Removing technical variability in RNA-seq data using conditional quantile normalization

The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biostatistics (Oxford, England) Ročník 13; číslo 2; s. 204
Hlavní autoři: Hansen, Kasper D, Irizarry, Rafael A, Wu, Zhijin
Médium: Journal Article
Jazyk:angličtina
Vydáno: England 01.04.2012
Témata:
ISSN:1468-4357, 1468-4357
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.
AbstractList The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.
Author Irizarry, Rafael A
Wu, Zhijin
Hansen, Kasper D
Author_xml – sequence: 1
  givenname: Kasper D
  surname: Hansen
  fullname: Hansen, Kasper D
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
– sequence: 2
  givenname: Rafael A
  surname: Irizarry
  fullname: Irizarry, Rafael A
– sequence: 3
  givenname: Zhijin
  surname: Wu
  fullname: Wu, Zhijin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22285995$$D View this record in MEDLINE/PubMed
BookMark eNpN0EtLw0AUBeBBFPvQfyCSnavYeWQyk2UpvqAoFMVluJnc6mgy02YmxfrrbbGCq3vgfJzFHZFj5x0ScsHoNaOFmFTWhwjRhmhNmHx-dVRmR2TIslynmZDq-F8ekFEIH5RyLnJxSgaccy2LQg7J6wJbv7HuLYlo3p010CQb6CxUtrFxm1iXLB6nacB1UkOEpA97a7yrbbTe7fS6Bxdtg4nzXQuN_YZ9cUZOltAEPD_cMXm5vXme3afzp7uH2XSeGqlETLFChsgY1dQAy4xhsKwLlWOl8yVVKCBnxhSoagpaQy0zzVWmtDQSc2OAj8nV7-6q8-seQyxbGww2DTj0fSgLrrQQmoudvDzIvmqxLledbaHbln-_4D-WzGjJ
CitedBy_id crossref_primary_10_1038_s41467_020_18526_1
crossref_primary_10_1371_journal_pone_0192517
crossref_primary_10_1084_jem_20191869
crossref_primary_10_1111_biom_12548
crossref_primary_10_1016_j_immuni_2021_03_021
crossref_primary_10_1093_hmg_ddy001
crossref_primary_10_1186_s13059_019_1866_1
crossref_primary_10_1038_s41593_021_00858_w
crossref_primary_10_1371_journal_pone_0294308
crossref_primary_10_1109_JBHI_2019_2953978
crossref_primary_10_1038_s41514_025_00258_5
crossref_primary_10_1007_s12561_024_09446_5
crossref_primary_10_1007_s12035_021_02680_8
crossref_primary_10_3390_app13042403
crossref_primary_10_1186_s12859_015_0510_7
crossref_primary_10_1038_s41467_020_14483_x
crossref_primary_10_1094_MPMI_06_16_0116_R
crossref_primary_10_1186_s13059_015_0847_2
crossref_primary_10_1038_s41586_018_0623_z
crossref_primary_10_1371_journal_pone_0077885
crossref_primary_10_1158_1078_0432_CCR_12_3937
crossref_primary_10_1038_s41467_019_09964_7
crossref_primary_10_4137_CIN_S21631
crossref_primary_10_1186_s13059_016_0927_y
crossref_primary_10_1038_s41598_024_75250_2
crossref_primary_10_1371_journal_pone_0165015
crossref_primary_10_1016_j_ygcen_2016_02_019
crossref_primary_10_1038_ncomms14532
crossref_primary_10_1038_gene_2016_34
crossref_primary_10_1371_journal_pgen_1004549
crossref_primary_10_1038_s41597_019_0202_7
crossref_primary_10_1155_2021_8880585
crossref_primary_10_3389_fgene_2021_612670
crossref_primary_10_1186_s13024_018_0261_9
crossref_primary_10_1038_s41380_023_02372_w
crossref_primary_10_1038_s41598_017_16747_x
crossref_primary_10_3390_genes12030352
crossref_primary_10_3389_fmolb_2022_907150
crossref_primary_10_1016_j_jtho_2022_11_006
crossref_primary_10_1073_pnas_1305823110
crossref_primary_10_1038_s41593_022_01127_0
crossref_primary_10_1038_ng_2870
