Protease inhibitors targeting coronavirus and filovirus entry
•We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV.•K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar range.•Potent inhibition correlated with the presence of a basic piperazine ring at P3.•Serine protease inhibitor and K11777 blocked coronavirus e...
Uloženo v:
| Vydáno v: | Antiviral research Ročník 116; s. 76 - 84 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.04.2015
Published by Elsevier B.V |
| Témata: | |
| ISSN: | 0166-3542, 1872-9096, 1872-9096 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV.•K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar range.•Potent inhibition correlated with the presence of a basic piperazine ring at P3.•Serine protease inhibitor and K11777 blocked coronavirus entry into caco-2 cells.•Camostat protected 6 out of ten mice from lethal infection with SARS-CoV.
In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics. |
|---|---|
| AbstractList | •
We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV.
•
K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar range.
•
Potent inhibition correlated with the presence of a basic piperazine ring at P3.
•
Serine protease inhibitor and K11777 blocked coronavirus entry into caco-2 cells.
•
Camostat protected 6 out of ten mice from lethal infection with SARS-CoV.
In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics. In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[( E )-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics. In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics.In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics. •We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV.•K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar range.•Potent inhibition correlated with the presence of a basic piperazine ring at P3.•Serine protease inhibitor and K11777 blocked coronavirus entry into caco-2 cells.•Camostat protected 6 out of ten mice from lethal infection with SARS-CoV. In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and potentially MERS, while vinyl sulfone-based inhibitors are excellent lead candidates for Ebola virus therapeutics. |
| Author | Simmons, Graham Zhou, Yanchen McKerrow, James H. Lu, Kai Barnard, Dale Carrion, Ricardo Vedantham, Punitha Agudelo, Juliet Nunneley, Jerritt W. Pöhlmann, Stefan Renslo, Adam R. |
| AuthorAffiliation | b Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94118, USA a Blood Systems Research Institute, San Francisco, CA 94118, USA d Texas Biomedical Research Institute, San Antonio, TX 78227, USA g Department of Pathology and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA e Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA c Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA f Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany |
| AuthorAffiliation_xml | – name: g Department of Pathology and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA – name: a Blood Systems Research Institute, San Francisco, CA 94118, USA – name: b Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94118, USA – name: c Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA – name: f Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany – name: d Texas Biomedical Research Institute, San Antonio, TX 78227, USA – name: e Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA |
| Author_xml | – sequence: 1 givenname: Yanchen surname: Zhou fullname: Zhou, Yanchen organization: Blood Systems Research Institute, San Francisco, CA 94118, USA – sequence: 2 givenname: Punitha surname: Vedantham fullname: Vedantham, Punitha organization: Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 3 givenname: Kai surname: Lu fullname: Lu, Kai organization: Blood Systems Research Institute, San Francisco, CA 94118, USA – sequence: 4 givenname: Juliet surname: Agudelo fullname: Agudelo, Juliet organization: Blood Systems Research Institute, San Francisco, CA 94118, USA – sequence: 5 givenname: Ricardo surname: Carrion fullname: Carrion, Ricardo organization: Texas Biomedical Research Institute, San Antonio, TX 78227, USA – sequence: 6 givenname: Jerritt W. surname: Nunneley fullname: Nunneley, Jerritt W. organization: Texas Biomedical Research Institute, San Antonio, TX 78227, USA – sequence: 7 givenname: Dale surname: Barnard fullname: Barnard, Dale organization: Institute for Antiviral Research, Department of Animal, Dairy and Veterinary Science, Utah State University, Logan, UT 84322, USA – sequence: 8 givenname: Stefan surname: Pöhlmann fullname: Pöhlmann, Stefan organization: Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany – sequence: 9 givenname: James H. surname: McKerrow fullname: McKerrow, James H. organization: Department of Pathology and Center for Discovery and Innovation in Parasitic Diseases, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 10 givenname: Adam R. surname: Renslo fullname: Renslo, Adam R. organization: Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA – sequence: 11 givenname: Graham surname: Simmons fullname: Simmons, Graham email: gsimmons@bloodsystems.org organization: Blood Systems Research Institute, San Francisco, CA 94118, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25666761$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUVtrFDEUDlKx2-pf0Hn0Zdbck3moUIo3KOiDPodczmyzzCY1yS703zvDtkV9WThwOOS7ke8CnaWcAKF3BK8JJvLDdm1Ti4dY7LSmmIg1JvOQF2hFtKL9gAd5hlYzUvZMcHqOLmrdYoylGvQrdE6FlFJJskJXP0puYCt0Md1FF1sutWu2bKDFtOl8LjnZ2WdfO5tCN8YpHy9IrTy8Ri9HO1V487gv0a_Pn37efO1vv3_5dnN923uheOvpQAWEOY0PetCSOMEH5bQmgmEnvLQBY8ep1aN1IRAbHNcB_OA8gGcjYZfo41H3fu92EPxibidzX-LOlgeTbTT_vqR4Zzb5YLhSXDA-C7x_FCj59x5qM7tYPUyTTZD31RDFqGZEU3YaKiWVTAu-xHr7d6znPE_fOwOujgBfcq0FRuNjsy3mJWWcDMFmqdNszXOdZqnTYDLPwlf_8Z8sTjOvj0yYazlEKKb6CMlDiAV8MyHHkxp_AMPwwco |
