Removing technical variability in RNA-seq data using conditional quantile normalization
The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a...
Uloženo v:
| Vydáno v: | Biostatistics (Oxford, England) Ročník 13; číslo 2; s. 204 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
01.04.2012
|
| Témata: | |
| ISSN: | 1468-4357, 1468-4357 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions. |
|---|---|
| AbstractList | The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions.The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions. The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology that first permitted this, were riddled with problems due to unwanted sources of variability. Many of these problems are now mitigated, after a decade's worth of statistical methodology development. The recently developed RNA sequencing (RNA-seq) technology has generated much excitement in part due to claims of reduced variability in comparison to microarrays. However, we show that RNA-seq data demonstrate unwanted and obscuring variability similar to what was first observed in microarrays. In particular, we find guanine-cytosine content (GC-content) has a strong sample-specific effect on gene expression measurements that, if left uncorrected, leads to false positives in downstream results. We also report on commonly observed data distortions that demonstrate the need for data normalization. Here, we describe a statistical methodology that improves precision by 42% without loss of accuracy. Our resulting conditional quantile normalization algorithm combines robust generalized regression to remove systematic bias introduced by deterministic features such as GC-content and quantile normalization to correct for global distortions. |
| Author | Irizarry, Rafael A Wu, Zhijin Hansen, Kasper D |
| Author_xml | – sequence: 1 givenname: Kasper D surname: Hansen fullname: Hansen, Kasper D organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA – sequence: 2 givenname: Rafael A surname: Irizarry fullname: Irizarry, Rafael A – sequence: 3 givenname: Zhijin surname: Wu fullname: Wu, Zhijin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22285995$$D View this record in MEDLINE/PubMed |
| BookMark | eNpN0EtLw0AUBeBBFPvQfyCSnavYeWQyk2UpvqAoFMVluJnc6mgy02YmxfrrbbGCq3vgfJzFHZFj5x0ScsHoNaOFmFTWhwjRhmhNmHx-dVRmR2TIslynmZDq-F8ekFEIH5RyLnJxSgaccy2LQg7J6wJbv7HuLYlo3p010CQb6CxUtrFxm1iXLB6nacB1UkOEpA97a7yrbbTe7fS6Bxdtg4nzXQuN_YZ9cUZOltAEPD_cMXm5vXme3afzp7uH2XSeGqlETLFChsgY1dQAy4xhsKwLlWOl8yVVKCBnxhSoagpaQy0zzVWmtDQSc2OAj8nV7-6q8-seQyxbGww2DTj0fSgLrrQQmoudvDzIvmqxLledbaHbln-_4D-WzGjJ |
| CitedBy_id | crossref_primary_10_1038_s41467_020_18526_1 crossref_primary_10_1371_journal_pone_0192517 crossref_primary_10_1084_jem_20191869 crossref_primary_10_1111_biom_12548 crossref_primary_10_1016_j_immuni_2021_03_021 crossref_primary_10_1093_hmg_ddy001 crossref_primary_10_1186_s13059_019_1866_1 crossref_primary_10_1038_s41593_021_00858_w crossref_primary_10_1371_journal_pone_0294308 crossref_primary_10_1109_JBHI_2019_2953978 crossref_primary_10_1038_s41514_025_00258_5 crossref_primary_10_1007_s12561_024_09446_5 crossref_primary_10_1007_s12035_021_02680_8 crossref_primary_10_3390_app13042403 crossref_primary_10_1186_s12859_015_0510_7 crossref_primary_10_1038_s41467_020_14483_x crossref_primary_10_1094_MPMI_06_16_0116_R crossref_primary_10_1186_s13059_015_0847_2 