crossref_primary_10_3389_fimmu_2020_603337
crossref_primary_10_3390_v17091154
crossref_primary_10_1371_journal_pone_0120117
crossref_primary_10_1093_bib_bbab262
crossref_primary_10_1371_journal_pcbi_1004791
crossref_primary_10_1038_s41598_019_51056_5
crossref_primary_10_3389_fimmu_2020_580219
crossref_primary_10_3389_fmicb_2018_01845
crossref_primary_10_1038_s41588_021_00924_w
crossref_primary_10_1186_s40478_019_0797_0
crossref_primary_10_3389_fimmu_2022_896627
crossref_primary_10_1126_sciimmunol_aah4569
crossref_primary_10_7717_peerj_16126
crossref_primary_10_1371_journal_pone_0061088
crossref_primary_10_1093_nar_gkx199
crossref_primary_10_4014_jmb_2304_04005
crossref_primary_10_1016_j_cell_2016_09_006
crossref_primary_10_1016_j_celrep_2023_112856
crossref_primary_10_12688_f1000research_149494_1
crossref_primary_10_3390_f12010011
crossref_primary_10_1186_s13058_023_01656_x
crossref_primary_10_1373_clinchem_2013_206391
crossref_primary_10_1016_j_tjnut_2024_10_019
crossref_primary_10_1186_s40168_025_02052_7
crossref_primary_10_1371_journal_pgen_1004593
crossref_primary_10_1111_pce_13425
crossref_primary_10_1371_journal_pbio_3000481
crossref_primary_10_1016_j_molcel_2024_08_010
crossref_primary_10_1016_j_ydbio_2019_12_002
crossref_primary_10_1038_s41590_022_01369_x
crossref_primary_10_1016_j_compbiomed_2021_104387
crossref_primary_10_1038_srep20698
crossref_primary_10_3389_fimmu_2019_00708
crossref_primary_10_3390_ijms232012335
crossref_primary_10_1038_nature19847
crossref_primary_10_1126_science_aay3983
crossref_primary_10_3389_fpls_2014_00220
crossref_primary_10_7554_eLife_22054
crossref_primary_10_1016_j_ygyno_2019_06_010
crossref_primary_10_3389_fgene_2014_00324
crossref_primary_10_1016_j_ebiom_2022_103825
crossref_primary_10_3389_fimmu_2020_01996
crossref_primary_10_1038_s41598_025_94043_9
crossref_primary_10_3389_fmicb_2022_909276
crossref_primary_10_1016_j_molcel_2024_10_033
crossref_primary_10_1038_s41588_017_0005_8
crossref_primary_10_1002_cam4_70674
crossref_primary_10_1038_s41586_022_05257_0
crossref_primary_10_1186_s12864_021_07381_z
crossref_primary_10_1093_nar_gkaa679
crossref_primary_10_1371_journal_pone_0212127
crossref_primary_10_1038_s41467_021_21661_y
crossref_primary_10_1038_s41467_024_48926_6
crossref_primary_10_1007_s00497_016_0291_9
crossref_primary_10_3390_genes10121042
crossref_primary_10_1007_s00395_021_00858_8
crossref_primary_10_3389_fimmu_2024_1358477
crossref_primary_10_1158_1078_0432_CCR_11_2929
crossref_primary_10_1186_s13287_024_03847_5
crossref_primary_10_1016_j_crmeth_2022_100321
crossref_primary_10_1371_journal_pone_0175464
crossref_primary_10_1186_1471_2105_14_124
crossref_primary_10_1093_bib_bbac616
crossref_primary_10_1038_ncomms6748
crossref_primary_10_1101_gr_255463_119
crossref_primary_10_1111_all_12869
crossref_primary_10_1089_bio_2017_0024
crossref_primary_10_1186_1471_2105_14_370
crossref_primary_10_1126_sciimmunol_aag0192
crossref_primary_10_1126_science_aat7615
crossref_primary_10_1111_mec_14531
crossref_primary_10_1002_ggn2_202200024
crossref_primary_10_1038_s41591_019_0436_0
crossref_primary_10_1186_1471_2105_14_254