| CitedBy_id | crossref_primary_10_1177_1535370221999989 crossref_primary_10_1016_j_ejmech_2021_113157 crossref_primary_10_3390_v12121425 crossref_primary_10_3390_v10040152 crossref_primary_10_1039_D0RA06901A crossref_primary_10_1186_s12967_020_02476_9 crossref_primary_10_26508_lsa_202000786 crossref_primary_10_1016_j_coph_2021_08_015 crossref_primary_10_1016_j_retram_2022_103333 crossref_primary_10_1016_j_ijantimicag_2020_106119 crossref_primary_10_7554_eLife_64508 crossref_primary_10_1007_s11262_020_01737_5 crossref_primary_10_1097_MRM_0000000000000237 crossref_primary_10_1128_JVI_01387_16 crossref_primary_10_22207_JPAM_14_3_08 crossref_primary_10_1016_j_molcel_2020_04_022 crossref_primary_10_1016_j_neubiorev_2022_104606 crossref_primary_10_1016_j_virusres_2022_198845 crossref_primary_10_3389_fphar_2021_659577 crossref_primary_10_1371_journal_pcbi_1008461 crossref_primary_10_3390_app13074471 crossref_primary_10_7717_peerj_9965 crossref_primary_10_3390_jcm9061770 crossref_primary_10_1016_j_asoc_2021_107831 crossref_primary_10_1016_j_micpath_2021_105133 crossref_primary_10_1155_2022_8551576 crossref_primary_10_3389_fcell_2020_00616 crossref_primary_10_1371_journal_ppat_1009225 crossref_primary_10_1128_JVI_01564_16 crossref_primary_10_3389_fimmu_2020_01606 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1007_s00726_021_02991_z crossref_primary_10_1038_srep19033 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_1016_j_drudis_2019_01_018 crossref_primary_10_1016_j_heliyon_2021_e06350 crossref_primary_10_1111_acel_13729 crossref_primary_10_21307_PM_2020_59_3_15 crossref_primary_10_3390_ijms21155559 crossref_primary_10_1007_s11094_021_02441_w crossref_primary_10_1016_j_bioorg_2020_104326 crossref_primary_10_1002_cmdc_202000223 crossref_primary_10_1007_s40292_021_00439_9 crossref_primary_10_1097_HEP_0000000000000936 crossref_primary_10_1007_s12041_021_01262_w crossref_primary_10_26508_lsa_202302453 crossref_primary_10_4103_ijo_IJO_639_20 crossref_primary_10_1128_jvi_00851_23 crossref_primary_10_1371_journal_ppat_1009212 crossref_primary_10_1016_j_virol_2021_02_007 crossref_primary_10_1016_j_virusres_2020_198070 crossref_primary_10_1016_j_drudis_2020_01_015 crossref_primary_10_3390_pharmaceutics15092357 crossref_primary_10_1038_s41467_022_33911_8 crossref_primary_10_1007_s10930_023_10114_8 crossref_primary_10_3389_fgene_2020_607479 crossref_primary_10_3389_fchem_2021_722633 crossref_primary_10_1016_j_imu_2022_100870 crossref_primary_10_1042_BSR20212156 crossref_primary_10_3389_fpls_2020_601335 crossref_primary_10_1007_s41061_021_00335_9 crossref_primary_10_1039_D0SC05064D crossref_primary_10_1080_02713683_2023_2291749 crossref_primary_10_1016_j_antiviral_2017_06_015 crossref_primary_10_3390_v10120721 crossref_primary_10_1016_j_virusres_2021_198423 crossref_primary_10_1007_s12035_021_02399_6 crossref_primary_10_1016_j_pharmthera_2020_107587 crossref_primary_10_1128_JVI_01381_18 crossref_primary_10_1007_s42995_023_00215_9 crossref_primary_10_1016_j_asoc_2021_107135 crossref_primary_10_1080_07391102_2020_1767690 crossref_primary_10_2174_0929867327666200721161840 crossref_primary_10_1016_j_ejmech_2023_115923 crossref_primary_10_3390_molecules25215007 crossref_primary_10_1007_s40506_017_0130_z crossref_primary_10_2174_0929867328666210514122418 crossref_primary_10_1007_s00044_021_02708_7 crossref_primary_10_3390_cells9112508 crossref_primary_10_1007_s00134_020_05985_9 crossref_primary_10_3389_fmicb_2021_747347 crossref_primary_10_3390_microorganisms10071284 crossref_primary_10_1097_INF_0000000000002660 crossref_primary_10_1177_1078155220953198 crossref_primary_10_1016_j_bioorg_2024_107977 crossref_primary_10_1007_s00112_020_00910_2 crossref_primary_10_3390_catal14110787 crossref_primary_10_3389_fphys_2020_00820 crossref_primary_10_3390_v14071356 crossref_primary_10_3389_fgene_2020_00872 crossref_primary_10_1016_j_drudis_2020_12_005 crossref_primary_10_1016_j_fct_2021_112333 crossref_primary_10_3389_fmolb_2020_00204 crossref_primary_10_1016_j_chom_2020_06_020 crossref_primary_10_1080_14656566_2021_1898589 crossref_primary_10_1097_HEP_0000000000000912 crossref_primary_10_3389_fcimb_2024_1391288 crossref_primary_10_1186_s12967_020_02456_z crossref_primary_10_1038_s41591_021_01282_0 crossref_primary_10_1093_bib_bbaa362 crossref_primary_10_7554_eLife_62522 crossref_primary_10_1016_j_ebiom_2020_102907 crossref_primary_10_1089_dna_2021_0068 crossref_primary_10_1016_j_drudis_2023_103579 crossref_primary_10_1073_pnas_2007837117 crossref_primary_10_1038_s41467_025_62023_2 crossref_primary_10_1007_s11033_021_06390_1 crossref_primary_10_1007_s13205_021_02644_8 crossref_primary_10_1016_j_biochi_2020_11_004 crossref_primary_10_1371_journal_pone_0149651 crossref_primary_10_1002_med_21763 crossref_primary_10_1080_07391102_2020_1835726 crossref_primary_10_1002_rmv_2176 crossref_primary_10_1080_17460441_2022_2029843 crossref_primary_10_1016_j_ejphar_2020_173467 crossref_primary_10_3389_fphar_2021_742146 crossref_primary_10_1186_s12915_021_01086_1 crossref_primary_10_1039_D0RA05434H crossref_primary_10_1155_2022_1558860 crossref_primary_10_1016_j_antiviral_2023_105789 crossref_primary_10_1371_journal_pone_0179177 crossref_primary_10_1016_j_imu_2021_100758 crossref_primary_10_1080_17460441_2023_2192921 crossref_primary_10_1096_fba_2020_00073 crossref_primary_10_1038_s41467_020_18468_8 crossref_primary_10_3390_ijms21165707 crossref_primary_10_1038_s41591_020_0868_6 crossref_primary_10_3390_jox11020006 crossref_primary_10_1134_S0006297925601212 crossref_primary_10_1111_1753_0407_13052 crossref_primary_10_1128_JVI_00635_20 crossref_primary_10_1111_brv_12652 crossref_primary_10_3390_jnt3040014 crossref_primary_10_3389_fmed_2021_639970 crossref_primary_10_1016_j_bmc_2021_116389 crossref_primary_10_1111_all_14462 crossref_primary_10_3390_pathogens8040192 crossref_primary_10_1128_JVI_01815_18 crossref_primary_10_1016_j_tim_2015_06_003 crossref_primary_10_1097_FJC_0000000000000894 crossref_primary_10_1111_cbdd_13812 crossref_primary_10_1002_mco2_26 crossref_primary_10_1007_s00228_023_03517_0 crossref_primary_10_1007_s42247_021_00182_w crossref_primary_10_1016_j_antiviral_2023_105655 crossref_primary_10_3389_fphar_2020_595888 crossref_primary_10_1093_infdis_jiaf125 crossref_primary_10_1128_mSystems_00233_21 crossref_primary_10_2174_1381612828666220506142117 crossref_primary_10_15252_embj_2021107821 crossref_primary_10_3389_fphar_2021_660710 crossref_primary_10_47183_mes_2020_012 crossref_primary_10_1016_j_compchemeng_2022_107947 crossref_primary_10_1080_22221751_2022_2051753 crossref_primary_10_1186_s43141_021_00209_z crossref_primary_10_1016_j_bcp_2020_114225 crossref_primary_10_3390_vaccines8020335 crossref_primary_10_1111_cts_13052 crossref_primary_10_1136_gutjnl_2020_320953 crossref_primary_10_1002_uog_22186 crossref_primary_10_1073_pnas_1608147113 crossref_primary_10_1016_j_biotechadv_2017_12_016 crossref_primary_10_1089_vim_2021_0023 crossref_primary_10_1038_s41579_020_00459_7 crossref_primary_10_1080_14756366_2021_1886093 