Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests

Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest struct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon balance and management Jg. 19; H. 1; S. 41
Hauptverfasser: Winsemius, Sara, Babcock, Chad, Kane, Van R., Bormann, Kat J., Safford, Hugh D., Jin, Yufang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 20.12.2024
Springer Nature B.V
BMC
Schlagworte:
ISSN:1750-0680, 1750-0680
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. Results We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. Conclusions By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
AbstractList BackgroundUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.ResultsWe estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.ConclusionsBy applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.BACKGROUNDUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass.We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.RESULTSWe estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data.By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.CONCLUSIONSBy applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
BACKGROUND: Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. RESULTS: We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. CONCLUSIONS: By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
Abstract Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. Results We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. Conclusions By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many important ecosystem services, including carbon sequestration, and are vulnerable to climate change, which has altered forest structure and disturbance regimes. Although large, regional studies have advanced aboveground biomass mapping with satellite data, typically using a general approach broadly calibrated or trained with available field data, it is unclear how well these models work in less prevalent and highly heterogeneous forest types such as the subalpine. Monitoring biomass using methods that model uncertainty at multiple scales is critical to ensure that local relationships between biomass and input variables are retained. Forest structure metrics from lidar are particularly valuable alongside field data for mapping aboveground biomass, due to their high correlation with biomass. Results We estimated aboveground woody biomass of live and dead trees and uncertainty at 30 m resolution in subalpine forests of the Sierra Nevada, California, from aerial lidar data in combination with a collection of field inventory data, using a Bayesian geostatistical model. The ten-fold cross-validation resulted in excellent model calibration of our subalpine-specific model (94.7% of measured plot biomass within the predicted 95% credible interval). When evaluated against two commonly referenced regional estimates based on Landsat optical imagery, root mean square error, relative standard error, and bias of our estimations were substantially lower, demonstrating the benefits of local modeling for subalpine forests. We mapped AGB over four management units in the Sierra Nevada and found variable biomass density ranging from 92.4 to 199.2 Mg/ha across these management units, highlighting the importance of high quality, local field and remote sensing data. Conclusions By applying a relatively new Bayesian geostatistical modeling method to a novel forest type, our study produced the most accurate and precise aboveground biomass estimates to date for Sierra Nevada subalpine forests at 30 m pixel and management unit scales. Our estimates of total aboveground biomass within the management units had low uncertainty and can be used effectively in carbon accounting and carbon trading markets.
ArticleNumber 41
Author Winsemius, Sara
Bormann, Kat J.
Kane, Van R.
Babcock, Chad
Safford, Hugh D.
Jin, Yufang
Author_xml – sequence: 1
  givenname: Sara
  surname: Winsemius
  fullname: Winsemius, Sara
  email: swinsemius@ucdavis.edu
  organization: Department of Land, Air and Water Resources, University of California
– sequence: 2
  givenname: Chad
  surname: Babcock
  fullname: Babcock, Chad
  organization: Department of Forest Resources, University of Minnesota
– sequence: 3
  givenname: Van R.
  surname: Kane
  fullname: Kane, Van R.
  organization: School of Environmental and Forest Sciences, University of Washington
– sequence: 4
  givenname: Kat J.
  surname: Bormann
  fullname: Bormann, Kat J.
  organization: Airborne Snow Observatories, Inc
– sequence: 5
  givenname: Hugh D.
  surname: Safford
  fullname: Safford, Hugh D.
  organization: Department of Environmental Science and Policy, University of California, Vibrant Planet
– sequence: 6
  givenname: Yufang
  surname: Jin
  fullname: Jin, Yufang
  organization: Department of Land, Air and Water Resources, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39704861$$D View this record in MEDLINE/PubMed