crossref_primary_10_1016_j_cels_2021_04_008
crossref_primary_10_1038_s43587_022_00317_6
crossref_primary_10_1007_s40484_020_0208_3
crossref_primary_10_1242_dev_201432
crossref_primary_10_1093_genetics_iyaf110
crossref_primary_10_1038_nbt_2931
crossref_primary_10_1158_1078_0432_CCR_15_2401
crossref_primary_10_1016_j_meegid_2016_07_044
crossref_primary_10_1038_s41586_018_0423_5
crossref_primary_10_1186_s12864_018_4637_6
crossref_primary_10_3389_fnins_2015_00316
crossref_primary_10_1186_1471_2105_14_262
crossref_primary_10_1007_s12561_017_9194_z
crossref_primary_10_3389_fgene_2021_625466
crossref_primary_10_1371_journal_pone_0232559
crossref_primary_10_1038_s41598_018_36057_0
crossref_primary_10_1016_j_ygyno_2014_01_029
crossref_primary_10_1007_s00439_014_1440_6
crossref_primary_10_3389_fpls_2018_00108
crossref_primary_10_1186_s13059_023_03161_y
crossref_primary_10_1534_g3_113_009514
crossref_primary_10_1038_s41593_021_00999_y
crossref_primary_10_1186_s12874_021_01439_y
crossref_primary_10_1038_s41467_023_37246_w
crossref_primary_10_1007_s00401_021_02361_9
crossref_primary_10_1186_s40478_021_01199_2
crossref_primary_10_1155_2015_789516
crossref_primary_10_1101_gr_220673_117
crossref_primary_10_1002_alz_12319
crossref_primary_10_1371_journal_pone_0153782
crossref_primary_10_1186_s13059_014_0550_8
crossref_primary_10_1038_srep31592
crossref_primary_10_1038_nrg3788
crossref_primary_10_1016_j_jlb_2025_100313
crossref_primary_10_1186_1471_2105_15_188
crossref_primary_10_1002_alz_70112
crossref_primary_10_1016_j_fgb_2014_10_008
crossref_primary_10_1016_j_neuron_2024_10_029
crossref_primary_10_1016_j_sjbs_2021_07_074
crossref_primary_10_1038_s41598_017_03687_9
crossref_primary_10_1002_eji_202049054
crossref_primary_10_1038_nn_4373
crossref_primary_10_1111_mec_12680
crossref_primary_10_1016_j_ccell_2019_07_002
crossref_primary_10_1007_s12281_012_0104_z
crossref_primary_10_1093_biostatistics_kxx005
crossref_primary_10_1109_TCBB_2015_2440265
crossref_primary_10_1016_j_devcel_2019_01_017
crossref_primary_10_4137_CIN_S39781
crossref_primary_10_1038_s41467_020_16736_1
crossref_primary_10_1001_jamanetworkopen_2021_36913
crossref_primary_10_1371_journal_pcbi_1012750
crossref_primary_10_1016_j_alcohol_2017_03_007
crossref_primary_10_1007_s00125_017_4467_0
crossref_primary_10_1093_bib_bbx043
crossref_primary_10_1038_ejhg_2012_129
crossref_primary_10_1093_humrep_deab262
crossref_primary_10_1101_gr_256578_119
crossref_primary_10_1016_j_immuni_2019_12_002
crossref_primary_10_1093_cercor_bhz029
crossref_primary_10_1002_em_21798
crossref_primary_10_1371_journal_pone_0138347
crossref_primary_10_1126_science_aat6720
crossref_primary_10_1038_s41591_018_0223_3
crossref_primary_10_1016_j_cels_2019_02_006
crossref_primary_10_1038_s41467_021_21242_z
crossref_primary_10_1038_s41586_020_2077_3
crossref_primary_10_1002_dvdy_24638
crossref_primary_10_1016_j_cbpa_2012_12_008
crossref_primary_10_1186_s13059_016_1000_6
crossref_primary_10_1111_gbb_70029
crossref_primary_10_1007_s00401_021_02289_0
crossref_primary_10_1007_s00198_013_2529_9
crossref_primary_10_1111_eci_12801
crossref_primary_10_1111_mec_13879
crossref_primary_10_1111_biom_12962
crossref_primary_10_1186_s12859_017_1912_5
crossref_primary_10_1371_journal_pcbi_1002613
crossref_primary_10_1038_nature20789
crossref_primary_10_1186_s12864_016_2543_3
crossref_primary_10_1093_molbev_msw072
crossref_primary_10_1186_s12915_016_0279_9
crossref_primary_10_1016_j_bbagrm_2024_195058
crossref_primary_10_1038_s41586_022_04989_3
crossref_primary_10_1261_rna_079623_123
crossref_primary_10_1111_mec_14712
crossref_primary_10_1097_MEG_0000000000002349
crossref_primary_10_1371_journal_pone_0081527
crossref_primary_10_1523_JNEUROSCI_2076_22_2023
crossref_primary_10_3389_fonc_2021_779042
crossref_primary_10_1186_s13024_020_00392_6
crossref_primary_10_1093_bioinformatics_btab155
crossref_primary_10_1016_j_dib_2019_01_044
crossref_primary_10_12688_wellcomeopenres_16430_3
crossref_primary_10_12688_wellcomeopenres_16430_2
crossref_primary_10_12688_wellcomeopenres_16430_1
crossref_primary_10_1016_j_molp_2021_06_025
crossref_primary_10_1038_s41598_017_17735_x
crossref_primary_10_1186_s12859_014_0397_8
crossref_primary_10_1093_bib_bbv069
crossref_primary_10_1038_ncomms10717
crossref_primary_10_1186_s12859_015_0847_y
crossref_primary_10_1038_s42255_019_0071_6
crossref_primary_10_1093_biostatistics_kxs033
crossref_primary_10_1038_s41398_018_0234_3
crossref_primary_10_1176_appi_focus_17103
crossref_primary_10_1002_cyto_a_23904
crossref_primary_10_1371_journal_pgen_1011416
crossref_primary_10_1016_j_jalz_2017_09_012
crossref_primary_10_1007_s00439_016_1673_7
crossref_primary_10_1261_rna_036475_112
crossref_primary_10_1038_s41398_018_0200_0
crossref_primary_10_1007_s00401_024_02720_2
crossref_primary_10_3389_fimmu_2019_00180
crossref_primary_10_1038_s41598_022_21617_2
crossref_primary_10_3892_ol_2020_11803
crossref_primary_10_1186_s12859_017_1925_0
crossref_primary_10_1016_j_cell_2013_10_031
crossref_primary_10_1016_j_mocell_2024_100139
crossref_primary_10_1038_tp_2016_87
crossref_primary_10_1111_1462_2920_14897
crossref_primary_10_1186_s12882_018_0842_4
crossref_primary_10_3389_fnmol_2022_1009662
crossref_primary_10_3390_ijms241310643
crossref_primary_10_3390_ijms24076229
crossref_primary_10_1038_s41467_024_53164_x
crossref_primary_10_1007_s10549_020_05709_z
crossref_primary_10_1155_2022_4472940
crossref_primary_10_1186_s12859_015_0670_5
crossref_primary_10_1038_s41375_020_0764_6
crossref_primary_10_1371_journal_pone_0147132
crossref_primary_10_1158_2326_6066_CIR_20_0968
crossref_primary_10_1038_nbt_4183
crossref_primary_10_1146_annurev_biodatasci_072018_021255
crossref_primary_10_3390_genes15030312
crossref_primary_10_1093_nar_gku310
crossref_primary_10_1093_nar_gkw731
crossref_primary_10_1002_alz_14348
crossref_primary_10_1158_1078_0432_CCR_13_1943
crossref_primary_10_2174_1574893617666220421100512
crossref_primary_10_1093_brain_awaa141
crossref_primary_10_1016_j_alcohol_2017_05_001
crossref_primary_10_1016_j_bbadis_2024_167651
crossref_primary_10_1016_j_neurobiolaging_2022_06_011
crossref_primary_10_1093_icb_ict068
crossref_primary_10_12688_f1000research_22259_1
crossref_primary_10_1038_s41588_018_0046_7