crossref_primary_10_3390_life12050642 crossref_primary_10_1016_j_jconrel_2021_07_028 crossref_primary_10_3390_microorganisms11030717 crossref_primary_10_3390_v16030462 crossref_primary_10_1146_annurev_biophys_102620_080956 crossref_primary_10_3389_fphar_2020_01196 crossref_primary_10_1371_journal_pone_0256141 crossref_primary_10_1080_07391102_2020_1798813 crossref_primary_10_1080_17460441_2019_1581171 crossref_primary_10_2217_fmb_2020_0174 crossref_primary_10_1007_s00705_021_05008_y crossref_primary_10_1080_07391102_2020_1775704 crossref_primary_10_1016_j_it_2020_02_007 crossref_primary_10_1002_slct_202302415 crossref_primary_10_3390_molecules25102271 crossref_primary_10_1186_s41231_021_00090_5 crossref_primary_10_1089_dna_2020_5703 crossref_primary_10_1128_JVI_01429_17 crossref_primary_10_1007_s11356_021_17824_5 crossref_primary_10_2174_1381612826666201023143956 crossref_primary_10_1016_j_imu_2021_100725 crossref_primary_10_1080_17460441_2023_2284201 crossref_primary_10_1080_22221751_2020_1764871 crossref_primary_10_1128_aac_00439_22 crossref_primary_10_1016_j_jmii_2020_03_034 crossref_primary_10_3389_fbioe_2022_780751 crossref_primary_10_1038_s41582_020_0398_3 crossref_primary_10_1093_bib_bbab526 crossref_primary_10_3390_ph15020153 crossref_primary_10_1096_fj_202002512 crossref_primary_10_3389_fcimb_2021_720357 crossref_primary_10_3390_ijms21093275 crossref_primary_10_1016_j_antiviral_2016_09_001 crossref_primary_10_1002_prp2_691 crossref_primary_10_1099_jmm_0_000565 crossref_primary_10_1016_j_ejmech_2022_114255 crossref_primary_10_3390_ph16060834 crossref_primary_10_1002_prp2_698 crossref_primary_10_2217_fvl_2016_0113 crossref_primary_10_1039_D4RA06510G crossref_primary_10_1039_D5MD00533G crossref_primary_10_1002_jmv_27019 crossref_primary_10_1016_j_aller_2016_10_011 crossref_primary_10_3390_v12050525 crossref_primary_10_1016_j_ijbiomac_2021_10_216 crossref_primary_10_1016_j_nantod_2021_101279 crossref_primary_10_3389_fphar_2020_593099 crossref_primary_10_3390_ijms23169089 crossref_primary_10_1016_j_antiviral_2020_104792 crossref_primary_10_1128_JVI_01430_19 crossref_primary_10_1080_03602532_2020_1770782 crossref_primary_10_1093_bib_bbaa422 crossref_primary_10_1124_molpharm_120_000119 crossref_primary_10_1007_s40265_017_0830_1 crossref_primary_10_1080_07391102_2020_1868340 crossref_primary_10_1007_s11055_021_01082_6 crossref_primary_10_1016_j_diagmicrobio_2018_10_011 crossref_primary_10_3390_molecules26010142 crossref_primary_10_1080_14712598_2020_1787981 crossref_primary_10_3390_s20154289 crossref_primary_10_1111_bcpt_13533 crossref_primary_10_7554_eLife_77444 crossref_primary_10_1007_s11255_020_02490_2 crossref_primary_10_3390_vaccines9060596 crossref_primary_10_1002_jcp_29771 crossref_primary_10_1016_j_lfs_2022_120482 crossref_primary_10_3389_fmicb_2022_1040252 crossref_primary_10_1016_j_mam_2022_101151 crossref_primary_10_3390_ph14070664 crossref_primary_10_1590_1678_9199_jvatitd_2020_0188 crossref_primary_10_3389_fmolb_2021_637550 crossref_primary_10_3389_fphys_2021_593223 crossref_primary_10_1002_cbic_202000047 crossref_primary_10_5812_pedinfect_104225 crossref_primary_10_1007_s11030_021_10209_3 crossref_primary_10_3390_pathogens9030231 crossref_primary_10_3892_ijmm_2020_4608 crossref_primary_10_4103_ijmr_IJMR_585_20 crossref_primary_10_3389_fimmu_2020_616595 crossref_primary_10_1016_j_placenta_2020_05_012 crossref_primary_10_1002_med_21724 crossref_primary_10_1038_s41467_020_20457_w crossref_primary_10_3390_cells9112343 crossref_primary_10_30802_AALAS_CM_21_000062 crossref_primary_10_1007_s11739_020_02345_9 crossref_primary_10_5005_jp_journals_10071_23415 crossref_primary_10_3389_fmolb_2021_732256 crossref_primary_10_3389_fcimb_2022_869832 crossref_primary_10_1007_s00705_022_05545_0 crossref_primary_10_1007_s11224_022_02048_1 crossref_primary_10_1016_j_coviro_2017_03_018 crossref_primary_10_3233_THC_236015 crossref_primary_10_1007_s11739_020_02383_3 crossref_primary_10_1016_j_ejphar_2020_173646 crossref_primary_10_3389_fmed_2020_00216 crossref_primary_10_3390_jpm10030080 crossref_primary_10_3390_cancers12082325 crossref_primary_10_1002_jia2_25489 crossref_primary_10_3390_v10120678 crossref_primary_10_1016_j_arabjc_2023_104984 crossref_primary_10_1016_j_ejmech_2023_116069 crossref_primary_10_3389_fmicb_2022_789882 crossref_primary_10_1128_AAC_00399_20 crossref_primary_10_3390_cells10071761 crossref_primary_10_2174_0929867328666210420103021 crossref_primary_10_1007_s00425_025_04647_8 crossref_primary_10_1016_j_ijbiomac_2021_10_144 crossref_primary_10_1080_17476348_2017_1367288 crossref_primary_10_1155_2021_8856018 crossref_primary_10_1016_j_ebiom_2021_103289 crossref_primary_10_1093_cid_ciad342 crossref_primary_10_1016_j_drup_2020_100719 crossref_primary_10_1016_j_genrep_2024_102039 crossref_primary_10_1016_j_fmre_2021_01_013 crossref_primary_10_1038_s41598_022_17506_3 crossref_primary_10_1111_bph_15072 crossref_primary_10_1016_j_meegid_2020_104669 crossref_primary_10_1038_s41467_021_21825_w crossref_primary_10_3389_fpubh_2020_00281 crossref_primary_10_1038_nrd_2015_37 crossref_primary_10_1134_S0026893325700128 crossref_primary_10_1016_j_dsx_2020_04_020 crossref_primary_10_3390_ijms21113843 crossref_primary_10_1016_j_phrs_2020_104859 crossref_primary_10_3390_ijms23094576 crossref_primary_10_1177_1098612X211048647 crossref_primary_10_1186_s40249_021_00812_9 crossref_primary_10_1097_CCE_0000000000000284 crossref_primary_10_1155_2023_6687437 crossref_primary_10_1186_s12967_022_03501_9 crossref_primary_10_1016_j_virol_2017_07_033 crossref_primary_10_1007_s10393_016_1100_5 crossref_primary_10_1016_j_jsps_2022_01_005 crossref_primary_10_1080_1061186X_2021_2013852 crossref_primary_10_1016_j_csbj_2020_07_017 crossref_primary_10_3390_pathogens9070546 crossref_primary_10_1016_j_bcp_2020_114169 crossref_primary_10_1016_j_micpath_2020_104621 crossref_primary_10_3390_cancers12082186 crossref_primary_10_1038_s42003_022_03090_9 crossref_primary_10_1080_1061186X_2020_1853736 crossref_primary_10_1080_17512433_2021_1874348 crossref_primary_10_1016_j_meegid_2021_104931 crossref_primary_10_1038_s41589_022_01094_4 crossref_primary_10_4155_fmc_2020_0147 crossref_primary_10_1093_cvr_cvaa106 crossref_primary_10_1016_j_biochi_2017_07_016 crossref_primary_10_1016_j_molstruc_2025_143523 crossref_primary_10_1186_s12967_020_02448_z crossref_primary_10_1016_j_ijbiomac_2021_01_076 crossref_primary_10_3390_v13050826 