BookMark eNqNUsluFDEUtFAQWeAHOCBLXLg0eG_3CaERy0iRuMDZcnuZeNRtD3Z3RrnxG_weX4IznUCSQ8TJT-Wq8nvPdQqOYooOgJcYvcVYincFU0RwgwhrECJSNPsn4AS3HDVISHR0pz4Gp6VsEWItQvQZOKZdi5gU-ATM63GX06WzUPf12OQ0Rwv7kEZdCnRlCqOeQopQVzi7TS31AOudK2V0cYL7MF1A7XKo8BCszjBEuNJD8CnHoH___FVgmXs97EJ0sILVszwHT70eintxc56B758-flt9ac6_fl6vPpw3hrdsaihiDGvfM2RQ1xNKjWxt1wkjLfGGGmR6Rm2nrWOWdYJoTLzAvsPMI-8spWdgvfjapLdql-sw-UolHdQBSHmjdJ6CGZyinuq-7ocTLpgVXHLpiGSm7WnvJTfV6_3itZv70VlTh896uGd6_yaGC7VJlwpjIQjjsjq8uXHI6cdc96DGUIwbBh1dmouiuD4rJKbkP6isZZIL3lXq6wfUbZpz_aWFxTtC0PXbr-52_7ft2yRUglwIJqdSsvPKhOnw9XWYMCiM1HXo1BI6VUOnDqFT-yolD6S37o-K6CIqlRw3Lv9r-xHVH8DQ7LU
CitedBy_id crossref_primary_10_1016_j_foreco_2025_123002
crossref_primary_10_1371_journal_pone_0330768
Cites_doi 10.1186/1750-0680-4-2
10.1016/j.rse.2012.11.024
10.1016/j.rse.2013.07.041
10.18637/jss.v063.i13
10.2737/PSW-GTR-263
10.1016/j.quaint.2013.11.003
10.1139/X08-059
10.1016/j.rse.2012.11.010
10.1016/j.rse.2020.112061
10.3390/land3041214
10.32614/CRAN.package.terra
10.1002/9781119115151
10.1139/X09-025
10.1002/ecs2.4400
10.1890/ES13-00217.1
10.3390/rs13020261
10.1002/wrcr.20504
10.1016/j.rse.2018.03.032
10.1111/2041-210X.12189
10.1016/j.scitotenv.2023.164832
10.2136/sssaj2000.6451834x
10.1007/978-3-030-73267-7_9
10.1198/016214504000000250
10.1016/j.rse.2010.07.008
10.1016/j.rse.2009.12.018
10.1139/cjfr-2015-0464
10.3390/f10010035
10.1093/forestscience/49.1.12
10.1007/s10021-004-0136-5
10.1016/j.foreco.2015.09.001
10.1088/1748-9326/ab93f9
10.1139/X10-024
10.1016/j.srs.2021.100034
10.1016/j.rse.2012.10.017
10.1109/JPROC.2009.2034765
10.1109/AERO47225.2020.9172638
10.1016/j.rse.2016.06.018
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1016/j.agrformet.2012.05.019
10.1016/j.rse.2010.10.008
10.1088/1748-9326/aa9d9e
10.1007/s004420050540
10.1371/journal.pone.0036131
10.1186/1750-0680-8-1
10.1016/j.rse.2021.112845
10.1002/eap.2888
10.1016/j.rse.2015.07.026
10.1016/j.foreco.2015.07.017
10.1186/s13021-018-0104-6
10.1080/17538947.2014.990526
10.1016/j.rse.2020.111779
10.1016/S0378-1127(01)00575-8
10.3390/land6010010
10.1186/s13021-018-0093-5
10.1111/gcb.15727
10.3390/f10090819
10.1073/pnas.0404500101
10.1890/12-1696.1
10.1111/j.1466-822X.2005.00168.x
10.1016/j.rse.2014.10.004
10.1139/x02-011
10.3390/rs10030442
10.3390/f10050455
10.1007/978-3-642-67107-4
10.1038/s41467-020-17214-4
10.1525/bio.2011.61.2.9
10.2737/PSW-GTR-169
10.1890/ES15-00003.1
10.1139/cjfr-2014-0405
10.1016/j.rse.2005.01.010
10.1016/j.rse.2016.10.022
10.1016/S0269-7491(01)00255-X
10.1093/jof/98.6.44
10.1002/ecs2.3263
10.1080/07038992.2018.1461557
10.1016/j.foreco.2020.118554
10.1073/pnas.1319316111
10.1017/CBO9781107415324.004
10.1139/x84-050
10.1111/gcb.12504
10.1080/01431161.2015.1101651
10.1016/j.rse.2018.04.044
10.5849/forsci.16-028
10.1007/s10021-008-9201-9
10.1073/pnas.2009717118
10.1525/california/9780520249554.003.0017
10.1111/j.1365-2486.2005.00955.x
10.1007/s00442-004-1689-x
10.18637/jss.v019.i04
10.2737/PNW-GTR-1004
10.1016/j.rse.2023.113678
10.4236/jep.2018.97051
10.1111/j.1466-8238.2011.00748.x
10.2737/NRS-GTR-88
10.1016/j.foreco.2016.10.028
10.1111/gcb.13881
10.1016/j.srs.2020.100002
10.1073/pnas.1221278110
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
Copyright Springer Nature B.V. Dec 2024
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: Copyright Springer Nature B.V. Dec 2024
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7SN
7TG
7X7
7XB
8FE
8FG
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KL.
M0S
P5Z
P62
PATMY
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13021-024-00286-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Ecology Abstracts
Meteorological & Geoastrophysical Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Health & Medical Collection (Alumni)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
PubMed
MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
Environmental Sciences
EISSN 1750-0680
EndPage 41
ExternalDocumentID oai_doaj_org_article_3f3ab47052564d65858e284c7b3bf85c
PMC11662458
39704861
10_1186_s13021_024_00286_w
Genre Journal Article
GeographicLocations United States--US
California
Nevada
GeographicLocations_xml – name: Nevada
– name: United States--US
– name: California
GrantInformation_xml – fundername: Sequoia Science and Learning Center
– fundername: California Department of Forestry and Fire Protection,United States
  grantid: 8GG18808
GroupedDBID -A0
0R~
29B
2WC
2XV
3V.
4P2
5GY
5VS
6J9
7X7
7XC
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AAKKN
ABDBF
ABEEZ
ABUWG
ACACY
ACGFS
ACPRK
ACUHS
ACULB
ADBBV
ADINQ
ADRAZ
AEUYN
AFGXO
AFKRA
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
ATCPS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBLON
EBS
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IGS
IHR
KQ8
M48
ML.
M~E
O5R
O5S
OK1
P2P
P62
PATMY
PGMZT
PIMPY
PQQKQ
PROAC
PYCSY
RBZ
RNS
RPM
RSV
SEV
SOJ
TR2
TUS
UKHRP
WOQ
~02
~8M
AASML
AAYXX
ADUKV
AFPKN
CITATION
OVT
NPM
PHGZT
7SN
7TG
7XB
8FK
AZQEC
C1K
DWQXO
GNUQQ
K9.