crossref_primary_10_1038_s41586_018_0623_z crossref_primary_10_1371_journal_pone_0077885 crossref_primary_10_1158_1078_0432_CCR_12_3937 crossref_primary_10_1038_s41467_019_09964_7 crossref_primary_10_4137_CIN_S21631 crossref_primary_10_1186_s13059_016_0927_y crossref_primary_10_1038_s41598_024_75250_2 crossref_primary_10_1371_journal_pone_0165015 crossref_primary_10_1016_j_ygcen_2016_02_019 crossref_primary_10_1038_ncomms14532 crossref_primary_10_1038_gene_2016_34 crossref_primary_10_1371_journal_pgen_1004549 crossref_primary_10_1038_s41597_019_0202_7 crossref_primary_10_1155_2021_8880585 crossref_primary_10_3389_fgene_2021_612670 crossref_primary_10_1186_s13024_018_0261_9 crossref_primary_10_1038_s41380_023_02372_w crossref_primary_10_1038_s41598_017_16747_x crossref_primary_10_3390_genes12030352 crossref_primary_10_3389_fmolb_2022_907150 crossref_primary_10_1016_j_jtho_2022_11_006 crossref_primary_10_1073_pnas_1305823110 crossref_primary_10_1038_s41593_022_01127_0 crossref_primary_10_1038_ng_2870 crossref_primary_10_3389_fimmu_2020_603337 crossref_primary_10_3390_v17091154 crossref_primary_10_1371_journal_pone_0120117 crossref_primary_10_1093_bib_bbab262 crossref_primary_10_1371_journal_pcbi_1004791 crossref_primary_10_1038_s41598_019_51056_5 crossref_primary_10_3389_fimmu_2020_580219 crossref_primary_10_3389_fmicb_2018_01845 crossref_primary_10_1038_s41588_021_00924_w crossref_primary_10_1186_s40478_019_0797_0 crossref_primary_10_3389_fimmu_2022_896627 crossref_primary_10_1126_sciimmunol_aah4569 crossref_primary_10_7717_peerj_16126 crossref_primary_10_1371_journal_pone_0061088 crossref_primary_10_1093_nar_gkx199 crossref_primary_10_4014_jmb_2304_04005 crossref_primary_10_1016_j_cell_2016_09_006 crossref_primary_10_1016_j_celrep_2023_112856 crossref_primary_10_12688_f1000research_149494_1 crossref_primary_10_3390_f12010011 crossref_primary_10_1186_s13058_023_01656_x crossref_primary_10_1373_clinchem_2013_206391 crossref_primary_10_1016_j_tjnut_2024_10_019 crossref_primary_10_1186_s40168_025_02052_7 crossref_primary_10_1371_journal_pgen_1004593 crossref_primary_10_1111_pce_13425 crossref_primary_10_1371_journal_pbio_3000481 crossref_primary_10_1016_j_molcel_2024_08_010 crossref_primary_10_1016_j_ydbio_2019_12_002 crossref_primary_10_1038_s41590_022_01369_x crossref_primary_10_1016_j_compbiomed_2021_104387 crossref_primary_10_1038_srep20698 crossref_primary_10_3389_fimmu_2019_00708 crossref_primary_10_3390_ijms232012335 crossref_primary_10_1038_nature19847 crossref_primary_10_1126_science_aay3983 crossref_primary_10_3389_fpls_2014_00220 crossref_primary_10_7554_eLife_22054 crossref_primary_10_1016_j_ygyno_2019_06_010 crossref_primary_10_3389_fgene_2014_00324 crossref_primary_10_1016_j_ebiom_2022_103825 crossref_primary_10_3389_fimmu_2020_01996 crossref_primary_10_1038_s41598_025_94043_9 crossref_primary_10_3389_fmicb_2022_909276 crossref_primary_10_1016_j_molcel_2024_10_033 crossref_primary_10_1038_s41588_017_0005_8 crossref_primary_10_1002_cam4_70674 crossref_primary_10_1038_s41586_022_05257_0 crossref_primary_10_1186_s12864_021_07381_z crossref_primary_10_1093_nar_gkaa679 crossref_primary_10_1371_journal_pone_0212127 crossref_primary_10_1038_s41467_021_21661_y crossref_primary_10_1038_s41467_024_48926_6 crossref_primary_10_1007_s00497_016_0291_9 crossref_primary_10_3390_genes10121042 crossref_primary_10_1007_s00395_021_00858_8 