crossref_primary_10_1038_s41588_023_01371_5
crossref_primary_10_1096_fj_12_206367
crossref_primary_10_53941_tai_2025_100005
crossref_primary_10_1186_1471_2164_14_892
crossref_primary_10_1126_science_aad6469
crossref_primary_10_1038_s41598_019_48493_7
crossref_primary_10_1186_s12872_021_02147_7
crossref_primary_10_1038_s41467_020_19264_0
crossref_primary_10_1016_j_ygyno_2022_07_027
crossref_primary_10_3389_fgene_2022_836841
crossref_primary_10_1016_j_gpb_2020_06_019
crossref_primary_10_3389_fgene_2016_00080
crossref_primary_10_1186_1471_2105_15_S9_S6
crossref_primary_10_1038_s41536_023_00311_5
crossref_primary_10_1111_mec_14212
crossref_primary_10_1016_j_yjmcc_2020_03_005
crossref_primary_10_1371_journal_pone_0188873
crossref_primary_10_1038_s41467_021_27179_7
crossref_primary_10_1016_j_bone_2015_03_017
crossref_primary_10_1016_j_ajhg_2021_01_012
crossref_primary_10_1101_gr_269209_120
crossref_primary_10_1093_pnasnexus_pgaf127
crossref_primary_10_1038_s41398_019_0488_4
crossref_primary_10_1038_s41591_020_1043_9
crossref_primary_10_1093_nar_gks042
crossref_primary_10_1111_tbed_14760
crossref_primary_10_1186_s13073_017_0492_3
crossref_primary_10_1186_s13059_016_1053_6
crossref_primary_10_1007_s10565_020_09572_y
crossref_primary_10_1038_srep29477
crossref_primary_10_1093_biomtc_ujae146
crossref_primary_10_1158_0008_5472_CAN_16_0481
crossref_primary_10_1084_jem_20180484
crossref_primary_10_1109_TNB_2013_2296978
crossref_primary_10_1038_s41591_018_0071_1
crossref_primary_10_1093_biostatistics_kxt053
crossref_primary_10_1371_journal_pgen_1009596
crossref_primary_10_1016_j_ccell_2018_03_017
crossref_primary_10_1038_s41467_022_28280_1
crossref_primary_10_1371_journal_pone_0173847
crossref_primary_10_1530_JOE_18_0412
crossref_primary_10_1038_s41586_022_05377_7
crossref_primary_10_1016_j_ajhg_2018_10_018
crossref_primary_10_1002_jev2_12172
crossref_primary_10_1371_journal_pone_0180003
crossref_primary_10_1016_j_cels_2025_101346
crossref_primary_10_2217_epi_2021_0205
crossref_primary_10_3389_fnins_2022_915907
crossref_primary_10_1186_s12943_017_0587_x
crossref_primary_10_1038_nprot_2013_099
crossref_primary_10_1038_s41467_019_14003_6
crossref_primary_10_1093_nar_gkx326
crossref_primary_10_1016_j_jid_2025_03_019
crossref_primary_10_1093_nar_gkx204
crossref_primary_10_1111_pce_15018
crossref_primary_10_1016_j_actbio_2024_07_056
crossref_primary_10_1155_2014_248090
crossref_primary_10_3389_fphar_2020_00881
crossref_primary_10_1007_s10260_019_00496_4
crossref_primary_10_1016_j_cell_2021_01_001
crossref_primary_10_1186_s13024_018_0289_x
crossref_primary_10_1093_nar_gkv473
crossref_primary_10_1038_s41597_020_00642_8
crossref_primary_10_12688_f1000research_50850_3
crossref_primary_10_12688_f1000research_50850_1
crossref_primary_10_1002_biot_201500107
crossref_primary_10_12688_f1000research_50850_2
crossref_primary_10_1186_s12864_019_5686_1
crossref_primary_10_1186_s13040_017_0125_9
crossref_primary_10_1371_journal_pone_0160970
crossref_primary_10_1038_s42003_023_04791_5
crossref_primary_10_1093_bib_bbt018
crossref_primary_10_1371_journal_pbio_3000976
crossref_primary_10_1093_bib_bbs046
