – volume: 194 start-page: 447 year: 2017 ident: 286_CR82 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2016.10.022 – volume: 116 start-page: S233 year: 2002 ident: 286_CR99 publication-title: Environ Pollut doi: 10.1016/S0269-7491(01)00255-X – volume: 98 start-page: 44 year: 2000 ident: 286_CR24 publication-title: J Forest doi: 10.1093/jof/98.6.44 – volume: 11 year: 2020 ident: 286_CR25 publication-title: Ecosphere doi: 10.1002/ecs2.3263 – volume: 44 start-page: 131 year: 2018 ident: 286_CR30 publication-title: Can J Remote Sens doi: 10.1080/07038992.2018.1461557 – volume: 479 year: 2021 ident: 286_CR8 publication-title: For Ecol Manage doi: 10.1016/j.foreco.2020.118554 – volume: 111 start-page: 14071 year: 2014 ident: 286_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1319316111 – volume: 45 start-page: 5 year: 2001 ident: 286_CR14 publication-title: Eur J Math doi: 10.1017/CBO9781107415324.004 – volume: 14 start-page: 259 year: 1984 ident: 286_CR87 publication-title: Can J For Res doi: 10.1139/x84-050 – volume: 20 start-page: 1441 year: 2014 ident: 286_CR9 publication-title: Glob Change Biol doi: 10.1111/gcb.12504 – volume: 36 start-page: 5767 year: 2015 ident: 286_CR22 publication-title: Int J Remote Sens doi: 10.1080/01431161.2015.1101651 – volume: 212 start-page: 212 year: 2018 ident: 286_CR3 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.04.044 – volume: 63 start-page: 232 year: 2017 ident: 286_CR48 publication-title: Forest Sci doi: 10.5849/forsci.16-028 – volume: 12 start-page: 16 year: 2009 ident: 286_CR79 publication-title: Ecosystems doi: 10.1007/s10021-008-9201-9 – volume: 118 year: 2021 ident: 286_CR2 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.2009717118 – start-page: 456 volume-title: Terrestrial vegetation of California year: 2007 ident: 286_CR34 doi: 10.1525/california/9780520249554.003.0017 – ident: 286_CR93 – volume: 11 start-page: 945 year: 2005 ident: 286_CR47 publication-title: Glob Change Biol doi: 10.1111/j.1365-2486.2005.00955.x – volume: 141 start-page: 641 year: 2004 ident: 286_CR60 publication-title: Oecologia doi: 10.1007/s00442-004-1689-x – volume: 19 start-page: 1 year: 2007 ident: 286_CR31 publication-title: J Stat Softw doi: 10.18637/jss.v019.i04 – ident: 286_CR73 – ident: 286_CR20 doi: 10.2737/PNW-GTR-1004 – volume: 295 year: 2023 ident: 286_CR28 publication-title: Remote Sens Environ doi: 10.1016/j.rse.2023.113678 – ident: 286_CR19 – volume: 9 start-page: 815 year: 2018 ident: 286_CR45 publication-title: J Environ Prot doi: 10.4236/jep.2018.97051 – volume: 22 start-page: 264 year: 2013 ident: 286_CR21 publication-title: Glob Ecol Biogeogr doi: 10.1111/j.1466-8238.2011.00748.x – ident: 286_CR113 doi: 10.2737/NRS-GTR-88 – volume-title: Existing vegetation—CALVEG [ESRI personal geodatabase] year: 2018 ident: 286_CR109 – volume: 388 start-page: 43 year: 2017 ident: 286_CR6 publication-title: For Ecol Manag Ecol Mountain Forest Ecosyst Europe doi: 10.1016/j.foreco.2016.10.028 – volume: 24 start-page: e442 year: 2018 ident: 286_CR100 publication-title: Glob Change Biol doi: 10.1111/gcb.13881 – volume: 1 year: 2020 ident: 286_CR23 publication-title: Sci Remote Sens doi: 10.1016/j.srs.2020.100002 – ident: 286_CR42 – volume: 110 start-page: 8117 year: 2013 ident: 286_CR69 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1221278110 |
| SSID | ssj0047003 |
| Score | 2.3506908 |
| Snippet | Background
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests... Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many... BackgroundUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests... BACKGROUND: Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests... Abstract Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine... |
| SourceID | doaj pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 41 |
| SubjectTerms | Aboveground biomass altitude Bayesian analysis Bayesian hierarchical spatial modeling Bayesian theory Biomass California Carbon Carbon footprint Carbon monitoring Carbon sequestration Climate change Dead wood Disturbances Earth and Environmental Science Ecosystem management Ecosystem services Ecosystems Emissions trading Environment Environmental accounting Environmental impact Environmental Management Estimates Forest biomass Forest management forest types Forestry Forests Geostatistics inventories Land management Landsat Lidar Mapping Mathematical models model uncertainty Modelling mountains Regional analysis Remote sensing Satellite data Satellite imagery Standard error Subalpine environments Subalpine forests Sustainability reporting Uncertainty Vegetation structure woody biomass |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4lUIFGQkbhDVr9jOEapWnCoOIPVm-SlWWqXVZre98jf69_pLGMdJlqVQLlztSeJ4Xt_EmRmE3mmrPRHB1RzQfC3AQdRWkVS7qJoQE2CEZIdmE-r0VJ-dtV9-afWV_wkr5YHLxh3yxK0TKrdbkyKAv2x0BJPqleMu6cZn60tUOwVTxQYDPeFTioyWh30-noOwmYk6BxmyvtpxQ0O1_j9BzNt_Sv52XDp4oZNH6OEIH_HHsuzH6F7snqD94222GkyO6to_RZvyySAGDKy-jDmDows4Z9wDZMa5vkZJXMQWhnOLhgzLsZ2LdeL8lRbbQUjxchHsCi86vE3nuvlx3eN-4-zyAsAqhkG4Z_8MfTs5_nr0uR77LNS-UWJdcwKYyCYniCetY5x7rQLEQV4Hljz3xDvBQ2tDFEG0klnKkqSppSKRFAPn-2ivO-_iC4SlD9KD07dRgXUQzjZRt66hcEsrA_cVotO2Gz8WIc-9MJZmCEa0NIVVBlhlBlaZqwq9n6-