crossref_primary_10_3389_fimmu_2024_1358477 crossref_primary_10_1158_1078_0432_CCR_11_2929 crossref_primary_10_1186_s13287_024_03847_5 crossref_primary_10_1016_j_crmeth_2022_100321 crossref_primary_10_1371_journal_pone_0175464 crossref_primary_10_1186_1471_2105_14_124 crossref_primary_10_1093_bib_bbac616 crossref_primary_10_1038_ncomms6748 crossref_primary_10_1101_gr_255463_119 crossref_primary_10_1111_all_12869 crossref_primary_10_1089_bio_2017_0024 crossref_primary_10_1186_1471_2105_14_370 crossref_primary_10_1126_sciimmunol_aag0192 crossref_primary_10_1126_science_aat7615 crossref_primary_10_1111_mec_14531 crossref_primary_10_1002_ggn2_202200024 crossref_primary_10_1038_s41591_019_0436_0 crossref_primary_10_1186_1471_2105_14_254 crossref_primary_10_1016_j_cels_2021_04_008 crossref_primary_10_1038_s43587_022_00317_6 crossref_primary_10_1007_s40484_020_0208_3 crossref_primary_10_1242_dev_201432 crossref_primary_10_1093_genetics_iyaf110 crossref_primary_10_1038_nbt_2931 crossref_primary_10_1158_1078_0432_CCR_15_2401 crossref_primary_10_1016_j_meegid_2016_07_044 crossref_primary_10_1038_s41586_018_0423_5 crossref_primary_10_1186_s12864_018_4637_6 crossref_primary_10_3389_fnins_2015_00316 crossref_primary_10_1186_1471_2105_14_262 crossref_primary_10_1007_s12561_017_9194_z crossref_primary_10_3389_fgene_2021_625466 crossref_primary_10_1371_journal_pone_0232559 crossref_primary_10_1038_s41598_018_36057_0 crossref_primary_10_1016_j_ygyno_2014_01_029 crossref_primary_10_1007_s00439_014_1440_6 crossref_primary_10_3389_fpls_2018_00108 crossref_primary_10_1186_s13059_023_03161_y crossref_primary_10_1534_g3_113_009514 crossref_primary_10_1038_s41593_021_00999_y crossref_primary_10_1186_s12874_021_01439_y crossref_primary_10_1038_s41467_023_37246_w crossref_primary_10_1007_s00401_021_02361_9 crossref_primary_10_1186_s40478_021_01199_2 crossref_primary_10_1155_2015_789516 crossref_primary_10_1101_gr_220673_117 crossref_primary_10_1002_alz_12319 crossref_primary_10_1371_journal_pone_0153782 crossref_primary_10_1186_s13059_014_0550_8 crossref_primary_10_1038_srep31592 crossref_primary_10_1038_nrg3788 crossref_primary_10_1016_j_jlb_2025_100313 crossref_primary_10_1186_1471_2105_15_188 crossref_primary_10_1002_alz_70112 crossref_primary_10_1016_j_fgb_2014_10_008 crossref_primary_10_1016_j_neuron_2024_10_029 crossref_primary_10_1016_j_sjbs_2021_07_074 crossref_primary_10_1038_s41598_017_03687_9 crossref_primary_10_1002_eji_202049054 crossref_primary_10_1038_nn_4373 crossref_primary_10_1111_mec_12680 crossref_primary_10_1016_j_ccell_2019_07_002 crossref_primary_10_1007_s12281_012_0104_z crossref_primary_10_1093_biostatistics_kxx005 crossref_primary_10_1109_TCBB_2015_2440265 crossref_primary_10_1016_j_devcel_2019_01_017 crossref_primary_10_4137_CIN_S39781 crossref_primary_10_1038_s41467_020_16736_1 crossref_primary_10_1001_jamanetworkopen_2021_36913 crossref_primary_10_1371_journal_pcbi_1012750 crossref_primary_10_1016_j_alcohol_2017_03_007 crossref_primary_10_1007_s00125_017_4467_0 crossref_primary_10_1093_bib_bbx043 crossref_primary_10_1038_ejhg_2012_129 crossref_primary_10_1093_humrep_deab262 crossref_primary_10_1101_gr_256578_119 crossref_primary_10_1016_j_immuni_2019_12_002 crossref_primary_10_1093_cercor_bhz029 crossref_primary_10_1002_em_21798 crossref_primary_10_1371_journal_pone_0138347 crossref_primary_10_1126_science_aat6720 crossref_primary_10_1038_s41591_018_0223_3 crossref_primary_10_1016_j_cels_2019_02_006 crossref_primary_10_1038_s41467_021_21242_z crossref_primary_10_1038_s41586_020_2077_3 crossref_primary_10_1002_dvdy_24638 crossref_primary_10_1016_j_cbpa_2012_12_008 crossref_primary_10_1186_s13059_016_1000_6 crossref_primary_10_1111_gbb_70029 crossref_primary_10_1007_s00401_021_02289_0 crossref_primary_10_1007_s00198_013_2529_9 crossref_primary_10_1111_eci_12801 crossref_primary_10_1111_mec_13879 crossref_primary_10_1111_biom_12962 crossref_primary_10_1186_s12859_017_1912_5 crossref_primary_10_1371_journal_pcbi_1002613 crossref_primary_10_1038_nature20789 crossref_primary_10_1186_s12864_016_2543_3 crossref_primary_10_1093_molbev_msw072 crossref_primary_10_1186_s12915_016_0279_9 crossref_primary_10_1016_j_bbagrm_2024_195058 crossref_primary_10_1038_s41586_022_04989_3 crossref_primary_10_1261_rna_079623_123 crossref_primary_10_1111_mec_14712 crossref_primary_10_1097_MEG_0000000000002349 crossref_primary_10_1371_journal_pone_0081527 crossref_primary_10_1523_JNEUROSCI_2076_22_2023 crossref_primary_10_3389_fonc_2021_779042 crossref_primary_10_1186_s13024_020_00392_6 crossref_primary_10_1093_bioinformatics_btab155 crossref_primary_10_1016_j_dib_2019_01_044 crossref_primary_10_12688_wellcomeopenres_16430_3 crossref_primary_10_12688_wellcomeopenres_16430_2 crossref_primary_10_12688_wellcomeopenres_16430_1 crossref_primary_10_1016_j_molp_2021_06_025 crossref_primary_10_1038_s41598_017_17735_x crossref_primary_10_1186_s12859_014_0397_8 crossref_primary_10_1093_bib_bbv069 crossref_primary_10_1038_ncomms10717 crossref_primary_10_1186_s12859_015_0847_y crossref_primary_10_1038_s42255_019_0071_6 crossref_primary_10_1093_biostatistics_kxs033 crossref_primary_10_1038_s41398_018_0234_3 crossref_primary_10_1176_appi_focus_17103 crossref_primary_10_1002_cyto_a_23904 crossref_primary_10_1371_journal_pgen_1011416 crossref_primary_10_1016_j_jalz_2017_09_012 crossref_primary_10_1007_s00439_016_1673_7 crossref_primary_10_1261_rna_036475_112 crossref_primary_10_1038_s41398_018_0200_0 crossref_primary_10_1007_s00401_024_02720_2 crossref_primary_10_3389_fimmu_2019_00180 crossref_primary_10_1038_s41598_022_21617_2 crossref_primary_10_3892_ol_2020_11803 crossref_primary_10_1186_s12859_017_1925_0 crossref_primary_10_1016_j_cell_2013_10_031 crossref_primary_10_1016_j_mocell_2024_100139 crossref_primary_10_1038_tp_2016_87 crossref_primary_10_1111_1462_2920_14897 crossref_primary_10_1186_s12882_018_0842_4 crossref_primary_10_3389_fnmol_2022_1009662 crossref_primary_10_3390_ijms241310643 crossref_primary_10_3390_ijms24076229 crossref_primary_10_1038_s41467_024_53164_x crossref_primary_10_1007_s10549_020_05709_z crossref_primary_10_1155_2022_4472940 crossref_primary_10_1186_s12859_015_0670_5 crossref_primary_10_1038_s41375_020_0764_6 crossref_primary_10_1371_journal_pone_0147132 crossref_primary_10_1158_2326_6066_CIR_20_0968 crossref_primary_10_1038_nbt_4183 crossref_primary_10_1146_annurev_biodatasci_072018_021255 crossref_primary_10_3390_genes15030312 crossref_primary_10_1093_nar_gku310 crossref_primary_10_1093_nar_gkw731 crossref_primary_10_1002_alz_14348 crossref_primary_10_1158_1078_0432_CCR_13_1943 crossref_primary_10_2174_1574893617666220421100512 crossref_primary_10_1093_brain_awaa141 crossref_primary_10_1016_j_alcohol_2017_05_001 crossref_primary_10_1016_j_bbadis_2024_167651 