crossref_primary_10_1186_gb_2014_15_2_r35
crossref_primary_10_1371_journal_pone_0214588
crossref_primary_10_1093_nar_gkv007
crossref_primary_10_1101_gr_139055_112
crossref_primary_10_1371_journal_pgen_1010932
crossref_primary_10_1038_s41467_021_22399_3
crossref_primary_10_1016_j_neuron_2022_06_003
crossref_primary_10_1371_journal_pone_0227760
crossref_primary_10_1093_nar_gkaf018
crossref_primary_10_1016_j_heliyon_2024_e39607
crossref_primary_10_3389_fncel_2024_1368018
crossref_primary_10_3390_v14122763
crossref_primary_10_1038_nbt_3000
crossref_primary_10_1038_s41598_024_72975_y
crossref_primary_10_1007_s13365_020_00890_9
crossref_primary_10_1038_srep31923
crossref_primary_10_1016_j_jaci_2020_04_059
crossref_primary_10_1038_s41597_019_0183_6
crossref_primary_10_3389_fcvm_2023_1068782
crossref_primary_10_1039_D4LC00848K
crossref_primary_10_1371_journal_pone_0273766
crossref_primary_10_1016_j_cell_2017_12_014
crossref_primary_10_1093_nar_gkaa1193
crossref_primary_10_1007_s11060_024_04765_5
crossref_primary_10_1016_j_neuron_2020_02_034
crossref_primary_10_1038_s41593_024_01773_6
crossref_primary_10_1111_imb_12247
crossref_primary_10_1186_1471_2105_15_S1_S7
crossref_primary_10_3390_genes13030392
crossref_primary_10_1186_s12859_024_05840_4
crossref_primary_10_1080_09553002_2024_2338518
crossref_primary_10_3389_fnins_2016_00071
crossref_primary_10_7554_eLife_41673
crossref_primary_10_1016_j_celrep_2024_114498
crossref_primary_10_1002_JLB_2A0618_228R
crossref_primary_10_1109_ACCESS_2019_2960722
crossref_primary_10_1016_j_drudis_2013_11_001
crossref_primary_10_1016_j_vaccine_2015_04_088
crossref_primary_10_1038_s41598_022_15578_9
crossref_primary_10_1172_JCI143632
crossref_primary_10_1038_s41523_022_00387_0
crossref_primary_10_1016_j_cell_2019_09_021
crossref_primary_10_1186_s12859_019_2840_3
crossref_primary_10_1126_scitranslmed_aay1809
crossref_primary_10_1186_s10020_025_01257_8
crossref_primary_10_1093_nar_gkx456
crossref_primary_10_12688_f1000research_7035_2
crossref_primary_10_1016_j_ccell_2022_07_002
crossref_primary_10_1159_000530929
crossref_primary_10_1038_ng_3646
crossref_primary_10_1038_s41598_017_00267_9
crossref_primary_10_1158_1078_0432_CCR_21_0343
crossref_primary_10_1016_j_immuni_2025_01_007
crossref_primary_10_3390_genes12020237
crossref_primary_10_1038_s41467_022_32856_2
crossref_primary_10_1080_10618600_2018_1546592
crossref_primary_10_1038_s41467_019_11412_5
crossref_primary_10_1242_dmm_049187
crossref_primary_10_1093_molbev_msu226
crossref_primary_10_3389_fimmu_2023_1168784
crossref_primary_10_3390_metabo10070271
crossref_primary_10_1038_nbt_3682
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/biostatistics/kxr054
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1468-4357
ExternalDocumentID 22285995
Genre Comparative Study
Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHGRI NIH HHS
  grantid: R01HG004059
– fundername: NHGRI NIH HHS
  grantid: R01 HG005220
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5VS
5WA
6PF
70D
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWTL
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIPB
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHGBF
AHMBA
AHXPO
AIJHB
AJBYB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C1A
C45
CAG
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBD
EBS
ECM
EE~
EIF
EJD
EMOBN
F5P
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NMDNZ
NOMLY
NPM
NTWIH
NU-
O0~
O9-
ODMLO
OJQWA
OJZSN
OK1
OVD
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
RD5
RIG
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJP
TN5
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
7X8
ID FETCH-LOGICAL-c573t-ebe1ee11080ca14cc1afd976eb86f07e3a61cc9e7d0a88ad548274785c5e6cca2
IEDL.DBID 7X8
ISICitedReferencesCount 444
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301293800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1468-4357
IngestDate Thu Oct 02 11:47:44 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-ebe1ee11080ca14cc1afd976eb86f07e3a61cc9e7d0a88ad548274785c5e6cca2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3297825
PMID 22285995
PQID 927833823
PQPubID 23479
ParticipantIDs proquest_miscellaneous_927833823
pubmed_primary_22285995
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biostatistics (Oxford, England)
PublicationTitleAlternate Biostatistics
PublicationYear 2012
SSID ssj0022363
Score 2.5051353
Snippet The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 204
SubjectTerms Algorithms
Analysis of Variance
Base Composition
Biostatistics
Databases, Nucleic Acid - statistics & numerical data
Gene Expression Profiling - statistics & numerical data
High-Throughput Nucleotide Sequencing - statistics & numerical data
Humans
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Sequence Analysis, RNA - statistics & numerical data
Title Removing technical variability in RNA-seq data using conditional quantile normalization
URI https://www.ncbi.nlm.nih.gov/pubmed/22285995
https://www.proquest.com/docview/927833823
Volume 13
WOSCitedRecordID wos000301293800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1Fe8sBq1XnVzoQqRMUAUVWB6BY5toMqStIHrei_5y5OuyEGlmyRorvL3XfPj5BbDpgikMYwroViYZBbJkPjQ6oSQHiR3EZZtSj8JJJEDgZxr57NmdVjlSufWDlqU2qskbdipITAptXdeMKQNAqbqzWDxiZpBIBk0KjFYN1EgMBXEalVy0WACsRqcy4OWtmwxIUddwu59fE95cgH8BvGrGJNd_-fX3lA9mqQSTvOKg7Jhi2OyI6jnVwek7e-_awKCdRdcAU10QXkzO5k95IOC9pPOmxmJxQHSCnOxr9TSJzN0FUO6WQOCgF_QguEvKN6l_OEvHYfXu4fWU2wwHQkgi8GCvSsxUUArpUXau2p3AA-sZls51zYQLU9rWMrDFdSKhPhzdBQyEhHtg2q90_JVlEW9pxQzxN57iufZzwHPStpNMQ-DQjCU5Yb3iR0JbAUDBi7Eqqw5XyWrkXWJGdO6OnYHdpIsTqFB9Eu_n75kuwClPHdTM0VaeTw89prsq0XoOTpTWUY8Ex6zz-SfcZu
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+technical+variability+in+RNA-seq+data+using+conditional+quantile+normalization&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Hansen%2C+Kasper+D&rft.au=Irizarry%2C+Rafael+A&rft.au=Wu%2C+Zhijin&rft.date=2012-04-01&rft.issn=1468-4357&rft.eissn=1468-4357&rft.volume=13&rft.issue=2&rft.spage=204&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxr054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-4357&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-4357&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-4357&client=summon