5KCU47qT-lLk5U-by2cMACJUZhcr8S6gqdDDJghl1ujec5tqIjBFdobfzNGhjPmKxXTzfFBqhASS3d9HAA6WmnFXoeRGvebWADnMNRFohvSN4O6-zO9Mtvg9VwSmVkokGFvdhktHt2v--Xy__x369Qg9YVi7KwOoeoL31ahNfo_v-cr3oV28G1fwJ6ls_0w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cCF90JgQUbiBtbGjzjOCQHaFacVB5B6s_yESlVamnb3yt_g7_FLGDuPqjx64Wo7iR1_M_7G9swg9FIZ5UrhLeHA5omABYKYuozEhrryIQJHiCYnm6gvLtRs1nwcNty64VrlqBOzovZLl_bITzlNkekYK9Wb1TeSskal09UhhcZ1dCOlzU44r2eTwSVqgOzoKKPkaZcO6cB4ZoIkU0OSq73FKMfs_xvR_PO-5G-HpnktOr_zv6O4i24PLBS_7WFzD10L7X10fLZzeoPKQeq7B2jb7zwEjwExlyE5grQeJ8d9YN44heno_R-xgeKU6SGxe2ymmJ84bfZik7GOF3Nv1nje4p1X2M_vPzrcba1ZrIDzYiiEd3YP0efzs0_vP5AhXQNxVS02hJdArUy0onRlYxnnTtUezCmnPIuOu9JZwX1jfBBeNJIZyqKksaEiljF4zo_RUbtsw2OEpfPSAXcwoQYlI6ypgmpsReGVRnruCkTHedNuiGWeUmosdLZplNT9XGuYa53nWl8V6NX0zKqP5HGw9bsEh6llisKdC5brL3oQas0jNxZQVgFvFB64XKUCLPeuttxGVUE3T0YU6EE1dHoHgQK9mKpBqNNJjWnDctu3EQq4dnOoDXxQKspZgR71-Jx6CyQzhVKkBVJ7yN0bzn5NO_-ag4tTKiUTFXTu9QjyXd___b-eHB7qU3SLJbmjDNTyCTrarLfhGbrpLjfzbv08S-0viipOXQ priority: 102 providerName: ProQuest |
| Title | Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests |
| URI | https://link.springer.com/article/10.1186/s13021-024-00286-w https://www.ncbi.nlm.nih.gov/pubmed/39704861 https://www.proquest.com/docview/3147592208 https://www.proquest.com/docview/3147485659 https://www.proquest.com/docview/3165868132 https://pubmed.ncbi.nlm.nih.gov/PMC11662458 https://doaj.org/article/3f3ab47052564d65858e284c7b3bf85c |
| Volume | 19 |
| WOSCitedRecordID | wos001380739600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 1750-0680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047003 issn: 1750-0680 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1750-0680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047003 issn: 1750-0680 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 1750-0680 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0047003 issn: 1750-0680 databaseCode: C24 dateStart: 20061201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RFiEuPAoFQ4kWiRtYeB9er4-0SgUHogiBFLhY-4RIkVPFSXvlb_D3-CXMrh9RoFSCiw_ecTzezMx--5hvEHohlTQZtzplgOZTDgNEqorMp9oVuXUeMIJXsdhEMZnI2aycdklhTX_avd-SjJE6urUUr5uwxQZTX8rTMFEQ6eUeOgh0YuEg12nIcWjjLy_AUPv0mCuf2xmCIlP_VfDyz1OSv22VxhHo7O7_6X4P3ekQJ37Tmsh9dMPVh-hovE1wg8bOw5tDdCvU6gwF4B6gTbvg4CwGQ7lwIf-jtjjk6wPgxoGdo017xApuhwIPAdRjNVB94rDGi1U0cbyYW7XC8xpvk8F-fv_R4Gaj1eIcoC728cXNQ_TpbPzx9G3aVWlITV7wdcoyQFTKa56ZrNSUMSMLC7MoIy31hpnMaM5sqazjlpeCKkK9IL4k3GfeWcaO0H69rN1jhIWxwgBkUK6A2MK1yp0sdU7gJ5WwzCSI9H9cZToK81BJY1HFqYwUVdvRFXR0FTu6ukzQy-GZ85bA41rpk2APg2Qg3443lquvVefLFfNMaTCzHOAitwDhculglDeFZtrLHNQ87q2p6iJCUzESmBUpzWSCng_N4Mthg0bVbrlpZbgEiF1eJwMvFJIwmqBHrYEO2gK2DAyKJEFyx3R3Pme3pZ5_i5zihAhBeQ7KveoteKv73_vryb-JP0W3aXACQiE6H6P99WrjnqGb5mI9b1YjtFfMiniVI3RwMp5MP4yia4_iSglcp_kXaJm-ez_9_AsAek8b |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKRJseLcECgwSrMCq52F7vECIR6tGbaMsilRWwzwhUuSEOGnEjt_gJ_govoQ7fiQKj-y6YOsZO-PJuWfOnfG9F6GnQgkTc6sjBmo-4rBARCqLfaRdlljnQSN4VRWbyPp9cX6eD7bQjzYWJnxW2XJiRdR2bMIe-T4jITMdpbF4NfkShapR4XS1LaFRw-LYfV2Ay1a-7L2D__cZpYcHZ2-PoqaqQGSSjM8i8N85UV7z2MS5powZkVlQ_UZY6g0zsdGc2VxZxy3PU6oI9SnxOeE-9s6GDVCg_G0OYI87aHvQOx18aLmfZ2AkbWiOSPfLcCwI7jrlUXBu0mixtvxVVQL-Jm3__ELzt2PaavU7vPG_zdtNdL3R2fh1bRi30JYrbqOdg1VYHzQ2vFbeQfN6b8VZDDZx4UKoS2FxSE0AvgUOiUjqCE-s4HKoZRH8F6yWWU1x2M7GqrJmPBpaNcXDAq_i3n5--17icq7VaAKqHsNFeGZ5F72_lCnYQZ1iXLh7CKfGpgbUkXIZ0CjXKnEi1wmBR6rUMtNFpMWJNE229lA0ZCQrr02kssaWBGzJClty0UXPl_dM6lwlG3u_CfBb9gx5xqsL4-kn2dCWZJ4pDahOQBlzC2o1EQ4Ejck0014kMMy9FnWyIb9SriDXRU-WzUBb4SxKFW48r_twAd5EvqkP_GAqCKNdtFvbw3K0IKNDskjSRWLNUtZeZ72lGH6u0qcTkqaUJzC4F61Rrcb-7_m6v_lVH6OrR2enJ_Kk1z9-gK7RYPOEwiK0hzqz6dw9RFfMxWxYTh81nIHRx8s2t18t3K2S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLVGHYTY8B4oDGAkWEHU-BHHWSDEMK0YDaoqBNLsgp9QqUpL007Fjt_gV_gcvoTrPFqVR3ezYGs7qePexzm2770IPZFKmphbHTFA8xEHBxGpNPaRdmlinQeM4FVVbCIdDuXZWTbaQz_aWJhwrbK1iZWhtlMT9sh7jITMdJTGsuebaxGj48HL2ZcoVJAKJ61tOY1aRE7d1xXQt_LFyTH8108pHfTfv34TNRUGIpOkfBEBl-dEec1jE2eaMmZkaoEBGGmpN8zERnNmM2UdtzwTVBHqBfEZ4T72zobNUDD_-ykD0tNB-0f94ehd6wd4CgrThulI0SvDESFQd8qjQHREtNpyhVXFgL_B3D9va_52ZFt5wsG1_3kNr6OrDf7Gr2qFuYH2XHETHfQ34X7Q2di78hZa1nsuzmLQlXMXQmAKi0PKAuAcOCQoqSM_sYLmUOMi8Bqs1tlOcdjmxqrScjwZWzXH4wJv4uF-fvte4nKp1WQGaB9DI7yzvI0-XMgSHKBOMS3cXYSFscIAalIuBfPKtUqczHRC4JVKWGa6iLQyk5smi3soJjLJKzYnRV7LWQ5ylldylq-66Nn6mVmdw2Tn6KMgiuuRIf941TCdf8obc5Yzz5QGCU8AMXMLKDaRDoCOSTXTXiYwzcNWAvPGKJb5Rvy66PG6G8xZOKNShZsu6zFcAsvIdo2BHxSSMNpFd2rdWM8W4HVIIkm6SG5pzdbnbPcU489VWnVChKA8gck9bxVsM_d_r9e93Z_6CF0GHcvfngxP76MrNKg_oeCbDlFnMV-6B-iSOV-My_nDxnxg9PGite0XyrK2LA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+aboveground+biomass+estimation+and+regional+assessment+with+aerial+lidar+in+California%E2%80%99s+subalpine+forests&rft.jtitle=Carbon+balance+and+management&rft.au=Winsemius%2C+Sara&rft.au=Babcock%2C+Chad&rft.au=Kane%2C+Van+R.&rft.au=Bormann%2C+Kat+J.&rft.date=2024-12-20&rft.pub=Springer+International+Publishing&rft.eissn=1750-0680&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs13021-024-00286-w&rft.externalDocID=10_1186_s13021_024_00286_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0680&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0680&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0680&client=summon |