KL.
PHGZM
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c574t-30441afb40c09b233c87d996c8d2fc3c0cb43d9ade4d4962a12f61f914f0fed33
IEDL.DBID C24
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001380739600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1750-0680
IngestDate Tue Oct 14 19:09:21 EDT 2025
Tue Nov 04 02:03:42 EST 2025
Fri Nov 14 18:43:08 EST 2025
Wed Oct 01 17:02:41 EDT 2025
Wed Oct 08 14:20:36 EDT 2025
Sun Mar 30 02:13:01 EDT 2025
Sat Nov 29 03:47:53 EST 2025
Tue Nov 18 20:47:26 EST 2025
Fri Feb 21 02:35:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Subalpine forests
Bayesian hierarchical spatial modeling
Vegetation structure
Carbon monitoring
Remote sensing
Aboveground biomass
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c574t-30441afb40c09b233c87d996c8d2fc3c0cb43d9ade4d4962a12f61f914f0fed33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1186/s13021-024-00286-w
PMID 39704861
PQID 3147592208
PQPubID 55243
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3f3ab47052564d65858e284c7b3bf85c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11662458
proquest_miscellaneous_3165868132
proquest_miscellaneous_3147485659
proquest_journals_3147592208
pubmed_primary_39704861
crossref_citationtrail_10_1186_s13021_024_00286_w
crossref_primary_10_1186_s13021_024_00286_w
springer_journals_10_1186_s13021_024_00286_w
PublicationCentury 2000
PublicationDate 2024-12-20
PublicationDateYYYYMMDD 2024-12-20
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-20
  day: 20
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: England
– name: London
PublicationTitle Carbon balance and management
PublicationTitleAbbrev Carbon Balance Manage
PublicationTitleAlternate Carbon Balance Manag
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
BMC
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: BMC
References W Tranquillini (286_CR106) 1979
F-K Holtmeier (286_CR45) 2018; 9
ML Goulden (286_CR39) 2014; 111
JA Lutz (286_CR67) 2012; 7
HD Safford (286_CR94) 2021
J-R Roussel (286_CR92) 2020; 251
AO Finley (286_CR33) 2015; 63
MK Jakubowski (286_CR51) 2013; 130
JA Pearson (286_CR87) 1984; 14
RO Dubayah (286_CR24) 2000; 98
AT Hudak (286_CR49) 2020
286_CR95
286_CR93
DM Bell (286_CR11) 2015; 358
P Bebi (286_CR6) 2017; 388
286_CR7
K Tenneson (286_CR104) 2018; 10
CI Millar (286_CR78) 2015; 387
SJ Goetz (286_CR38) 2009; 4
286_CR5
TH Painter (286_CR85) 2016; 184
SJ Prichard (286_CR90) 2000; 64
M Macias-Fauria (286_CR69) 2013; 110
MA Lefsky (286_CR62) 2002; 52
BT Wilson (286_CR112) 2013; 8
EG Brodie (286_CR15) 2023; 33
DM Bell (286_CR9) 2014; 20
T Gobakken (286_CR37) 2009; 39
MR Slaton (286_CR98) 2019; 10
KD Morrison (286_CR80) 2014; 3
JL Ohmann (286_CR84) 2002; 32
J Breidenbach (286_CR13) 2016; 173
286_CR57
SL Powell (286_CR89) 2010; 114
C Mallek (286_CR70) 2013; 4
RA Houghton (286_CR47) 2005; 11
286_CR76
JD Lundquist (286_CR66) 2013; 49
MD Meyer (286_CR74) 2016; 46
286_CR73
MD Meyer (286_CR75) 2017
LM Kueppers (286_CR60) 2004; 141
286_CR72
286_CR71
MA Lefsky (286_CR63) 2005; 95
JF Franklin (286_CR35) 2002; 155
DS Lu (286_CR65) 2016; 9
L Breiman (286_CR14) 2001; 45
M Nilsson (286_CR82) 2017; 194
C Chen (286_CR17) 2004
AEL Stovall (286_CR103) 2020; 11
286_CR43
PA Fekety (286_CR29) 2015; 45
286_CR42
J Du (286_CR22) 2015; 36
DM Bell (286_CR8) 2021; 479
VR Kane (286_CR56) 2014; 151
DJN Young (286_CR114) 2023; 14
JCB Nesmith (286_CR81) 2019; 10
VR Kane (286_CR55) 2010; 40
JD Miller (286_CR79) 2009; 12
K Hayhoe (286_CR41) 2004; 101
DM Bell (286_CR10) 2018
P Jiang (286_CR53) 2023; 893
DA Potter (286_CR88) 1998
N Cressie (286_CR18) 1993
AEL Stovall (286_CR102) 2021; 4
JC Jenkins (286_CR52) 2003; 49
J Fites-Kaufman (286_CR34) 2007
S Banerjee (286_CR4) 2015
W Abdalati (286_CR1) 2010; 98
MD Hurteau (286_CR50) 2011; 61
GW Frazer (286_CR36) 2011; 115
S Huang (286_CR48) 2017; 63
DL Stevens (286_CR101) 2004; 99
L-T Tojal (286_CR105) 2019; 10L
GG Parker (286_CR86) 2004; 7
MR Alizadeh (286_CR2) 2021; 118
R Core Team (286_CR91) 2017
RE Kennedy (286_CR58) 2018
C Körner (286_CR61) 1998; 115
AO Finley (286_CR32) 2014; 5
M Bouvier (286_CR12) 2015; 156
M Urbazaev (286_CR111) 2018
286_CR20
JA Lutz (286_CR68) 2017; 6
F Zhao (286_CR115) 2012; 165
286_CR110
SG Zolkos (286_CR116) 2013; 128
286_CR19
CI Millar (286_CR77) 2016
L Duncanson (286_CR26) 2022; 270
286_CR16
PA Fekety (286_CR30) 2018; 44
JC Dudney (286_CR25) 2020; 11
286_CR113
S Hooper (286_CR46) 2018; 210
KR Sherrill (286_CR97) 2008; 38
CB Halpern (286_CR40) 2013; 83