crossref_primary_10_1016_j_neurobiolaging_2022_06_011 crossref_primary_10_1093_icb_ict068 crossref_primary_10_12688_f1000research_22259_1 crossref_primary_10_1038_s41588_018_0046_7 crossref_primary_10_1038_s41588_023_01371_5 crossref_primary_10_1096_fj_12_206367 crossref_primary_10_53941_tai_2025_100005 crossref_primary_10_1186_1471_2164_14_892 crossref_primary_10_1126_science_aad6469 crossref_primary_10_1038_s41598_019_48493_7 crossref_primary_10_1186_s12872_021_02147_7 crossref_primary_10_1038_s41467_020_19264_0 crossref_primary_10_1016_j_ygyno_2022_07_027 crossref_primary_10_3389_fgene_2022_836841 crossref_primary_10_1016_j_gpb_2020_06_019 crossref_primary_10_3389_fgene_2016_00080 crossref_primary_10_1186_1471_2105_15_S9_S6 crossref_primary_10_1038_s41536_023_00311_5 crossref_primary_10_1111_mec_14212 crossref_primary_10_1016_j_yjmcc_2020_03_005 crossref_primary_10_1371_journal_pone_0188873 crossref_primary_10_1038_s41467_021_27179_7 crossref_primary_10_1016_j_bone_2015_03_017 crossref_primary_10_1016_j_ajhg_2021_01_012 crossref_primary_10_1101_gr_269209_120 crossref_primary_10_1093_pnasnexus_pgaf127 crossref_primary_10_1038_s41398_019_0488_4 crossref_primary_10_1038_s41591_020_1043_9 crossref_primary_10_1093_nar_gks042 crossref_primary_10_1111_tbed_14760 crossref_primary_10_1186_s13073_017_0492_3 crossref_primary_10_1186_s13059_016_1053_6 crossref_primary_10_1007_s10565_020_09572_y crossref_primary_10_1038_srep29477 crossref_primary_10_1093_biomtc_ujae146 crossref_primary_10_1158_0008_5472_CAN_16_0481 crossref_primary_10_1084_jem_20180484 crossref_primary_10_1109_TNB_2013_2296978 crossref_primary_10_1038_s41591_018_0071_1 crossref_primary_10_1093_biostatistics_kxt053 crossref_primary_10_1371_journal_pgen_1009596 crossref_primary_10_1016_j_ccell_2018_03_017 crossref_primary_10_1038_s41467_022_28280_1 crossref_primary_10_1371_journal_pone_0173847 crossref_primary_10_1530_JOE_18_0412 crossref_primary_10_1038_s41586_022_05377_7 crossref_primary_10_1016_j_ajhg_2018_10_018 crossref_primary_10_1002_jev2_12172 crossref_primary_10_1371_journal_pone_0180003 crossref_primary_10_1016_j_cels_2025_101346 crossref_primary_10_2217_epi_2021_0205 crossref_primary_10_3389_fnins_2022_915907 crossref_primary_10_1186_s12943_017_0587_x crossref_primary_10_1038_nprot_2013_099 crossref_primary_10_1038_s41467_019_14003_6 crossref_primary_10_1093_nar_gkx326 crossref_primary_10_1016_j_jid_2025_03_019 crossref_primary_10_1093_nar_gkx204 crossref_primary_10_1111_pce_15018 crossref_primary_10_1016_j_actbio_2024_07_056 crossref_primary_10_1155_2014_248090 crossref_primary_10_3389_fphar_2020_00881 crossref_primary_10_1007_s10260_019_00496_4 crossref_primary_10_1016_j_cell_2021_01_001 crossref_primary_10_1186_s13024_018_0289_x crossref_primary_10_1093_nar_gkv473 crossref_primary_10_1038_s41597_020_00642_8 crossref_primary_10_12688_f1000research_50850_3 crossref_primary_10_12688_f1000research_50850_1 crossref_primary_10_1002_biot_201500107 crossref_primary_10_12688_f1000research_50850_2 crossref_primary_10_1186_s12864_019_5686_1 crossref_primary_10_1186_s13040_017_0125_9 crossref_primary_10_1371_journal_pone_0160970 crossref_primary_10_1038_s42003_023_04791_5 crossref_primary_10_1093_bib_bbt018 crossref_primary_10_1371_journal_pbio_3000976 crossref_primary_10_1093_bib_bbs046 crossref_primary_10_1186_gb_2014_15_2_r35 crossref_primary_10_1371_journal_pone_0214588 