crossref_primary_10_3390_ijms22084067 crossref_primary_10_1016_j_ijpx_2025_100346 crossref_primary_10_1002_rmv_2122 crossref_primary_10_1007_s12010_020_03475_8 crossref_primary_10_3389_fcimb_2024_1355809 crossref_primary_10_1186_s12981_021_00335_1 crossref_primary_10_1038_s41598_018_34859_w crossref_primary_10_1016_j_tifs_2020_08_020 crossref_primary_10_1371_journal_ppat_1009013 crossref_primary_10_1136_bmjopen_2020_045524 crossref_primary_10_1007_s00228_020_02963_4 crossref_primary_10_2174_0929867328666210526111318 crossref_primary_10_2139_ssrn_3803364 crossref_primary_10_1016_j_coviro_2019_03_001 crossref_primary_10_1016_j_virol_2020_01_004 crossref_primary_10_1038_s41467_021_21213_4 crossref_primary_10_1016_j_apsb_2021_08_027 crossref_primary_10_3390_ph13100277 crossref_primary_10_1590_0001_3765202220211501 crossref_primary_10_1016_j_cell_2020_02_052 crossref_primary_10_1016_j_ijid_2022_06_054 crossref_primary_10_1371_journal_ppat_1006546 crossref_primary_10_3389_fgeed_2023_1231656 crossref_primary_10_1007_s40588_015_0021_3 crossref_primary_10_1038_nrmicro_2016_81 crossref_primary_10_1128_jvi_01957_23 crossref_primary_10_3390_ijms23031351 crossref_primary_10_1016_j_ebiom_2021_103255 crossref_primary_10_1186_s12915_024_01819_y crossref_primary_10_1038_s41586_020_2575_3 crossref_primary_10_1186_s13054_021_03555_z crossref_primary_10_1016_j_ajpath_2015_09_014 crossref_primary_10_1111_all_14991 crossref_primary_10_34172_bi_2020_27 crossref_primary_10_1002_btpr_3110 crossref_primary_10_1016_j_bcp_2020_114184 crossref_primary_10_1080_07391102_2020_1819881 crossref_primary_10_3390_v14061129 crossref_primary_10_1007_s40618_020_01436_w crossref_primary_10_1016_j_lfs_2020_118054 crossref_primary_10_1080_13543784_2021_1847270 crossref_primary_10_3390_antib13020032 crossref_primary_10_7554_eLife_65962 crossref_primary_10_1093_bib_bbaa404 crossref_primary_10_3389_fvets_2020_00578 crossref_primary_10_3233_TUB_211502 crossref_primary_10_3390_ph13050096 crossref_primary_10_3390_v11010059 crossref_primary_10_3389_fnano_2020_588915 crossref_primary_10_1016_j_virol_2025_110661 crossref_primary_10_3389_fmolb_2021_725528 crossref_primary_10_1016_j_ejmech_2024_116329 |
| Cites_doi | 10.1128/JVI.06628-11 10.1586/eri.12.104 10.1016/j.bmcl.2010.10.015 10.1007/s00535-009-0148-1 10.1128/JVI.01621-12 10.1056/NEJMoa1211721 10.1006/viro.1995.1016 10.1016/j.virol.2006.01.007 10.1016/j.bmcl.2007.11.070 10.1128/JVI.00094-12 10.1128/JVI.00128-13 10.1128/AAC.00734-13 10.1084/jem.188.4.725 10.1128/JVI.00560-06 10.1111/j.1537-2995.2011.03519.x 10.1016/j.antiviral.2011.07.016 10.1371/journal.pmed.0040014 10.1016/j.virol.2008.02.019 10.3762/bjoc.9.3 10.1016/j.bmcl.2006.03.001 10.1128/JVI.01244-13 10.1128/JVI.02232-10 10.1056/NEJMoa1303729 10.1016/S0090-9556(24)15083-0 10.1128/JVI.05300-11 10.1128/JVI.03372-12 10.1128/AAC.49.12.5160-5161.2005 10.1073/pnas.0306446101 10.1128/JVI.00554-10 10.1016/j.virol.2011.11.031 10.1016/S0190-9622(88)70130-9 10.1128/JVI.01183-13 10.1021/jm00017a002 10.1016/S0968-0896(02)00173-6 10.1371/journal.pntd.0001023 10.1016/j.virol.2009.07.013 10.1128/jvi.76.5.2518-2528.2002 10.1016/j.antiviral.2013.09.028 10.1073/pnas.0505577102 10.1016/j.virol.2009.09.023 10.1128/JVI.06346-11 10.1021/jm058198r 10.1016/j.antiviral.2011.02.003 |
| ContentType | Journal Article |
| Copyright | 2015 Copyright © 2015. Published by Elsevier B.V. Copyright © 2015 Published by Elsevier B.V. 2015 |
| Copyright_xml | – notice: 2015 – notice: Copyright © 2015. Published by Elsevier B.V. – notice: Copyright © 2015 Published by Elsevier B.V. 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T7 7U9 8FD C1K F1W FR3 H94 H95 H97 L.G P64 5PM |
| DOI | 10.1016/j.antiviral.2015.01.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Biology |
| EISSN | 1872-9096 |
| EndPage | 84 |
| ExternalDocumentID | PMC4774534 25666761 10_1016_j_antiviral_2015_01_011 S0166354215000248 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01AI074986 – fundername: NIAID NIH HHS grantid: R21 AI107165 – fundername: NIAID NIH HHS grantid: HHSN272201000039C – fundername: NIAID NIH HHS grantid: R01 AI074986 – fundername: NIAID NIH HHS grantid: R21AI107165 – fundername: NIAID NIH HHS grantid: HHSN272201000039I |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATCM AAXUO ABBQC ABFNM ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSP SSZ T5K TEORI WUQ ZGI ZXP ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7T7 7U9 8FD C1K F1W FR3 H94 H95 H97 L.G P64 5PM |
| ID | FETCH-LOGICAL-c574t-2925ed016cd89861b5497b881530b5c6ad00b42a8fabdd1adb48dec9bceec3f13 |
| ISICitedReferencesCount | 437 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000351802900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0166-3542 1872-9096 |
| IngestDate | Tue Sep 30 16:56:23 EDT 2025 Tue Oct 07 09:26:42 EDT 2025 Sun Sep 28 10:36:00 EDT 2025 Wed Feb 19 02:28:37 EST 2025 Sat Nov 29 07:53:03 EST 2025 Tue Nov 18 21:17:02 EST 2025 Fri Feb 23 02:28:28 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cathepsin Coronavirus Filovirus Vinylsulfones |
| Language | English |
| License | Copyright © 2015. Published by Elsevier B.V. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c574t-2925ed016cd89861b5497b881530b5c6ad00b42a8fabdd1adb48dec9bceec3f13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Skaggs School of Pharmacy and Pharmaceutical Sciences UCSD, San Diego, CA, USA. |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4774534 |
| PMID | 25666761 |
| PQID | 1662638541 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4774534 proquest_miscellaneous_1732831823 proquest_miscellaneous_1662638541 pubmed_primary_25666761 crossref_citationtrail_10_1016_j_antiviral_2015_01_011 crossref_primary_10_1016_j_antiviral_2015_01_011 elsevier_sciencedirect_doi_10_1016_j_antiviral_2015_01_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-04-01 |
| PublicationDateYYYYMMDD | 2015-04-01 |
| PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Antiviral research |
| PublicationTitleAlternate | Antiviral Res |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V Published by Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V – name: Published by Elsevier B.V |