VR Kane (286_CR54) 2015; 358
CR Dolanc (286_CR21) 2013; 22
E Næsset (286_CR83) 2013; 130
AO Finley (286_CR31) 2007; 19
F-K Holtmeier (286_CR44) 2005; 14
USDA Forest Service (286_CR109) 2018
C Babcock (286_CR3) 2018; 212
BV Smithers (286_CR100) 2018; 24
WB Smith (286_CR99) 2002; 116
R Dubayah (286_CR23) 2020; 1
L Duncanson (286_CR27) 2020; 242
RE Kennedy (286_CR59) 2010; 114
MW Schwartz (286_CR96) 2015; 6
286_CR107
E Emick (286_CR28) 2023; 295
J Liu (286_CR64) 2021; 27
USDA Forest Service (286_CR108) 2022
References_xml – volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: 286_CR91
– volume: 4
  start-page: 2
  year: 2009
  ident: 286_CR38
  publication-title: Carbon Balance Manage
  doi: 10.1186/1750-0680-4-2
– volume: 130
  start-page: 245
  year: 2013
  ident: 286_CR51
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2012.11.024
– ident: 286_CR72
– volume: 151
  start-page: 89
  year: 2014
  ident: 286_CR56
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2013.07.041
– volume: 63
  start-page: 1
  year: 2015
  ident: 286_CR33
  publication-title: J Stat Softw
  doi: 10.18637/jss.v063.i13
– ident: 286_CR76
  doi: 10.2737/PSW-GTR-263
– volume: 387
  start-page: 106
  year: 2015
  ident: 286_CR78
  publication-title: Quatern Int
  doi: 10.1016/j.quaint.2013.11.003
– volume: 38
  start-page: 2081
  year: 2008
  ident: 286_CR97
  publication-title: Can J For Res
  doi: 10.1139/X08-059
– volume: 130
  start-page: 108
  year: 2013
  ident: 286_CR83
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2012.11.010
– volume: 251
  year: 2020
  ident: 286_CR92
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.112061
– volume: 3
  start-page: 1214
  year: 2014
  ident: 286_CR80
  publication-title: Land
  doi: 10.3390/land3041214
– ident: 286_CR43
  doi: 10.32614/CRAN.package.terra
– volume-title: Statistics for spatial data
  year: 1993
  ident: 286_CR18
  doi: 10.1002/9781119115151
– ident: 286_CR95
– volume: 39
  start-page: 1036
  year: 2009
  ident: 286_CR37
  publication-title: Can J For Res
  doi: 10.1139/X09-025
– volume-title: Field instructions for the annual inventory of California, Oregon, and Washington
  year: 2022
  ident: 286_CR108
– volume: 14
  year: 2023
  ident: 286_CR114
  publication-title: Ecosphere
  doi: 10.1002/ecs2.4400
– volume: 4
  start-page: 1
  year: 2013
  ident: 286_CR70
  publication-title: Ecosphere
  doi: 10.1890/ES13-00217.1
– ident: 286_CR71
  doi: 10.3390/rs13020261
– volume: 49
  start-page: 6356
  year: 2013
  ident: 286_CR66
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20504
– volume: 210
  start-page: 473
  year: 2018
  ident: 286_CR46
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.03.032
– ident: 286_CR7
– volume-title: Monographs on statistics and applied probability
  year: 2015
  ident: 286_CR4
– volume: 5
  start-page: 514
  year: 2014
  ident: 286_CR32
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12189
– volume: 893
  year: 2023
  ident: 286_CR53
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2023.164832
– volume: 64
  start-page: 1834
  year: 2000
  ident: 286_CR90
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.6451834x
– volume-title: Ecosystems of California
  year: 2016
  ident: 286_CR77
– start-page: 337
  volume-title: Fire ecology and management: past, present, and future of US forested ecosystems
  year: 2021
  ident: 286_CR94
  doi: 10.1007/978-3-030-73267-7_9
– ident: 286_CR16
– volume: 99
  start-page: 262
  year: 2004
  ident: 286_CR101
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214504000000250
– volume: 114
  start-page: 2897
  year: 2010
  ident: 286_CR59
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.07.008
– volume: 114
  start-page: 1053
  year: 2010
  ident: 286_CR89
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2009.12.018
– volume: 46
  start-page: 572
  year: 2016
  ident: 286_CR74
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2015-0464
– volume: 10
  start-page: 35
  year: 2019
  ident: 286_CR81
  publication-title: Forests
  doi: 10.3390/f10010035
– volume: 49
  start-page: 12
  year: 2003
  ident: 286_CR52
  publication-title: Forest Sci
  doi: 10.1093/forestscience/49.1.12
– volume-title: Using random forest to learn unbalanced data (Technical Report 666)
  year: 2004
  ident: 286_CR17
– volume: 7
  start-page: 440
  year: 2004
  ident: 286_CR86
  publication-title: Ecosystems
  doi: 10.1007/s10021-004-0136-5
– volume: 358
  start-page: 62
  year: 2015
  ident: 286_CR54