crossref_primary_10_1093_nar_gkv007 crossref_primary_10_1101_gr_139055_112 crossref_primary_10_1371_journal_pgen_1010932 crossref_primary_10_1038_s41467_021_22399_3 crossref_primary_10_1016_j_neuron_2022_06_003 crossref_primary_10_1371_journal_pone_0227760 crossref_primary_10_1093_nar_gkaf018 crossref_primary_10_1016_j_heliyon_2024_e39607 crossref_primary_10_3389_fncel_2024_1368018 crossref_primary_10_3390_v14122763 crossref_primary_10_1038_nbt_3000 crossref_primary_10_1038_s41598_024_72975_y crossref_primary_10_1007_s13365_020_00890_9 crossref_primary_10_1038_srep31923 crossref_primary_10_1016_j_jaci_2020_04_059 crossref_primary_10_1038_s41597_019_0183_6 crossref_primary_10_3389_fcvm_2023_1068782 crossref_primary_10_1039_D4LC00848K crossref_primary_10_1371_journal_pone_0273766 crossref_primary_10_1016_j_cell_2017_12_014 crossref_primary_10_1093_nar_gkaa1193 crossref_primary_10_1007_s11060_024_04765_5 crossref_primary_10_1016_j_neuron_2020_02_034 crossref_primary_10_1038_s41593_024_01773_6 crossref_primary_10_1111_imb_12247 crossref_primary_10_1186_1471_2105_15_S1_S7 crossref_primary_10_3390_genes13030392 crossref_primary_10_1186_s12859_024_05840_4 crossref_primary_10_1080_09553002_2024_2338518 crossref_primary_10_3389_fnins_2016_00071 crossref_primary_10_7554_eLife_41673 crossref_primary_10_1016_j_celrep_2024_114498 crossref_primary_10_1002_JLB_2A0618_228R crossref_primary_10_1109_ACCESS_2019_2960722 crossref_primary_10_1016_j_drudis_2013_11_001 crossref_primary_10_1016_j_vaccine_2015_04_088 crossref_primary_10_1038_s41598_022_15578_9 crossref_primary_10_1172_JCI143632 crossref_primary_10_1038_s41523_022_00387_0 crossref_primary_10_1016_j_cell_2019_09_021 crossref_primary_10_1186_s12859_019_2840_3 crossref_primary_10_1126_scitranslmed_aay1809 crossref_primary_10_1186_s10020_025_01257_8 crossref_primary_10_1093_nar_gkx456 crossref_primary_10_12688_f1000research_7035_2 crossref_primary_10_1016_j_ccell_2022_07_002 crossref_primary_10_1159_000530929 crossref_primary_10_1038_ng_3646 crossref_primary_10_1038_s41598_017_00267_9 crossref_primary_10_1158_1078_0432_CCR_21_0343 crossref_primary_10_1016_j_immuni_2025_01_007 crossref_primary_10_3390_genes12020237 crossref_primary_10_1038_s41467_022_32856_2 crossref_primary_10_1080_10618600_2018_1546592 crossref_primary_10_1038_s41467_019_11412_5 crossref_primary_10_1242_dmm_049187 crossref_primary_10_1093_molbev_msu226 crossref_primary_10_3389_fimmu_2023_1168784 crossref_primary_10_3390_metabo10070271 crossref_primary_10_1038_nbt_3682 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/biostatistics/kxr054 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1468-4357 |
| ExternalDocumentID | 22285995 |
| Genre | Comparative Study Research Support, Non-U.S. Gov't Evaluation Study Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHGRI NIH HHS grantid: R01HG004059 – fundername: NHGRI NIH HHS grantid: R01 HG005220 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 4.4 48X 53G 5GY 5VS 5WA 6PF 70D AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWTL ABDFA ABDTM ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABZBJ ACGFS ACIPB ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHGBF AHMBA AHXPO AIJHB AJBYB AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG APIBT APWMN ATGXG AXUDD AZVOD BAWUL BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C1A C45 CAG CDBKE CGR COF CS3 CUY CVF CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBD EBS ECM EE~ EIF EJD EMOBN F5P F9B FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NMDNZ NOMLY NPM NTWIH NU- O0~ O9- ODMLO OJQWA OJZSN OK1 OVD P2P PAFKI PEELM PQQKQ Q1. Q5Y RD5 RIG RNI ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJP TN5 TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 7X8 |
| ID | FETCH-LOGICAL-c573t-ebe1ee11080ca14cc1afd976eb86f07e3a61cc9e7d0a88ad548274785c5e6cca2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 444 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000301293800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1468-4357 |
| IngestDate | Thu Oct 02 11:47:44 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c573t-ebe1ee11080ca14cc1afd976eb86f07e3a61cc9e7d0a88ad548274785c5e6cca2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3297825 |
| PMID | 22285995 |
| PQID | 927833823 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_927833823 pubmed_primary_22285995 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-04-01 |
| PublicationDateYYYYMMDD | 2012-04-01 |
| PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Biostatistics (Oxford, England) |
| PublicationTitleAlternate | Biostatistics |
| PublicationYear | 2012 |
| SSID | ssj0022363 |
| Score | 2.5051353 |
| Snippet | The ability to measure gene expression on a genome-wide scale is one of the most promising accomplishments in molecular biology. Microarrays, the technology... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 204 |
| SubjectTerms | Algorithms Analysis of Variance Base Composition Biostatistics Databases, Nucleic Acid - statistics & numerical data Gene Expression Profiling - statistics & numerical data High-Throughput Nucleotide Sequencing - statistics & numerical data Humans Oligonucleotide Array Sequence Analysis - statistics & numerical data Sequence Analysis, RNA - statistics & numerical data |
| Title | Removing technical variability in RNA-seq data using conditional quantile normalization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22285995 https://www.proquest.com/docview/927833823 |
| Volume | 13 |
| WOSCitedRecordID | wos000301293800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAgsTC-1Fe8sBq1XnVzoQqRMUAUVWB6BY5toMqStIHrei_5y5OuyEGlmyRorvL3XfPj5BbDpgikMYwroViYZBbJkPjQ6oSQHiR3EZZtSj8JJJEDgZxr57NmdVjlSufWDlqU2qskbdipITAptXdeMKQNAqbqzWDxiZpBIBk0KjFYN1EgMBXEalVy0WACsRqcy4OWtmwxIUddwu59fE95cgH8BvGrGJNd_-fX3lA9mqQSTvOKg7Jhi2OyI6jnVwek7e-_awKCdRdcAU10QXkzO5k95IOC9pPOmxmJxQHSCnOxr9TSJzN0FUO6WQOCgF_QguEvKN6l_OEvHYfXu4fWU2wwHQkgi8GCvSsxUUArpUXau2p3AA-sZls51zYQLU9rWMrDFdSKhPhzdBQyEhHtg2q90_JVlEW9pxQzxN57iufZzwHPStpNMQ-DQjCU5Yb3iR0JbAUDBi7Eqqw5XyWrkXWJGdO6OnYHdpIsTqFB9Eu_n75kuwClPHdTM0VaeTw89prsq0XoOTpTWUY8Ex6zz-SfcZu |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Removing+technical+variability+in+RNA-seq+data+using+conditional+quantile+normalization&rft.jtitle=Biostatistics+%28Oxford%2C+England%29&rft.au=Hansen%2C+Kasper+D&rft.au=Irizarry%2C+Rafael+A&rft.au=Wu%2C+Zhijin&rft.date=2012-04-01&rft.issn=1468-4357&rft.eissn=1468-4357&rft.volume=13&rft.issue=2&rft.spage=204&rft_id=info:doi/10.1093%2Fbiostatistics%2Fkxr054&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1468-4357&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1468-4357&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1468-4357&client=summon |