| References | Ikeda, Manabe, Muramatsu, Takamori, Ogawa (b0090) 1988; 18 Jacobsen, Christians, Benet (b0095) 2000; 28 Hofmann, Simmons, Rennekamp, Chaipan, Gramberg (b0085) 2006; 80 Steffen, Liss, Schneider, Fair, Chiu (b0190) 2013; 87 Sai, Suyama, Kubokawa, Matsumura, Inami (b0155) 2010; 45 Jaishankar, Hansell, Zhao, Doyle, McKerrow (b0100) 2008; 18 Ang, Ratnam, Gut, Legac, Hansell (b0010) 2011; 5 Engel, Doyle, Hsieh, McKerrow (b0065) 1998; 188 Zhou, Simmons (b0210) 2012; 10 Zhou, Steffen, Montalvo, Lee, Zemel (b0225) 2012; 52 Choy, Bryant, Calvet, Doyle, Gunatilleke (b0035) 2013; 9 Ndao, Nath-Chowdhury, Sajid, Marcus, Mashiyama (b0125) 2013; 57 Misasi, Chandran, Yang, Considine, Filone (b0120) 2012; 86 Pager, Craft, Patch, Dutch (b0130) 2006; 346 Bertram, Dijkman, Habjan, Heurich, Gierer (b0030) 2013; 87 Zhou, Agudelo, Lu, Goetz, Hansell (b0220) 2011; 92 Fiopan® Tablets [package insert]. Ono Pharmaceutical Co., Ltd, Chuo-ku, Osaka, Japan; August 2009. Diederich, Thiel, Maisner (b0055) 2008; 375 Glowacka, Bertram, Muller, Allen, Soilleux (b0075) 2011; 85 Simmons, Gosalia, Rennekamp, Reeves, Diamond (b0180) 2005; 102 Gnirss, Kuhl, Karsten, Glowacka, Bertram (b0080) 2012; 424 Palmer, Bryant, Wang, Davis, Setti (b0140) 2005; 48 Memish, Zumla, Al-Hakeem, Al-Rabeeah, Stephens (b0115) 2013; 368 Zhou, Lu, Pfefferle, Bertram, Glowacka (b0215) 2010; 84 Salvador, Zhou, Michault, Muench, Simmons (b0160) 2009; 393 Palmer, Hirschbein, Cheung, McCarter, Janc (b0145) 2006; 16 Rydzewski, Bryant, Oballa, Wesolowski, Rodan (b0150) 2002; 10 Gierer, Bertram, Kaup, Wrensch, Heurich (b0070) 2013; 87 Kawase, Shirato, van der Hoek, Taguchi, Matsuyama (b0105) 2012; 86 Connor, Chen, Choe, Landau (b0040) 1995; 206 Diederich, Sauerhering, Weis, Altmeppen, Schaschke (b0060) 2012; 86 Simmons, Reeves, Rennekamp, Amberg, Piefer (b0175) 2004; 101 Bertram, Glowacka, Muller, Lavender, Gnirss (b0025) 2011; 85 Beaulieu, Isabel, Fortier, Masse, Mellon (b0020) 2010; 20 Palmer, Rasnick, Klaus, Bromme (b0135) 1995; 38 Simmons, Wool-Lewis, Baribaud, Netter, Bates (b0170) 2002; 76 Barr, Warner, Kornreic, Piscitelli, Wolfe (b0015) 2005; 49 Abdulla, Lim, Sajid, McKerrow, Caffrey (b0005) 2007; 4 de Groot, Baker, Baric, Brown, Drosten (b0050) 2013; 87 Zaki, van Boheemen, Bestebroer, Osterhaus, Fouchier (b0200) 2012; 367 Kumaki, Wandersee, Smith, Zhou, Simmons (b0110) 2011; 90 Day, Baric, Cai, Frieman, Kumaki (b0045) 2009; 395 Salvador, Sexton, Carrion, Nunneley, Patterson (b0165) 2013; 87 Simmons, Zmora, Gierer, Heurich, Pohlmann (b0185) 2013; 100 Day (10.1016/j.antiviral.2015.01.011_b0045) 2009; 395 Ndao (10.1016/j.antiviral.2015.01.011_b0125) 2013; 57 Bertram (10.1016/j.antiviral.2015.01.011_b0025) 2011; 85 Hofmann (10.1016/j.antiviral.2015.01.011_b0085) 2006; 80 Ikeda (10.1016/j.antiviral.2015.01.011_b0090) 1988; 18 Palmer (10.1016/j.antiviral.2015.01.011_b0145) 2006; 16 Diederich (10.1016/j.antiviral.2015.01.011_b0055) 2008; 375 Barr (10.1016/j.antiviral.2015.01.011_b0015) 2005; 49 Sai (10.1016/j.antiviral.2015.01.011_b0155) 2010; 45 Simmons (10.1016/j.antiviral.2015.01.011_b0180) 2005; 102 Abdulla (10.1016/j.antiviral.2015.01.011_b0005) 2007; 4 Kumaki (10.1016/j.antiviral.2015.01.011_b0110) 2011; 90 Simmons (10.1016/j.antiviral.2015.01.011_b0175) 2004; 101 Simmons (10.1016/j.antiviral.2015.01.011_b0170) 2002; 76 10.1016/j.antiviral.2015.01.011_b0195 Ang (10.1016/j.antiviral.2015.01.011_b0010) 2011; 5 Choy (10.1016/j.antiviral.2015.01.011_b0035) 2013; 9 Connor (10.1016/j.antiviral.2015.01.011_b0040) 1995; 206 Zaki (10.1016/j.antiviral.2015.01.011_b0200) 2012; 367 Misasi (10.1016/j.antiviral.2015.01.011_b0120) 2012; 86 Pager (10.1016/j.antiviral.2015.01.011_b0130) 2006; 346 Simmons (10.1016/j.antiviral.2015.01.011_b0185) 2013; 100 Zhou (10.1016/j.antiviral.2015.01.011_b0225) 2012; 52 Diederich (10.1016/j.antiviral.2015.01.011_b0060) 2012; 86 Kawase (10.1016/j.antiviral.2015.01.011_b0105) 2012; 86 Engel (10.1016/j.antiviral.2015.01.011_b0065) 1998; 188 Palmer (10.1016/j.antiviral.2015.01.011_b0140) 2005; 48 Zhou (10.1016/j.antiviral.2015.01.011_b0220) 2011; 92 Zhou (10.1016/j.antiviral.2015.01.011_b0215) 2010; 84 Beaulieu (10.1016/j.antiviral.2015.01.011_b0020) 2010; 20 Gnirss (10.1016/j.antiviral.2015.01.011_b0080) 2012; 424 Glowacka (10.1016/j.antiviral.2015.01.011_b0075) 2011; 85 Rydzewski (10.1016/j.antiviral.2015.01.011_b0150) 2002; 10 Jacobsen (10.1016/j.antiviral.2015.01.011_b0095) 2000; 28 Steffen (10.1016/j.antiviral.2015.01.011_b0190) 2013; 87 Zhou (10.1016/j.antiviral.2015.01.011_b0210) 2012; 10 Gierer (10.1016/j.antiviral.2015.01.011_b0070) 2013; 87 Jaishankar (10.1016/j.antiviral.2015.01.011_b0100) 2008; 18 Salvador (10.1016/j.antiviral.2015.01.011_b0165) 2013; 87 Salvador (10.1016/j.antiviral.2015.01.011_b0160) 2009; 393 de Groot (10.1016/j.antiviral.2015.01.011_b0050) 2013; 87 Memish (10.1016/j.antiviral.2015.01.011_b0115) 2013; 368 Palmer (10.1016/j.antiviral.2015.01.011_b0135) 1995; 38 Bertram (10.1016/j.antiviral.2015.01.011_b0030) 2013; 87 |
| References_xml | – volume: 206 start-page: 935 year: 1995 end-page: 944 ident: b0040 article-title: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes publication-title: Virology – volume: 45 start-page: 335 year: 2010 end-page: 341 ident: b0155 article-title: Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease publication-title: J. Gastroenterol. – volume: 92 start-page: 187 year: 2011 end-page: 194 ident: b0220 article-title: Inhibitors of SARS-CoV entry – identification using an internally-controlled dual envelope pseudovirion assay publication-title: Antiviral Res. – volume: 20 start-page: 7444 year: 2010 end-page: 7449 ident: b0020 article-title: Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease publication-title: Bioorg. Med. Chem. Lett. – volume: 368 start-page: 2487 year: 2013 end-page: 2494 ident: b0115 article-title: Family cluster of Middle East respiratory syndrome coronavirus infections publication-title: N. Engl. J. Med. – volume: 38 start-page: 3193 year: 1995 end-page: 3196 ident: b0135 article-title: Vinyl sulfones as mechanism-based cysteine protease inhibitors publication-title: J. Med. Chem. – volume: 90 start-page: 22 year: 2011 end-page: 32 ident: b0110 article-title: Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin publication-title: Antiviral Res. – volume: 188 start-page: 725 year: 1998 end-page: 734 ident: b0065 article-title: Cysteine protease inhibitors cure an experimental publication-title: J. Exp. Med. – volume: 4 start-page: e14 year: 2007 ident: b0005 article-title: Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor publication-title: PLoS Med. – volume: 