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2015.09.001
– year: 2020
  ident: 286_CR49
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/ab93f9
– volume: 40
  start-page: 761
  year: 2010
  ident: 286_CR55
  publication-title: Can J For Res
  doi: 10.1139/X10-024
– volume: 4
  year: 2021
  ident: 286_CR102
  publication-title: Sci Remote Sens
  doi: 10.1016/j.srs.2021.100034
– volume: 128
  start-page: 289
  year: 2013
  ident: 286_CR116
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2012.10.017
– volume: 98
  start-page: 735
  year: 2010
  ident: 286_CR1
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2009.2034765
– ident: 286_CR57
  doi: 10.1109/AERO47225.2020.9172638
– volume: 184
  start-page: 139
  year: 2016
  ident: 286_CR85
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2016.06.018
– volume: 52
  start-page: 19
  year: 2002
  ident: 286_CR62
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– volume: 165
  start-page: 64
  year: 2012
  ident: 286_CR115
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2012.05.019
– volume: 115
  start-page: 636
  year: 2011
  ident: 286_CR36
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.10.008
– year: 2018
  ident: 286_CR58
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa9d9e
– ident: 286_CR5
– volume: 115
  start-page: 445
  year: 1998
  ident: 286_CR61
  publication-title: Oecologia
  doi: 10.1007/s004420050540
– volume: 7
  year: 2012
  ident: 286_CR67
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0036131
– volume: 8
  start-page: 1
  year: 2013
  ident: 286_CR112
  publication-title: Carbon Balance Manage
  doi: 10.1186/1750-0680-8-1
– ident: 286_CR107
– volume: 270
  year: 2022
  ident: 286_CR26
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2021.112845
– ident: 286_CR110
– volume: 33
  year: 2023
  ident: 286_CR15
  publication-title: Ecol Appl
  doi: 10.1002/eap.2888
– volume: 173
  start-page: 274
  year: 2016
  ident: 286_CR13
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2015.07.026
– volume: 358
  start-page: 361
  year: 2015
  ident: 286_CR11
  publication-title: Forest Ecol Manag
  doi: 10.1016/j.foreco.2015.07.017
– year: 2018
  ident: 286_CR10
  publication-title: Carbon Balance Manag
  doi: 10.1186/s13021-018-0104-6
– volume: 9
  start-page: 63
  year: 2016
  ident: 286_CR65
  publication-title: Int J Digital Earth
  doi: 10.1080/17538947.2014.990526
– volume: 242
  year: 2020
  ident: 286_CR27
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2020.111779
– volume-title: Whitebark Pine inventory and monitoring protocol—region 5
  year: 2017
  ident: 286_CR75
– volume: 155
  start-page: 399
  year: 2002
  ident: 286_CR35
  publication-title: Forest Ecol Manag Forest Ecol Next Millennium Putting Long View Pract
  doi: 10.1016/S0378-1127(01)00575-8
– volume: 6
  start-page: 10
  year: 2017
  ident: 286_CR68
  publication-title: Land
  doi: 10.3390/land6010010
– year: 2018
  ident: 286_CR111
  publication-title: Carbon Balance Manag
  doi: 10.1186/s13021-018-0093-5
– volume: 27
  start-page: 4352
  year: 2021
  ident: 286_CR64
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.15727
– volume: 10L
  start-page: 819
  year: 2019
  ident: 286_CR105
  publication-title: Forests
  doi: 10.3390/f10090819
– volume: 101
  start-page: 12422
  year: 2004
  ident: 286_CR41
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0404500101
– volume: 83
  start-page: 221
  year: 2013
  ident: 286_CR40
  publication-title: Ecol Monogr
  doi: 10.1890/12-1696.1
– volume: 14
  start-page: 395
  year: 2005
  ident: 286_CR44
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/j.1466-822X.2005.00168.x
– volume: 156
  start-page: 322
  year: 2015
  ident: 286_CR12
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2014.10.004
– volume: 32
  start-page: 725
  year: 2002
  ident: 286_CR84
  publication-title: Can J For Res
  doi: 10.1139/x02-011
– volume: 10
  start-page: 1
  year: 2018
  ident: 286_CR104
  publication-title: Remote Sens
  doi: 10.3390/rs10030442
– volume: 10
  start-page: 455
  year: 2019
  ident: 286_CR98
  publication-title: Forests
  doi: 10.3390/f10050455
– volume-title: Physiological ecology of the alpine timberline: tree existence at high altitudes with special reference to the European alps
  year: 1979
  ident: 286_CR106
  doi: 10.1007/978-3-642-67107-4
– volume: 11
  start-page: 3401
  year: 2020
  ident: 286_CR103
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17214-4
– volume: 61
  start-page: 139
  year: 2011
  ident: 286_CR50
  publication-title: Bisi
  doi: 10.1525/bio.2011.61.2.9
– volume-title: Forested Communities of the Upper Montane in the Central and Southern Sierra Nevada
  year: 1998
  ident: 286_CR88
  doi: 10.2737/PSW-GTR-169
– volume: 6
  start-page: art121
  year: 2015
  ident: 286_CR96
  publication-title: Ecosphere
  doi: 10.1890/ES15-00003.1
– volume: 45
  start-page: 422
  year: 2015
  ident: 286_CR29
  publication-title: Can J For Res
  doi: 10.1139/cjfr-2014-0405
– volume: 95
  start-page: 532
  year: 2005
  ident: 286_CR63
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2005.01.010
– volume: 194
  start-page: 447
  year: 2017
  ident: 286_CR82
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2016.10.022
– volume: 116
  start-page: S233
  year: 2002
  ident: 286_CR99
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(01)00255-X
– volume: 98
  start-page: 44
  year: 2000
  ident: 286_CR24
  publication-title: J Forest
  doi: 10.1093/jof/98.6.44
– volume: 11
  year: 2020
  ident: 286_CR25
  publication-title: Ecosphere
  doi: 10.1002/ecs2.3263
– volume: 44
  start-page: 131
  year: 2018
  ident: 286_CR30
  publication-title: Can J Remote Sens
  doi: 10.1080/07038992.2018.1461557
– volume: 479
  year: 2021
  ident: 286_CR8
  publication-title: For Ecol Manage
  doi: 10.1016/j.foreco.2020.118554
– volume: 111
  start-page: 14071
  year: 2014
  ident: 286_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1319316111
– volume: 45
  start-page: 5
  year: 2001
  ident: 286_CR14
  publication-title: Eur J Math
  doi: 10.1017/CBO9781107415324.004
– volume: 14
  start-page: 259
  year: 1984
  ident: 286_CR87
  publication-title: Can J For Res
  doi: 10.1139/x84-050
– volume: 20
  start-page: 1441
  year: 2014
  ident: 286_CR9
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12504
– volume: 36
  start-page: 5767
  year: 2015
  ident: 286_CR22
  publication-title: Int J Remote Sens
  doi: 10.1080/01431161.2015.1101651
– volume: 212
  start-page: 212
  year: 2018
  ident: 286_CR3
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.04.044
– volume: 63
  start-page: 232
  year: 2017
  ident: 286_CR48
  publication-title: Forest Sci
  doi: 10.5849/forsci.16-028
– volume: 12
  start-page: 16
  year: 2009
  ident: 286_CR79
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9201-9
– volume: 118
  year: 2021
  ident: 286_CR2
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.2009717118
– start-page: 456
  volume-title: Terrestrial vegetation of California
  year: 2007
  ident: 286_CR34
  doi: 10.1525/california/9780520249554.003.0017
– ident: 286_CR93
– volume: 11
  start-page: 945
  year: 2005
  ident: 286_CR47
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2005.00955.x
– volume: 141
  start-page: 641
  year: 2004
  ident: 286_CR60
  publication-title: Oecologia
  doi: 10.1007/s00442-004-1689-x
– volume: 19
  start-page: 1
  year: 2007
  ident: 286_CR31
  publication-title: J Stat Softw
  doi: 10.18637/jss.v019.i04
– ident: 286_CR73
– ident: 286_CR20
  doi: 10.2737/PNW-GTR-1004
– volume: 295
  year: 2023
  ident: 286_CR28
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2023.113678
– ident: 286_CR19
– volume: 9
  start-page: 815
  year: 2018
  ident: 286_CR45
  publication-title: J Environ Prot
  doi: 10.4236/jep.2018.97051
– volume: 22
  start-page: 264
  year: 2013
  ident: 286_CR21
  publication-title: Glob Ecol Biogeogr
  doi: 10.1111/j.1466-8238.2011.00748.x
– ident: 286_CR113
  doi: 10.2737/NRS-GTR-88
– volume-title: Existing vegetation—CALVEG [ESRI personal geodatabase]
  year: 2018
  ident: 286_CR109
– volume: 388
  start-page: 43
  year: 2017
  ident: 286_CR6
  publication-title: For Ecol Manag Ecol Mountain Forest Ecosyst Europe
  doi: 10.1016/j.foreco.2016.10.028
– volume: 24
  start-page: e442
  year: 2018
  ident: 286_CR100
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.13881
– volume: 1
  year: 2020
  ident: 286_CR23
  publication-title: Sci Remote Sens
  doi: 10.1016/j.srs.2020.100002
– ident: 286_CR42
– volume: 110
  start-page: 8117
  year: 2013
  ident: 286_CR69
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1221278110
SSID ssj0047003
Score 2.3506908
Snippet Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests...
Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests provide many...
BackgroundUnderstanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests...
BACKGROUND: Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine forests...
Abstract Background Understanding the impacts of climate change on forest aboveground biomass is a high priority for land managers. High elevation subalpine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Aboveground biomass
altitude
Bayesian analysis
Bayesian hierarchical spatial modeling
Bayesian theory
Biomass
California
Carbon
Carbon footprint
Carbon monitoring
Carbon sequestration
Climate change
Dead wood
Disturbances
Earth and Environmental Science
Ecosystem management
Ecosystem services
Ecosystems
Emissions trading
Environment
Environmental accounting
Environmental impact
Environmental Management
Estimates
Forest biomass
Forest management
forest types
Forestry
Forests
Geostatistics
inventories
Land management
Landsat
Lidar
Mapping
Mathematical models
model uncertainty
Modelling
mountains
Regional analysis
Remote sensing
Satellite data
Satellite imagery
Standard error
Subalpine environments
Subalpine forests
Sustainability reporting
Uncertainty
Vegetation structure
woody biomass
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQxYEL4lUIFGQkbhDVr9jOEapWnCoOIPVm-SlWWqXVZre98jf69_pLGMdJlqVQLlztSeJ4Xt_EmRmE3mmrPRHB1RzQfC3AQdRWkVS7qJoQE2CEZIdmE-r0VJ-dtV9-afWV_wkr5YHLxh3yxK0TKrdbkyKAv2x0BJPqleMu6cZn60tUOwVTxQYDPeFTioyWh30-noOwmYk6BxmyvtpxQ0O1_j9BzNt_Sv52XDp4oZNH6OEIH_HHsuzH6F7snqD94222GkyO6to_RZvyySAGDKy-jDmDows4Z9wDZMa5vkZJXMQWhnOLhgzLsZ2LdeL8lRbbQUjxchHsCi86vE3nuvlx3eN-4-zyAsAqhkG4Z_8MfTs5_nr0uR77LNS-UWJdcwKYyCYniCetY5x7rQLEQV4Hljz3xDvBQ2tDFEG0klnKkqSppSKRFAPn-2ivO-_iC4SlD9KD07dRgXUQzjZRt66hcEsrA_cVotO2Gz8WIc-9MJZmCEa0NIVVBlhlBlaZqwq9n6-5KCU47qT-lLk5U-by2cMACJUZhcr8S6gqdDDJghl1ujec5tqIjBFdobfzNGhjPmKxXTzfFBqhASS3d9HAA6WmnFXoeRGvebWADnMNRFohvSN4O6-zO9Mtvg9VwSmVkokGFvdhktHt2v--Xy__x369Qg9YVi7KwOoeoL31ahNfo_v-cr3oV28G1fwJ6ls_0w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg4cCF90JgQUbiBtbGjzjOCQHaFacVB5B6s_yESlVamnb3yt_g7_FLGDuPqjx64Wo7iR1_M_7G9swg9FIZ5UrhLeHA5omABYKYuozEhrryIQJHiCYnm6gvLtRs1nwcNty64VrlqBOzovZLl_bITzlNkekYK9Wb1TeSskal09UhhcZ1dCOlzU44r2eTwSVqgOzoKKPkaZcO6cB4ZoIkU0OSq73FKMfs_xvR_PO-5G-HpnktOr_zv6O4i24PLBS_7WFzD10L7X10fLZzeoPKQeq7B2jb7zwEjwExlyE5grQeJ8d9YN44heno_R-xgeKU6SGxe2ymmJ84bfZik7GOF3Nv1nje4p1X2M_vPzrcba1ZrIDzYiiEd3YP0efzs0_vP5AhXQNxVS02hJdArUy0onRlYxnnTtUezCmnPIuOu9JZwX1jfBBeNJIZyqKksaEiljF4zo_RUbtsw2OEpfPSAXcwoQYlI6ypgmpsReGVRnruCkTHedNuiGWeUmosdLZplNT9XGuYa53nWl8V6NX0zKqP5HGw9bsEh6llisKdC5brL3oQas0jNxZQVgFvFB64XKUCLPeuttxGVUE3T0YU6EE1dHoHgQK9mKpBqNNJjWnDctu3EQq4dnOoDXxQKspZgR71-Jx6CyQzhVKkBVJ7yN0bzn5NO_-ag4tTKiUTFXTu9QjyXd___b-eHB7qU3SLJbmjDNTyCTrarLfhGbrpLjfzbv08S-0viipOXQ
  priority: 102
  providerName: ProQuest
Title Improved aboveground biomass estimation and regional assessment with aerial lidar in California’s subalpine forests
URI https://link.springer.com/article/10.1186/s13021-024-00286-w
https://www.ncbi.nlm.nih.gov/pubmed/39704861
https://www.proquest.com/docview/3147592208
https://www.proquest.com/docview/3147485659
https://www.proquest.com/docview/3165868132
https://pubmed.ncbi.nlm.nih.gov/PMC11662458
https://doaj.org/article/3f3ab47052564d65858e284c7b3bf85c
Volume 19
WOSCitedRecordID wos001380739600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ (Directory of Open Access Journals)
  customDbUrl:
  eissn: 1750-0680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047003
  issn: 1750-0680
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1750-0680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047003
  issn: 1750-0680
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 1750-0680
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0047003
  issn: 1750-0680
  databaseCode: C24
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RFiEuPAoFQ4kWiRtYeB9er4-0SgUHogiBFLhY-4RIkVPFSXvlb_D3-CXMrh9RoFSCiw_ecTzezMx--5hvEHohlTQZtzplgOZTDgNEqorMp9oVuXUeMIJXsdhEMZnI2aycdklhTX_avd-SjJE6urUUr5uwxQZTX8rTMFEQ6eUeOgh0YuEg12nIcWjjLy_AUPv0mCuf2xmCIlP_VfDyz1OSv22VxhHo7O7_6X4P3ekQJ37Tmsh9dMPVh-hovE1wg8bOw5tDdCvU6gwF4B6gTbvg4CwGQ7lwIf-jtjjk6wPgxoGdo017xApuhwIPAdRjNVB94rDGi1U0cbyYW7XC8xpvk8F-fv_R4Gaj1eIcoC728cXNQ_TpbPzx9G3aVWlITV7wdcoyQFTKa56ZrNSUMSMLC7MoIy31hpnMaM5sqazjlpeCKkK9IL4k3GfeWcaO0H69rN1jhIWxwgBkUK6A2MK1yp0sdU7gJ5WwzCSI9H9cZToK81BJY1HFqYwUVdvRFXR0FTu6ukzQy-GZ85bA41rpk2APg2Qg3443lquvVefLFfNMaTCzHOAitwDhculglDeFZtrLHNQ87q2p6iJCUzESmBUpzWSCng_N4Mthg0bVbrlpZbgEiF1eJwMvFJIwmqBHrYEO2gK2DAyKJEFyx3R3Pme3pZ5_i5zihAhBeQ7KveoteKv73_vryb-JP0W3aXACQiE6H6P99WrjnqGb5mI9b1YjtFfMiniVI3RwMp5MP4yia4_iSglcp_kXaJm-ez_9_AsAek8b
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VKRJseLcECgwSrMCq52F7vECIR6tGbaMsilRWwzwhUuSEOGnEjt_gJ_govoQ7fiQKj-y6YOsZO-PJuWfOnfG9F6GnQgkTc6sjBmo-4rBARCqLfaRdlljnQSN4VRWbyPp9cX6eD7bQjzYWJnxW2XJiRdR2bMIe-T4jITMdpbF4NfkShapR4XS1LaFRw-LYfV2Ay1a-7L2D__cZpYcHZ2-PoqaqQGSSjM8i8N85UV7z2MS5powZkVlQ_UZY6g0zsdGc2VxZxy3PU6oI9SnxOeE-9s6GDVCg_G0OYI87aHvQOx18aLmfZ2AkbWiOSPfLcCwI7jrlUXBu0mixtvxVVQL-Jm3__ELzt2PaavU7vPG_zdtNdL3R2fh1bRi30JYrbqOdg1VYHzQ2vFbeQfN6b8VZDDZx4UKoS2FxSE0AvgUOiUjqCE-s4HKoZRH8F6yWWU1x2M7GqrJmPBpaNcXDAq_i3n5--17icq7VaAKqHsNFeGZ5F72_lCnYQZ1iXLh7CKfGpgbUkXIZ0CjXKnEi1wmBR6rUMtNFpMWJNE229lA0ZCQrr02kssaWBGzJClty0UXPl_dM6lwlG3u_CfBb9gx5xqsL4-kn2dCWZJ4pDahOQBlzC2o1EQ4Ejck0014kMMy9FnWyIb9SriDXRU-WzUBb4SxKFW48r_twAd5EvqkP_GAqCKNdtFvbw3K0IKNDskjSRWLNUtZeZ72lGH6u0qcTkqaUJzC4F61Rrcb-7_m6v_lVH6OrR2enJ_Kk1z9-gK7RYPOEwiK0hzqz6dw9RFfMxWxYTh81nIHRx8s2t18t3K2S
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFLVGHYTY8B4oDGAkWEHU-BHHWSDEMK0YDaoqBNLsgp9QqUpL007Fjt_gV_gcvoTrPFqVR3ezYGs7qePexzm2770IPZFKmphbHTFA8xEHBxGpNPaRdmlinQeM4FVVbCIdDuXZWTbaQz_aWJhwrbK1iZWhtlMT9sh7jITMdJTGsuebaxGj48HL2ZcoVJAKJ61tOY1aRE7d1xXQt_LFyTH8108pHfTfv34TNRUGIpOkfBEBl-dEec1jE2eaMmZkaoEBGGmpN8zERnNmM2UdtzwTVBHqBfEZ4T72zobNUDD_-ykD0tNB-0f94ehd6wd4CgrThulI0SvDESFQd8qjQHREtNpyhVXFgL_B3D9va_52ZFt5wsG1_3kNr6OrDf7Gr2qFuYH2XHETHfQ34X7Q2di78hZa1nsuzmLQlXMXQmAKi0PKAuAcOCQoqSM_sYLmUOMi8Bqs1tlOcdjmxqrScjwZWzXH4wJv4uF-fvte4nKp1WQGaB9DI7yzvI0-XMgSHKBOMS3cXYSFscIAalIuBfPKtUqczHRC4JVKWGa6iLQyk5smi3soJjLJKzYnRV7LWQ5ylldylq-66Nn6mVmdw2Tn6KMgiuuRIf941TCdf8obc5Yzz5QGCU8AMXMLKDaRDoCOSTXTXiYwzcNWAvPGKJb5Rvy66PG6G8xZOKNShZsu6zFcAsvIdo2BHxSSMNpFd2rdWM8W4HVIIkm6SG5pzdbnbPcU489VWnVChKA8gck9bxVsM_d_r9e93Z_6CF0GHcvfngxP76MrNKg_oeCbDlFnMV-6B-iSOV-My_nDxnxg9PGite0XyrK2LA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+aboveground+biomass+estimation+and+regional+assessment+with+aerial+lidar+in+California%E2%80%99s+subalpine+forests&rft.jtitle=Carbon+balance+and+management&rft.au=Winsemius%2C+Sara&rft.au=Babcock%2C+Chad&rft.au=Kane%2C+Van+R.&rft.au=Bormann%2C+Kat+J.&rft.date=2024-12-20&rft.pub=Springer+International+Publishing&rft.eissn=1750-0680&rft.volume=19&rft.issue=1&rft_id=info:doi/10.1186%2Fs13021-024-00286-w&rft.externalDocID=10_1186_s13021_024_00286_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-0680&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-0680&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-0680&client=summon