48 start-page: 7520 year: 2005 end-page: 7534 ident: b0140 article-title: Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K publication-title: J. Med. Chem. – volume: 10 start-page: 3277 year: 2002 end-page: 3284 ident: b0150 article-title: Peptidic 1-cyanopyrrolidines: synthesis and SAR of a series of potent, selective cathepsin inhibitors publication-title: Bioorg. Med. Chem. – volume: 52 start-page: 332 year: 2012 end-page: 342 ident: b0225 article-title: Development and application of a high-throughput microneutralization assay: lack of xenotropic murine leukemia virus-related virus and/or murine leukemia virus detection in blood donors publication-title: Transfusion – volume: 86 start-page: 3736 year: 2012 end-page: 3745 ident: b0060 article-title: Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment publication-title: J. Virol. – volume: 28 start-page: 1343 year: 2000 end-page: 1351 ident: b0095 article-title: In vitro evaluation of the disposition of a novel cysteine protease inhibitor publication-title: Drug Metab. Dispos. – volume: 87 start-page: 3295 year: 2013 end-page: 3304 ident: b0165 article-title: Filoviruses utilize glycosaminoglycans for their attachment to target cells publication-title: J. Virol. – reference: Fiopan® Tablets [package insert]. Ono Pharmaceutical Co., Ltd, Chuo-ku, Osaka, Japan; August 2009. – volume: 395 start-page: 210 year: 2009 end-page: 222 ident: b0045 article-title: A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo publication-title: Virology – volume: 84 start-page: 8753 year: 2010 end-page: 8764 ident: b0215 article-title: A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms publication-title: J. Virol. – volume: 49 start-page: 5160 year: 2005 end-page: 5161 ident: b0015 article-title: A cysteine protease inhibitor protects dogs from cardiac damage during infection by publication-title: Antimicrob. Agents Chemother. – volume: 424 start-page: 3 year: 2012 end-page: 10 ident: b0080 article-title: Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression publication-title: Virology – volume: 18 start-page: 1246 year: 1988 end-page: 1252 ident: b0090 article-title: Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa. In vitro effect and clinical trial with camostat mesylate publication-title: J. Am. Acad. Dermatol. – volume: 86 start-page: 3284 year: 2012 end-page: 3292 ident: b0120 article-title: Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences publication-title: J. Virol. – volume: 80 start-page: 8639 year: 2006 end-page: 8652 ident: b0085 article-title: Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors publication-title: J. Virol. – volume: 367 start-page: 1814 year: 2012 end-page: 1820 ident: b0200 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. – volume: 87 start-page: 5502 year: 2013 end-page: 5511 ident: b0070 article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies publication-title: J. Virol. – volume: 9 start-page: 15 year: 2013 end-page: 25 ident: b0035 article-title: Chemical-biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target publication-title: Beilstein J. Org. Chem. – volume: 85 start-page: 4122 year: 2011 end-page: 4134 ident: b0075 article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response publication-title: J. Virol. – volume: 101 start-page: 4240 year: 2004 end-page: 4245 ident: b0175 article-title: Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 87 start-page: 9558 year: 2013 end-page: 9568 ident: b0190 article-title: Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses publication-title: J. Virol. – volume: 10 start-page: 1129 year: 2012 end-page: 1138 ident: b0210 article-title: Development of novel entry inhibitors targeting emerging viruses publication-title: Expert Rev. Anti Infect. Ther. – volume: 393 start-page: 33 year: 2009 end-page: 41 ident: b0160 article-title: Characterization of Chikungunya pseudotyped viruses: identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein publication-title: Virology – volume: 375 start-page: 391 year: 2008 end-page: 400 ident: b0055 article-title: Role of endocytosis and cathepsin-mediated activation in Nipah virus entry publication-title: Virology – volume: 16 start-page: 2909 year: 2006 end-page: 2914 ident: b0145 article-title: Keto-1,3,4-oxadiazoles as cathepsin K inhibitors publication-title: Bioorg. Med. Chem. Lett. – volume: 76 start-page: 2518 year: 2002 end-page: 2528 ident: b0170 article-title: Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence publication-title: J. Virol. – volume: 5 start-page: e1023 year: 2011 ident: b0010 article-title: Mining a cathepsin inhibitor library for new antiparasitic drug leads publication-title: PLoS Negl. Trop. Dis. – volume: 87 start-page: 6150 year: 2013 end-page: 6160 ident: b0030 article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium publication-title: J. Virol. – volume: 85 start-page: 13363 year: 2011 end-page: 13372 ident: b0025 article-title: Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease publication-title: J. Virol. – volume: 87 start-page: 7790 year: 2013 end-page: 7792 ident: b0050 article-title: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group publication-title: J. Virol. – volume: 346 start-page: 251 year: 2006 end-page: 257 ident: b0130 article-title: A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L publication-title: Virology – volume: 100 start-page: 605 year: 2013 end-page: 614 ident: b0185 article-title: Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research publication-title: Antiviral Res. – volume: 57 start-page: 6063 year: 2013 end-page: 6073 ident: b0125 article-title: A cysteine protease inhibitor rescues mice from a lethal publication-title: Antimicrob. Agents Chemother. – volume: 18 start-page: 624 year: 2008 end-page: 628 ident: b0100 article-title: Potency and selectivity of P2/P3-modified inhibitors of cysteine proteases from trypanosomes publication-title: Bioorg. Med. Chem. Lett. – volume: 86 start-page: 6537 year: 2012 end-page: 6545 ident: b0105 article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry publication-title: J. Virol. – volume: 102 start-page: 11876 year: 2005 end-page: 11881 ident: b0180 article-title: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 86 start-page: 3736 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0060 article-title: Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment publication-title: J. Virol. doi: 10.1128/JVI.06628-11 – volume: 10 start-page: 1129 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0210 article-title: Development of novel entry inhibitors targeting emerging viruses publication-title: Expert Rev. Anti Infect. Ther. doi: 10.1586/eri.12.104 – volume: 20 start-page: 7444 year: 2010 ident: 10.1016/j.antiviral.2015.01.011_b0020 article-title: Identification of potent and reversible cruzipain inhibitors for the treatment of Chagas disease publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.10.015 – volume: 45 start-page: 335 year: 2010 ident: 10.1016/j.antiviral.2015.01.011_b0155 article-title: Efficacy of camostat mesilate against dyspepsia associated with non-alcoholic mild pancreatic disease publication-title: J. Gastroenterol. doi: 10.1007/s00535-009-0148-1 – volume: 87 start-page: 3295 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0165 article-title: Filoviruses utilize glycosaminoglycans for their attachment to target cells publication-title: J. Virol. doi: 10.1128/JVI.01621-12 – volume: 367 start-page: 1814 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0200 article-title: Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211721 – volume: 206 start-page: 935 year: 1995 ident: 10.1016/j.antiviral.2015.01.011_b0040 article-title: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes publication-title: Virology doi: 10.1006/viro.1995.1016 – volume: 346 start-page: 251 year: 2006 ident: 10.1016/j.antiviral.2015.01.011_b0130 article-title: A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L publication-title: Virology doi: 10.1016/j.virol.2006.01.007 – volume: 18 start-page: 624 year: 2008 ident: 10.1016/j.antiviral.2015.01.011_b0100 article-title: Potency and selectivity of P2/P3-modified inhibitors of cysteine proteases from trypanosomes publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2007.11.070 – volume: 86 start-page: 6537 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0105 article-title: Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry publication-title: J. Virol. doi: 10.1128/JVI.00094-12 – volume: 87 start-page: 5502 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0070 article-title: The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies publication-title: J. Virol. doi: 10.1128/JVI.00128-13 – volume: 57 start-page: 6063 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0125 article-title: A cysteine protease inhibitor rescues mice from a lethal Cryptosporidium parvum infection publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.00734-13 – volume: 188 start-page: 725 year: 1998 ident: 10.1016/j.antiviral.2015.01.011_b0065 article-title: Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection publication-title: J. Exp. Med. doi: 10.1084/jem.188.4.725 – volume: 80 start-page: 8639 year: 2006 ident: 10.1016/j.antiviral.2015.01.011_b0085 article-title: Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors publication-title: J. Virol. doi: 10.1128/JVI.00560-06 – volume: 52 start-page: 332 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0225 article-title: Development and application of a high-throughput microneutralization assay: lack of xenotropic murine leukemia virus-related virus and/or murine leukemia virus detection in blood donors publication-title: Transfusion doi: 10.1111/j.1537-2995.2011.03519.x – volume: 92 start-page: 187 year: 2011 ident: 10.1016/j.antiviral.2015.01.011_b0220 article-title: Inhibitors of SARS-CoV entry – identification using an internally-controlled dual envelope pseudovirion assay publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2011.07.016 – volume: 4 start-page: e14 year: 2007 ident: 10.1016/j.antiviral.2015.01.011_b0005 article-title: Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor publication-title: PLoS Med. doi: 10.1371/journal.pmed.0040014 – volume: 375 start-page: 391 year: 2008 ident: 10.1016/j.antiviral.2015.01.011_b0055 article-title: Role of endocytosis and cathepsin-mediated activation in Nipah virus entry publication-title: Virology doi: 10.1016/j.virol.2008.02.019 – volume: 9 start-page: 15 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0035 article-title: Chemical-biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.9.3 – volume: 16 start-page: 2909 year: 2006 ident: 10.1016/j.antiviral.2015.01.011_b0145 article-title: Keto-1,3,4-oxadiazoles as cathepsin K inhibitors publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2006.03.001 – volume: 87 start-page: 7790 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0050 article-title: Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group publication-title: J. Virol. doi: 10.1128/JVI.01244-13 – volume: 85 start-page: 4122 year: 2011 ident: 10.1016/j.antiviral.2015.01.011_b0075 article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response publication-title: J. Virol. doi: 10.1128/JVI.02232-10 – volume: 368 start-page: 2487 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0115 article-title: Family cluster of Middle East respiratory syndrome coronavirus infections publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1303729 – volume: 28 start-page: 1343 year: 2000 ident: 10.1016/j.antiviral.2015.01.011_b0095 article-title: In vitro evaluation of the disposition of a novel cysteine protease inhibitor publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(24)15083-0 – volume: 85 start-page: 13363 year: 2011 ident: 10.1016/j.antiviral.2015.01.011_b0025 article-title: Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease publication-title: J. Virol. doi: 10.1128/JVI.05300-11 – volume: 87 start-page: 6150 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0030 article-title: TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium publication-title: J. Virol. doi: 10.1128/JVI.03372-12 – volume: 49 start-page: 5160 year: 2005 ident: 10.1016/j.antiviral.2015.01.011_b0015 article-title: A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.49.12.5160-5161.2005 – volume: 101 start-page: 4240 year: 2004 ident: 10.1016/j.antiviral.2015.01.011_b0175 article-title: Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0306446101 – volume: 84 start-page: 8753 year: 2010 ident: 10.1016/j.antiviral.2015.01.011_b0215 article-title: A single asparagine-linked glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein facilitates inhibition by mannose-binding lectin through multiple mechanisms publication-title: J. Virol. doi: 10.1128/JVI.00554-10 – volume: 424 start-page: 3 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0080 article-title: Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression publication-title: Virology doi: 10.1016/j.virol.2011.11.031 – volume: 18 start-page: 1246 year: 1988 ident: 10.1016/j.antiviral.2015.01.011_b0090 article-title: Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa. In vitro effect and clinical trial with camostat mesylate publication-title: J. Am. Acad. Dermatol. doi: 10.1016/S0190-9622(88)70130-9 – volume: 87 start-page: 9558 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0190 article-title: Characterization of the Bas-Congo virus glycoprotein and its function in pseudotyped viruses publication-title: J. Virol. doi: 10.1128/JVI.01183-13 – volume: 38 start-page: 3193 year: 1995 ident: 10.1016/j.antiviral.2015.01.011_b0135 article-title: Vinyl sulfones as mechanism-based cysteine protease inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm00017a002 – volume: 10 start-page: 3277 year: 2002 ident: 10.1016/j.antiviral.2015.01.011_b0150 article-title: Peptidic 1-cyanopyrrolidines: synthesis and SAR of a series of potent, selective cathepsin inhibitors publication-title: Bioorg. Med. Chem. doi: 10.1016/S0968-0896(02)00173-6 – volume: 5 start-page: e1023 year: 2011 ident: 10.1016/j.antiviral.2015.01.011_b0010 article-title: Mining a cathepsin inhibitor library for new antiparasitic drug leads publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0001023 – volume: 393 start-page: 33 year: 2009 ident: 10.1016/j.antiviral.2015.01.011_b0160 article-title: Characterization of Chikungunya pseudotyped viruses: identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein publication-title: Virology doi: 10.1016/j.virol.2009.07.013 – volume: 76 start-page: 2518 year: 2002 ident: 10.1016/j.antiviral.2015.01.011_b0170 article-title: Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence publication-title: J. Virol. doi: 10.1128/jvi.76.5.2518-2528.2002 – ident: 10.1016/j.antiviral.2015.01.011_b0195 – volume: 100 start-page: 605 year: 2013 ident: 10.1016/j.antiviral.2015.01.011_b0185 article-title: Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2013.09.028 – volume: 102 start-page: 11876 year: 2005 ident: 10.1016/j.antiviral.2015.01.011_b0180 article-title: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0505577102 – volume: 395 start-page: 210 year: 2009 ident: 10.1016/j.antiviral.2015.01.011_b0045 article-title: A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo publication-title: Virology doi: 10.1016/j.virol.2009.09.023 – volume: 86 start-page: 3284 year: 2012 ident: 10.1016/j.antiviral.2015.01.011_b0120 article-title: Filoviruses require endosomal cysteine proteases for entry but exhibit distinct protease preferences publication-title: J. Virol. doi: 10.1128/JVI.06346-11 – volume: 48 start-page: 7520 year: 2005 ident: 10.1016/j.antiviral.2015.01.011_b0140 article-title: Design and synthesis of tri-ring P3 benzamide-containing aminonitriles as potent, selective, orally effective inhibitors of cathepsin K publication-title: J. Med. Chem. doi: 10.1021/jm058198r – volume: 90 start-page: 22 year: 2011 ident: 10.1016/j.antiviral.2015.01.011_b0110 article-title: Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2011.02.003 |
| SSID | ssj0006798 |
| Score | 2.6114604 |
| Snippet | •We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV.•K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar... In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their... • We identify vinylsulfones as lead candidate inhibitors of Ebola virus and SARS-CoV. • K11777 inhibited Ebola virus and SARS-CoV entry in the sub-nanomolar... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 76 |
| SubjectTerms | Animals Antiviral Agents - pharmacology Cathepsin Cathepsins - metabolism Cell Line, Tumor Coronavirus Coronavirus - drug effects Coronavirus - physiology Coronavirus Infections - drug therapy Dipeptides - pharmacology Ebola virus Ebolavirus - drug effects Ebolavirus - physiology Filoviridae - drug effects Filoviridae - physiology Filovirus Gabexate - analogs & derivatives Gabexate - pharmacology Humans Mice Mice, Inbred BALB C Protease Inhibitors - pharmacology SARS coronavirus SARS Virus - drug effects SARS Virus - physiology Serine Endopeptidases - metabolism Serine Proteinase Inhibitors - pharmacology Vinyl Compounds - pharmacology Vinylsulfones Virus Internalization - drug effects |
| Title | Protease inhibitors targeting coronavirus and filovirus entry |
| URI | https://dx.doi.org/10.1016/j.antiviral.2015.01.011 https://www.ncbi.nlm.nih.gov/pubmed/25666761 https://www.proquest.com/docview/1662638541 https://www.proquest.com/docview/1732831823 https://pubmed.ncbi.nlm.nih.gov/PMC4774534 |
| Volume | 116 |
| WOSCitedRecordID | wos000351802900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9096 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006798 issn: 0166-3542 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYBogXBOOrfExBQrygoHw5tnmrUCdApfShQ3mz4tihmaa0tM00_nvOsesmMNh4QKrSNo2bxPfL3fl8_h1Cr7AgcSwx9gMpCh8sfumLAgs_JPCmIs3Q3pK4jslkQrOMTW1V1HVbToDUNb24YMv_KmrYB8LWS2f_QdzuT2EHfAahwxbEDttrCX6qmRfANr2p6nklqraajsn3NutrV-B7n1erxpAzl9XZwnxrS4x0fdVhrStLrFrm_07Mq40yL5pWdwNk5ru1ZF-VBDnZhdfTBpTF3Cn9cWNyNyqHsG-NVHbepwFHeNONP4S4k7ZiQ5Jp6sc46evUsKsVSdq1r8mlmtsEEU7f5tt702l3hlLVauMeV_bkCz8-GY_5bJTNXi-_-7qMmJ5utzVV9tBBRDADNXcw_DjKPjnjrCedDN27ueheyt-l5_6Tw_L7gOTXvNqOozK7h-7aEYY3NMi4j26o-hDdMjVHfxyi259tNsUD5KDi7aDiOah4Hah4ABXPQcVrofIQnRyPZu8_-Lachl9gkmz8iEVYSbjTQlJG01DghBFBKdi8QOAizWUQiCTKaZkLKcNcioRKVTABflQRl2H8CO3Xi1o9QR7VvHA0lizIy0SFSqS4YCVTEdH0dyUboHTbZ7ywXPO65MkZ3yYVnnLX2Vx3Ng9CeIUDFLiGS0O3cnWTd1uhcOs1Gm-QA7SubvxyK0YOelVPluW1WjRrDgCJwDbh5G_HaKYrMIpRPECPjejdVcNQQqePQ2vSA4U7QPO693-pq3nL757AkAzHydNrnPcZurN7Jp-j_c2qUS_QzeJ8U61XR2iPZPTIPgI_Af3_yP4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protease+inhibitors+targeting+coronavirus+and+filovirus+entry&rft.jtitle=Antiviral+research&rft.au=Zhou%2C+Yanchen&rft.au=Vedantham%2C+Punitha&rft.au=Lu%2C+Kai&rft.au=Agudelo%2C+Juliet&rft.date=2015-04-01&rft.issn=0166-3542&rft.volume=116&rft.spage=76&rft.epage=84&rft_id=info:doi/10.1016%2Fj.antiviral.2015.01.011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon |