Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source
► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture. Growth par...
Saved in:
| Published in: | Bioresource technology Vol. 118; pp. 61 - 66 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Elsevier Ltd
01.08.2012
|
| Subjects: | |
| ISSN: | 0960-8524, 1873-2976, 1873-2976 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture.
Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. |
|---|---|
| AbstractList | Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. ► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture. Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. |
| Author | Abreu, Ana P. Teixeira, José Dragone, Giuliano Fernandes, Bruno Vicente, António A. |
| Author_xml | – sequence: 1 givenname: Ana P. surname: Abreu fullname: Abreu, Ana P. – sequence: 2 givenname: Bruno surname: Fernandes fullname: Fernandes, Bruno – sequence: 3 givenname: António A. surname: Vicente fullname: Vicente, António A. – sequence: 4 givenname: José surname: Teixeira fullname: Teixeira, José – sequence: 5 givenname: Giuliano surname: Dragone fullname: Dragone, Giuliano email: gdragone@deb.uminho.pt, giulianodragone@hotmail.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22705507$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vEzEQhi3UiqaFv1D5yGXD2F7buxIHUFQ-pCIu5Wz5axNHm3WwvYH--zqk5cCllUaay_O-0sxzic6mOHmErgksCRDxfrs0Iabi7WZJgdAl8Dr8FVqQTrKG9lKcoQX0ApqO0_YCXea8BQBGJH2NLiiVlQa5QPZ7-BNLivtNsNjOYwkHXUKccBzwajPG5MdR48M8rnUKGc85TGscJjfnkoIesdMh3ePfOhePdcYxrfV0bNLJ1JIc52T9G3Q-6DH7t4_7Cv38fHO3-trc_vjybfXptrFcstI4y00HxAhtiHZUC21J7wYKvJWMDU473ztDAbiTBjo6EC6YEK1joAkxPbtC7069-xR_zT4XtQvZHg-YfJyzIkxwaFtgL0CBdYJI6OEFKG0JVCeyoteP6Gx23ql9Cjud7tXTuysgToBNMefkh38IAXX0qrbqyas6elXA6_Aa_PBf0IbyV1RJOozPxz-e4r6-_xB8UtkGP1nvQvK2KBfDcxUPDfDDnQ |
| CitedBy_id | crossref_primary_10_3390_microorganisms12040835 crossref_primary_10_1016_j_algal_2018_10_023 crossref_primary_10_1016_j_jwpe_2025_107820 crossref_primary_10_1186_s13213_020_01618_0 crossref_primary_10_5004_dwt_2020_26427 crossref_primary_10_3389_fbioe_2023_1199472 crossref_primary_10_1007_s11101_021_09784_y crossref_primary_10_1016_j_biortech_2019_121879 crossref_primary_10_1016_j_jclepro_2022_132939 crossref_primary_10_1007_s12649_020_01185_0 crossref_primary_10_1111_raq_12700 crossref_primary_10_1007_s13399_025_06802_3 crossref_primary_10_1016_j_jece_2022_108514 crossref_primary_10_1007_s13213_013_0768_9 crossref_primary_10_1007_s10811_016_0919_z crossref_primary_10_1007_s10811_014_0485_1 crossref_primary_10_1007_s10811_024_03425_5 crossref_primary_10_1007_s13399_021_01817_y crossref_primary_10_3390_en13236427 crossref_primary_10_1007_s13399_023_03849_y crossref_primary_10_1016_S1995_7645_14_60313_8 crossref_primary_10_1016_j_bcab_2024_103205 crossref_primary_10_1016_j_biortech_2019_121887 crossref_primary_10_1016_j_biortech_2020_122840 crossref_primary_10_1016_j_rser_2016_02_008 crossref_primary_10_3390_su15021409 crossref_primary_10_1016_j_ibiod_2016_04_005 crossref_primary_10_1016_j_enzmictec_2023_110371 crossref_primary_10_1016_j_biortech_2017_02_057 crossref_primary_10_1016_j_csite_2024_104825 crossref_primary_10_1016_j_rser_2016_04_074 crossref_primary_10_1038_s41598_019_42521_2 crossref_primary_10_1080_11263504_2014_991361 crossref_primary_10_1007_s11270_019_4334_3 crossref_primary_10_1007_s12155_020_10160_5 crossref_primary_10_1002_ep_13334 crossref_primary_10_3390_fermentation8060261 crossref_primary_10_1016_j_enconman_2018_03_022 crossref_primary_10_1016_j_algal_2019_101480 crossref_primary_10_1016_j_egyr_2022_09_143 crossref_primary_10_1134_S1063074019060105 crossref_primary_10_1007_s11356_016_7320_y crossref_primary_10_1016_j_biteb_2021_100676 crossref_primary_10_1016_j_jclepro_2018_05_174 crossref_primary_10_1007_s11783_019_1162_z crossref_primary_10_1016_j_chemosphere_2022_134703 crossref_primary_10_1016_j_algal_2020_102146 crossref_primary_10_1002_elsc_201900071 crossref_primary_10_1016_j_rser_2022_112247 crossref_primary_10_1016_j_biortech_2013_01_034 crossref_primary_10_1016_j_rser_2018_04_066 crossref_primary_10_1007_s11356_023_30470_3 crossref_primary_10_3389_fbioe_2021_628597 crossref_primary_10_1007_s00449_020_02381_x crossref_primary_10_3390_su132011159 crossref_primary_10_1007_s10811_020_02076_6 crossref_primary_10_4491_eer_2018_193 crossref_primary_10_1016_j_chemosphere_2018_11_146 crossref_primary_10_1016_j_scp_2023_101173 crossref_primary_10_1016_j_biortech_2017_01_030 crossref_primary_10_1016_j_scitotenv_2019_01_144 crossref_primary_10_1007_s10532_023_10033_6 crossref_primary_10_1007_s12010_014_1134_5 crossref_primary_10_1016_j_algal_2016_10_014 crossref_primary_10_1016_j_bcab_2024_103341 crossref_primary_10_1002_jctb_6161 crossref_primary_10_3390_su13179882 crossref_primary_10_1016_j_tifs_2023_07_015 crossref_primary_10_1016_j_bej_2020_107741 crossref_primary_10_1016_j_nexus_2022_100122 crossref_primary_10_1016_j_procbio_2016_05_019 crossref_primary_10_1007_s12649_018_0256_3 crossref_primary_10_1007_s11356_021_17427_0 crossref_primary_10_22392_actaquatr_1644988 crossref_primary_10_1186_s13068_017_0707_2 crossref_primary_10_1007_s00253_014_6125_5 crossref_primary_10_1007_s10811_018_1720_y crossref_primary_10_1016_j_algal_2024_103545 crossref_primary_10_1016_j_chemosphere_2018_04_039 crossref_primary_10_1007_s12010_016_2185_6 crossref_primary_10_1016_j_jclepro_2024_142829 crossref_primary_10_1016_j_heliyon_2023_e16656 crossref_primary_10_3390_molecules27154817 crossref_primary_10_1007_s10811_022_02685_3 crossref_primary_10_1016_j_rser_2019_04_052 crossref_primary_10_1016_j_cjche_2017_08_010 crossref_primary_10_1016_j_biortech_2022_127021 crossref_primary_10_1016_j_jece_2019_103135 crossref_primary_10_1016_j_jphotobiol_2016_07_025 crossref_primary_10_1016_j_scitotenv_2019_06_024 crossref_primary_10_1016_j_bcab_2017_07_007 crossref_primary_10_1016_j_ecoleng_2016_06_017 crossref_primary_10_3389_fmicb_2020_00875 crossref_primary_10_1002_ep_13625 crossref_primary_10_1016_j_apenergy_2015_05_045 crossref_primary_10_1016_j_jcou_2019_11_023 crossref_primary_10_1016_j_enconman_2016_07_033 crossref_primary_10_1016_j_jclepro_2019_01_111 crossref_primary_10_1007_s10811_021_02593_y crossref_primary_10_5004_dwt_2019_24810 crossref_primary_10_1080_20479700_2024_2405326 crossref_primary_10_1016_j_biortech_2015_08_100 crossref_primary_10_1089_ind_2019_0011 crossref_primary_10_1080_10408398_2018_1432561 crossref_primary_10_1515_psr_2020_0059 crossref_primary_10_1016_j_jbiotec_2014_11_026 crossref_primary_10_1016_j_rser_2019_01_064 crossref_primary_10_1016_j_algal_2016_08_018 crossref_primary_10_1080_19443994_2013_769917 crossref_primary_10_1016_j_tifs_2024_104386 crossref_primary_10_1016_j_biortech_2014_09_084 crossref_primary_10_4491_eer_2016_024 crossref_primary_10_1007_s13399_021_01906_y crossref_primary_10_1007_s11356_021_16163_9 crossref_primary_10_1080_09593330_2024_2311082 crossref_primary_10_1007_s10811_025_03479_z crossref_primary_10_1007_s13369_023_08187_9 crossref_primary_10_1088_1742_6596_1655_1_012123 crossref_primary_10_1016_j_renene_2021_07_123 crossref_primary_10_1016_j_jenvman_2020_110693 crossref_primary_10_1016_j_algal_2022_102753 crossref_primary_10_1186_s13068_019_1367_1 crossref_primary_10_1016_j_biortech_2014_11_080 crossref_primary_10_1016_j_biombioe_2023_106795 crossref_primary_10_1016_j_algal_2020_102060 crossref_primary_10_1080_10826068_2014_995812 crossref_primary_10_1016_j_biteb_2019_100255 crossref_primary_10_1051_e3sconf_202562701008 crossref_primary_10_1080_17597269_2020_1763094 crossref_primary_10_1088_1755_1315_299_1_012013 crossref_primary_10_1002_cjce_24245 crossref_primary_10_3389_fbioe_2017_00043 crossref_primary_10_1016_j_jchromb_2018_04_040 crossref_primary_10_1016_j_jece_2020_104518 crossref_primary_10_1007_s11270_023_06780_0 crossref_primary_10_3390_ijms17060962 crossref_primary_10_1016_j_procbio_2019_11_022 crossref_primary_10_1007_s10811_017_1181_8 crossref_primary_10_1016_j_algal_2016_03_022 crossref_primary_10_7717_peerj_3473 crossref_primary_10_1016_j_jclepro_2022_135236 crossref_primary_10_1016_j_watres_2018_03_050 crossref_primary_10_1002_jctb_7188 crossref_primary_10_3390_md21030190 crossref_primary_10_1016_j_cej_2013_01_100 crossref_primary_10_1080_17597269_2019_1580970 crossref_primary_10_3390_microorganisms12040676 crossref_primary_10_3390_su14010499 crossref_primary_10_1016_j_jclepro_2020_124352 crossref_primary_10_1016_j_enconman_2019_06_017 crossref_primary_10_1007_s12155_016_9780_9 crossref_primary_10_1016_j_biortech_2017_04_073 crossref_primary_10_1016_j_algal_2021_102485 crossref_primary_10_1016_j_algal_2022_102895 crossref_primary_10_1016_j_algal_2015_09_009 crossref_primary_10_1016_j_scitotenv_2020_142168 crossref_primary_10_1016_j_biortech_2013_03_144 crossref_primary_10_1007_s10098_022_02460_5 crossref_primary_10_1007_s11694_024_02993_x crossref_primary_10_1007_s13762_021_03436_6 crossref_primary_10_1007_s00449_013_0922_6 crossref_primary_10_1007_s13399_022_02313_7 crossref_primary_10_1007_s11783_016_0831_4 crossref_primary_10_1016_j_jclepro_2021_126926 crossref_primary_10_3390_md23030120 crossref_primary_10_1016_j_algal_2017_09_023 crossref_primary_10_1016_j_jenvman_2019_06_085 crossref_primary_10_17341_gazimmfd_337627 crossref_primary_10_3390_su141710759 crossref_primary_10_1080_19443994_2016_1186572 crossref_primary_10_1016_j_psep_2017_09_018 crossref_primary_10_1007_s12649_023_02081_z crossref_primary_10_1016_j_rser_2019_06_001 crossref_primary_10_1007_s13762_020_02909_4 crossref_primary_10_1016_j_jwpe_2022_102932 crossref_primary_10_1016_j_jece_2021_105375 crossref_primary_10_1007_s11705_016_1602_2 crossref_primary_10_3390_plants9040463 crossref_primary_10_1080_10826068_2015_1031398 crossref_primary_10_1007_s00449_020_02350_4 crossref_primary_10_1038_s41598_021_86372_2 crossref_primary_10_1007_s10499_022_00857_z crossref_primary_10_1016_j_jenvman_2024_121796 crossref_primary_10_1016_j_biteb_2023_101686 crossref_primary_10_1016_j_biortech_2016_08_032 crossref_primary_10_1016_j_biortech_2020_123767 crossref_primary_10_1007_s10811_016_0841_4 crossref_primary_10_1016_j_algal_2019_101649 crossref_primary_10_3389_fbioe_2020_588210 crossref_primary_10_1007_s41207_023_00451_6 crossref_primary_10_1016_j_biortech_2017_03_041 crossref_primary_10_1007_s11356_017_9742_6 crossref_primary_10_1016_j_biortech_2016_09_070 crossref_primary_10_1007_s40995_020_01055_3 crossref_primary_10_1007_s12010_016_2330_2 crossref_primary_10_1007_s42452_025_06588_z crossref_primary_10_1016_j_hazadv_2025_100769 crossref_primary_10_1016_j_jcou_2020_101235 crossref_primary_10_1016_j_biortech_2019_122351 crossref_primary_10_1016_j_phytochem_2017_08_018 crossref_primary_10_1016_j_biortech_2019_122232 crossref_primary_10_4491_eer_2015_151 crossref_primary_10_1016_j_watres_2021_117464 crossref_primary_10_1016_j_algal_2019_101753 crossref_primary_10_1080_10889868_2017_1282936 crossref_primary_10_1016_j_bcab_2020_101799 crossref_primary_10_1080_03610470_2024_2417133 crossref_primary_10_1016_j_biortech_2017_03_156 crossref_primary_10_1002_jctb_4829 crossref_primary_10_1016_j_algal_2024_103616 crossref_primary_10_1016_j_cscee_2025_101239 crossref_primary_10_1016_j_bej_2021_108299 crossref_primary_10_1016_j_jenvman_2015_05_037 crossref_primary_10_1089_ind_2017_0006 crossref_primary_10_1016_j_biortech_2013_04_032 crossref_primary_10_1016_j_envres_2023_116533 crossref_primary_10_1016_j_biortech_2019_03_075 crossref_primary_10_1186_s13068_015_0327_7 crossref_primary_10_1016_j_jclepro_2020_124030 crossref_primary_10_1080_17597269_2020_1802809 crossref_primary_10_1016_j_biortech_2021_125532 crossref_primary_10_1007_s11356_021_14357_9 crossref_primary_10_1186_s13068_021_01890_5 crossref_primary_10_1007_s12649_024_02751_6 crossref_primary_10_1016_j_ijhydene_2015_12_010 crossref_primary_10_1016_j_biortech_2016_11_060 crossref_primary_10_1016_j_biotechadv_2018_04_004 crossref_primary_10_1016_j_jclepro_2017_02_026 crossref_primary_10_2216_17_82_1 crossref_primary_10_1007_s12223_019_00732_0 crossref_primary_10_1016_j_procbio_2018_09_024 crossref_primary_10_1088_1755_1315_390_1_012020 crossref_primary_10_1007_s00253_012_4398_0 crossref_primary_10_1007_s13205_015_0314_5 crossref_primary_10_1007_s00248_024_02376_1 crossref_primary_10_3390_v15102010 crossref_primary_10_1016_j_biortech_2019_121568 crossref_primary_10_1016_j_cej_2022_139631 crossref_primary_10_1016_j_jclepro_2021_129436 crossref_primary_10_1007_s10811_020_02163_8 crossref_primary_10_1002_biot_201500617 crossref_primary_10_1016_j_biteb_2020_100604 crossref_primary_10_1016_j_biortech_2014_07_096 crossref_primary_10_1051_e3sconf_202343604001 crossref_primary_10_3390_su15031767 crossref_primary_10_1186_s13068_024_02547_9 crossref_primary_10_1016_j_algal_2021_102508 crossref_primary_10_1016_j_rser_2022_112284 crossref_primary_10_3390_en17194819 crossref_primary_10_1016_j_algal_2024_103483 crossref_primary_10_1016_j_biortech_2016_01_044 crossref_primary_10_1007_s10811_023_03142_5 crossref_primary_10_1016_j_envres_2023_117284 crossref_primary_10_1016_j_scitotenv_2020_137594 crossref_primary_10_1016_j_bcab_2021_102239 crossref_primary_10_1007_s10811_023_03082_0 crossref_primary_10_1016_j_biortech_2014_01_032 crossref_primary_10_1016_j_biortech_2017_06_147 crossref_primary_10_1007_s12010_015_1646_7 crossref_primary_10_3390_molecules28083603 crossref_primary_10_1016_j_biortech_2013_11_047 crossref_primary_10_1016_j_algal_2018_04_006 crossref_primary_10_1016_j_algal_2017_07_014 crossref_primary_10_1016_j_jenvman_2015_03_003 crossref_primary_10_3390_fermentation8100474 crossref_primary_10_1016_j_scitotenv_2021_149504 crossref_primary_10_1016_j_watres_2016_02_062 crossref_primary_10_3390_ijerph19063674 crossref_primary_10_1002_cben_201600023 crossref_primary_10_1016_j_heliyon_2022_e10766 crossref_primary_10_1016_j_protis_2024_126035 crossref_primary_10_1016_j_rser_2014_02_026 crossref_primary_10_1080_00207233_2017_1361611 crossref_primary_10_1007_s10123_024_00600_z crossref_primary_10_1007_s13762_021_03423_x crossref_primary_10_1002_bbb_1726 crossref_primary_10_1016_j_nbt_2019_02_001 |
| Cites_doi | 10.1016/j.biortech.2006.10.005 10.1007/s10811-008-9341-5 10.1016/j.procbio.2003.08.003 10.1007/s10529-009-9975-7 10.1099/00221287-18-1-107 10.1007/BF02186320 10.1016/j.foodchem.2008.07.005 10.1016/j.apenergy.2010.12.064 10.1007/s12010-009-8783-9 10.1007/s10811-008-9355-z 10.1007/BF02930672 10.1016/j.apenergy.2011.03.012 10.1016/S0032-9592(98)00101-0 10.1007/BF00508106 10.1016/j.biortech.2010.06.159 10.1002/bit.260260707 10.1016/j.procbio.2004.01.016 10.1016/j.biombioe.2011.02.036 10.1016/S1369-703X(00)00080-2 10.1016/j.renene.2011.02.002 10.3168/jds.S0022-0302(73)85321-4 10.1016/j.procbio.2008.07.014 10.1016/j.biombioe.2011.01.045 10.1016/0960-8524(96)00036-3 10.1016/j.jtice.2011.11.007 10.1186/1475-2859-2-2 10.1016/j.rser.2009.10.009 10.1099/00221287-43-1-139 10.1016/j.biotechadv.2012.01.002 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7S9 L.6 |
| DOI | 10.1016/j.biortech.2012.05.055 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| EndPage | 66 |
| ExternalDocumentID | 22705507 10_1016_j_biortech_2012_05_055 S0960852412007997 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 7QO 8FD FR3 P64 7S9 L.6 |
| ID | FETCH-LOGICAL-c573t-dc5b801b6ab1ad2a6ac19df2054733fdade9db2005d7b082f1563664d30a11b93 |
| ISICitedReferencesCount | 299 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307259600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Sun Sep 28 01:27:45 EDT 2025 Tue Oct 07 09:32:59 EDT 2025 Mon Sep 29 05:13:50 EDT 2025 Mon Jul 21 05:50:32 EDT 2025 Sat Nov 29 03:59:01 EST 2025 Tue Nov 18 21:34:02 EST 2025 Fri Feb 23 02:34:26 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cheese whey Microalgae Mixotrophic Biofuels Chlorella vulgaris |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c573t-dc5b801b6ab1ad2a6ac19df2054733fdade9db2005d7b082f1563664d30a11b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960852412007997 |
| PMID | 22705507 |
| PQID | 1024100167 |
| PQPubID | 23479 |
| PageCount | 6 |
| ParticipantIDs | proquest_miscellaneous_1365044039 proquest_miscellaneous_1038617090 proquest_miscellaneous_1024100167 pubmed_primary_22705507 crossref_primary_10_1016_j_biortech_2012_05_055 crossref_citationtrail_10_1016_j_biortech_2012_05_055 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_05_055 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-01 |
| PublicationDateYYYYMMDD | 2012-08-01 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2012 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lee, Ding, Hoe, Low (b0110) 1996; 8 Dragone, Mussatto, Oliveira, Teixeira (b0055) 2009; 112 Dragone, Fernandes, Abreu, Vicente, Teixeira (b0045) 2011; 88 Dragone, Mussatto, Almeida e Silva, Teixeira (b0050) 2011; 35 Dvořáková-Hladká (b0060) 1966; 8 Sun, Wang, Li, Huang, Chen (b0155) 2008; 43 Yu, Jia, Dai (b0175) 2009; 21 Dere, Güneş, Sivaci (b0035) 1998; 22 Liu, Duan, Li, Xu, Cai, Hu (b0120) 2009; 21 Abad, S., Turon, X., in press. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol. Adv. Chen, Yeh, Aisyah, Lee, Chang (b0025) 2011; 102 Yang, Hua, Shimizu (b0170) 2000; 6 Brennan, Owende (b0015) 2010; 14 Fernandes, Dragone, Teixeira, Vicente (b0070) 2010; 161 González Siso (b0080) 1996; 57 Liang, Sarkany, Cui (b0115) 2009; 31 Rodríguez-López (b0140) 1966; 43 Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J., in press. Carbon metabolism and energy conversion of Lalucat, Imperial, Parés (b0105) 1984; 26 a comparison between acid and enzymatic methods. J. Appl. Phycol., 1–6. Freyssinet, Nigon (b0075) 1980; 9 Heredia-Arroyo, Wei, Ruan, Hu (b0085) 2011; 35 Richmond (b0135) 2004 Samejima, Myers (b0145) 1958; 18 Shi, Liu, Zhang, Chen (b0150) 1999; 34 Das, Aziz, Obbard (b0030) 2011; 36 Viitanen, Vasala, Neubauer, Alatossava (b0160) 2003; 2 Dragone, Fernandes, Vicente, Teixeira (b0040) 2010; vol. 2 Mavropoulou, Kosikowski (b0125) 1973; 56 Cerón García, Sánchez Mirón, Fernández Sevilla, Molina Grima, García Camacho (b0020) 2005; 40 Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G., in press. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Ip, Wong, Chen (b0090) 2004; 39 Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., Vicente, A., in press. Starch determination in Bhatnagar, Chinnasamy, Singh, Das (b0010) 2011; 88 Ozmihci, Kargi (b0130) 2007; 98 sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J. Appl. Phycol., 1–12. Kong, Song, Cao, Yang, Hua, Xia (b0100) 2011; 10 using response surface methodology. J. Taiwan Inst. Chem. Eng. Liu (10.1016/j.biortech.2012.05.055_b0120) 2009; 21 Mavropoulou (10.1016/j.biortech.2012.05.055_b0125) 1973; 56 Bhatnagar (10.1016/j.biortech.2012.05.055_b0010) 2011; 88 10.1016/j.biortech.2012.05.055_b0005 Fernandes (10.1016/j.biortech.2012.05.055_b0070) 2010; 161 Shi (10.1016/j.biortech.2012.05.055_b0150) 1999; 34 10.1016/j.biortech.2012.05.055_b0065 10.1016/j.biortech.2012.05.055_b0165 Cerón García (10.1016/j.biortech.2012.05.055_b0020) 2005; 40 Viitanen (10.1016/j.biortech.2012.05.055_b0160) 2003; 2 Rodríguez-López (10.1016/j.biortech.2012.05.055_b0140) 1966; 43 Dragone (10.1016/j.biortech.2012.05.055_b0050) 2011; 35 Dragone (10.1016/j.biortech.2012.05.055_b0040) 2010; vol. 2 Richmond (10.1016/j.biortech.2012.05.055_b0135) 2004 Chen (10.1016/j.biortech.2012.05.055_b0025) 2011; 102 Yu (10.1016/j.biortech.2012.05.055_b0175) 2009; 21 Yang (10.1016/j.biortech.2012.05.055_b0170) 2000; 6 Das (10.1016/j.biortech.2012.05.055_b0030) 2011; 36 Lalucat (10.1016/j.biortech.2012.05.055_b0105) 1984; 26 Sun (10.1016/j.biortech.2012.05.055_b0155) 2008; 43 Dragone (10.1016/j.biortech.2012.05.055_b0045) 2011; 88 Dvořáková-Hladká (10.1016/j.biortech.2012.05.055_b0060) 1966; 8 Freyssinet (10.1016/j.biortech.2012.05.055_b0075) 1980; 9 González Siso (10.1016/j.biortech.2012.05.055_b0080) 1996; 57 Dragone (10.1016/j.biortech.2012.05.055_b0055) 2009; 112 Lee (10.1016/j.biortech.2012.05.055_b0110) 1996; 8 Heredia-Arroyo (10.1016/j.biortech.2012.05.055_b0085) 2011; 35 Dere (10.1016/j.biortech.2012.05.055_b0035) 1998; 22 Ip (10.1016/j.biortech.2012.05.055_b0090) 2004; 39 Liang (10.1016/j.biortech.2012.05.055_b0115) 2009; 31 Ozmihci (10.1016/j.biortech.2012.05.055_b0130) 2007; 98 Brennan (10.1016/j.biortech.2012.05.055_b0015) 2010; 14 10.1016/j.biortech.2012.05.055_b0095 Kong (10.1016/j.biortech.2012.05.055_b0100) 2011; 10 Samejima (10.1016/j.biortech.2012.05.055_b0145) 1958; 18 |
| References_xml | – volume: 31 start-page: 1043 year: 2009 end-page: 1049 ident: b0115 article-title: Biomass and lipid productivities of publication-title: Biotechnol. Lett. – volume: 88 start-page: 3331 year: 2011 end-page: 3335 ident: b0045 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy – volume: 21 start-page: 127 year: 2009 end-page: 133 ident: b0175 article-title: Growth characteristics of the cyanobacterium publication-title: J. Appl. Phycol. – volume: 36 start-page: 2524 year: 2011 end-page: 2528 ident: b0030 article-title: Two phase microalgae growth in the open system for enhanced lipid productivity publication-title: Renewable Energy – volume: 18 start-page: 107 year: 1958 end-page: 117 ident: b0145 article-title: On the heterotrophic growth of publication-title: J. Gen. Microbiol. – volume: 39 start-page: 1761 year: 2004 end-page: 1766 ident: b0090 article-title: Enhanced production of astaxanthin by the green microalga publication-title: Process Biochem. – reference: Abad, S., Turon, X., in press. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol. Adv. – volume: 98 start-page: 2978 year: 2007 end-page: 2984 ident: b0130 article-title: Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations publication-title: Bioresour. Technol. – volume: 35 start-page: 1977 year: 2011 end-page: 1982 ident: b0050 article-title: Optimal fermentation conditions for maximizing the ethanol production by publication-title: Biomass Bioenergy – volume: 43 start-page: 1288 year: 2008 end-page: 1292 ident: b0155 article-title: Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic publication-title: Process Biochem. – volume: 35 start-page: 2245 year: 2011 end-page: 2253 ident: b0085 article-title: Mixotrophic cultivation of publication-title: Biomass Bioenergy – reference: using response surface methodology. J. Taiwan Inst. Chem. Eng. – volume: 40 start-page: 297 year: 2005 end-page: 305 ident: b0020 article-title: Mixotrophic growth of the microalga publication-title: Process Biochem. – volume: 57 start-page: 1 year: 1996 end-page: 11 ident: b0080 article-title: The biotechnological utilization of cheese whey: a review publication-title: Bioresour. Technol. – volume: 2 start-page: 1 year: 2003 end-page: 10 ident: b0160 article-title: Cheese whey-induced high-cell-density production of recombinant proteins in publication-title: Microb. Cell Fact. – volume: 161 start-page: 218 year: 2010 end-page: 226 ident: b0070 article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content publication-title: Appl. Biochem. Biotechnol. – reference: Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., Vicente, A., in press. Starch determination in – volume: 34 start-page: 341 year: 1999 end-page: 347 ident: b0150 article-title: Production of biomass and lutein by publication-title: Process Biochem. – volume: 102 start-page: 71 year: 2011 end-page: 81 ident: b0025 article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review publication-title: Bioresour. Technol. – volume: 8 start-page: 354 year: 1966 end-page: 361 ident: b0060 article-title: Utilization of organic substrates during mixotrophic and heterotrophic cultivation of algae publication-title: Biol. Plant. – reference: sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J. Appl. Phycol., 1–12. – volume: 112 start-page: 929 year: 2009 end-page: 935 ident: b0055 article-title: Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation publication-title: Food Chem. – volume: 22 start-page: 13 year: 1998 end-page: 18 ident: b0035 article-title: Spectrophotometric determination of chlorophyll – a, b and total carotenoid contents of some algae species using different solvents publication-title: Turk. J. Bot. – reference: Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G., in press. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by – volume: 8 start-page: 163 year: 1996 end-page: 169 ident: b0110 article-title: Mixotrophic growth of publication-title: J. Appl. Phycol. – volume: 6 start-page: 87 year: 2000 end-page: 102 ident: b0170 article-title: Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions publication-title: Biochem. Eng. J. – volume: 26 start-page: 677 year: 1984 end-page: 681 ident: b0105 article-title: Utilization of light for the assimilation of organic matter in publication-title: Biotechnol. Bioeng. – volume: 88 start-page: 3425 year: 2011 end-page: 3431 ident: b0010 article-title: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters publication-title: Appl. Energy – volume: 10 start-page: 11620 year: 2011 end-page: 11630 ident: b0100 article-title: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of publication-title: Afr. J. Biotechnol. – volume: vol. 2 start-page: 1355 year: 2010 end-page: 1366 ident: b0040 article-title: Third generation biofuels from microalgae publication-title: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology – year: 2004 ident: b0135 article-title: Handbook of microalgal culture: biotechnology and applied phycology – volume: 43 start-page: 139 year: 1966 end-page: 143 ident: b0140 article-title: Utilization of sugars by publication-title: J. Gen. Microbiol. – volume: 14 start-page: 557 year: 2010 end-page: 577 ident: b0015 article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renewable Sustainable Energy Rev. – reference: – a comparison between acid and enzymatic methods. J. Appl. Phycol., 1–6. – volume: 56 start-page: 1128 year: 1973 end-page: 1134 ident: b0125 article-title: Composition, solubility, and stability of whey powders publication-title: J. Dairy Sci. – reference: Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J., in press. Carbon metabolism and energy conversion of – volume: 9 start-page: 295 year: 1980 end-page: 303 ident: b0075 article-title: Growth of publication-title: Appl. Microbiol. Biotechnol. – volume: 21 start-page: 239 year: 2009 end-page: 246 ident: b0120 article-title: Effects of organic carbon sources on growth, photosynthesis, and respiration of publication-title: J. Appl. Phycol. – volume: 10 start-page: 11620 issue: 55 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0100 article-title: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation publication-title: Afr. J. Biotechnol. – volume: 98 start-page: 2978 issue: 16 year: 2007 ident: 10.1016/j.biortech.2012.05.055_b0130 article-title: Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.10.005 – volume: 21 start-page: 127 issue: 1 year: 2009 ident: 10.1016/j.biortech.2012.05.055_b0175 article-title: Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation publication-title: J. Appl. Phycol. doi: 10.1007/s10811-008-9341-5 – volume: 39 start-page: 1761 issue: 11 year: 2004 ident: 10.1016/j.biortech.2012.05.055_b0090 article-title: Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture publication-title: Process Biochem. doi: 10.1016/j.procbio.2003.08.003 – volume: 31 start-page: 1043 issue: 7 year: 2009 ident: 10.1016/j.biortech.2012.05.055_b0115 article-title: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions publication-title: Biotechnol. Lett. doi: 10.1007/s10529-009-9975-7 – volume: 18 start-page: 107 year: 1958 ident: 10.1016/j.biortech.2012.05.055_b0145 article-title: On the heterotrophic growth of Chlorella pyrenoidosa publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-18-1-107 – volume: 8 start-page: 163 issue: 2 year: 1996 ident: 10.1016/j.biortech.2012.05.055_b0110 article-title: Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor publication-title: J. Appl. Phycol. doi: 10.1007/BF02186320 – volume: 112 start-page: 929 issue: 4 year: 2009 ident: 10.1016/j.biortech.2012.05.055_b0055 article-title: Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation publication-title: Food Chem. doi: 10.1016/j.foodchem.2008.07.005 – volume: 88 start-page: 3425 issue: 10 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0010 article-title: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.12.064 – volume: 161 start-page: 218 issue: 1 year: 2010 ident: 10.1016/j.biortech.2012.05.055_b0070 article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-009-8783-9 – volume: 21 start-page: 239 issue: 2 year: 2009 ident: 10.1016/j.biortech.2012.05.055_b0120 article-title: Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum publication-title: J. Appl. Phycol. doi: 10.1007/s10811-008-9355-z – volume: 8 start-page: 354 issue: 5 year: 1966 ident: 10.1016/j.biortech.2012.05.055_b0060 article-title: Utilization of organic substrates during mixotrophic and heterotrophic cultivation of algae publication-title: Biol. Plant. doi: 10.1007/BF02930672 – volume: 88 start-page: 3331 issue: 10 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0045 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.012 – volume: 34 start-page: 341 issue: 4 year: 1999 ident: 10.1016/j.biortech.2012.05.055_b0150 article-title: Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures publication-title: Process Biochem. doi: 10.1016/S0032-9592(98)00101-0 – volume: 9 start-page: 295 issue: 4 year: 1980 ident: 10.1016/j.biortech.2012.05.055_b0075 article-title: Growth of Euglena gracilis on whey publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00508106 – volume: 102 start-page: 71 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0025 article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.159 – volume: vol. 2 start-page: 1355 year: 2010 ident: 10.1016/j.biortech.2012.05.055_b0040 article-title: Third generation biofuels from microalgae – volume: 26 start-page: 677 issue: 7 year: 1984 ident: 10.1016/j.biortech.2012.05.055_b0105 article-title: Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.260260707 – volume: 40 start-page: 297 issue: 1 year: 2005 ident: 10.1016/j.biortech.2012.05.055_b0020 article-title: Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition publication-title: Process Biochem. doi: 10.1016/j.procbio.2004.01.016 – ident: 10.1016/j.biortech.2012.05.055_b0065 – volume: 35 start-page: 2245 issue: 5 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0085 article-title: Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.02.036 – volume: 6 start-page: 87 issue: 2 year: 2000 ident: 10.1016/j.biortech.2012.05.055_b0170 article-title: Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions publication-title: Biochem. Eng. J. doi: 10.1016/S1369-703X(00)00080-2 – volume: 36 start-page: 2524 issue: 9 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0030 article-title: Two phase microalgae growth in the open system for enhanced lipid productivity publication-title: Renewable Energy doi: 10.1016/j.renene.2011.02.002 – volume: 22 start-page: 13 issue: 1 year: 1998 ident: 10.1016/j.biortech.2012.05.055_b0035 article-title: Spectrophotometric determination of chlorophyll – a, b and total carotenoid contents of some algae species using different solvents publication-title: Turk. J. Bot. – volume: 56 start-page: 1128 issue: 9 year: 1973 ident: 10.1016/j.biortech.2012.05.055_b0125 article-title: Composition, solubility, and stability of whey powders publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(73)85321-4 – year: 2004 ident: 10.1016/j.biortech.2012.05.055_b0135 – volume: 43 start-page: 1288 issue: 11 year: 2008 ident: 10.1016/j.biortech.2012.05.055_b0155 article-title: Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta) publication-title: Process Biochem. doi: 10.1016/j.procbio.2008.07.014 – volume: 35 start-page: 1977 issue: 5 year: 2011 ident: 10.1016/j.biortech.2012.05.055_b0050 article-title: Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2011.01.045 – volume: 57 start-page: 1 issue: 1 year: 1996 ident: 10.1016/j.biortech.2012.05.055_b0080 article-title: The biotechnological utilization of cheese whey: a review publication-title: Bioresour. Technol. doi: 10.1016/0960-8524(96)00036-3 – ident: 10.1016/j.biortech.2012.05.055_b0095 doi: 10.1016/j.jtice.2011.11.007 – volume: 2 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.biortech.2012.05.055_b0160 article-title: Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-2-2 – volume: 14 start-page: 557 issue: 2 year: 2010 ident: 10.1016/j.biortech.2012.05.055_b0015 article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2009.10.009 – ident: 10.1016/j.biortech.2012.05.055_b0165 – volume: 43 start-page: 139 issue: 1 year: 1966 ident: 10.1016/j.biortech.2012.05.055_b0140 article-title: Utilization of sugars by Chlorella under various conditions publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-43-1-139 – ident: 10.1016/j.biortech.2012.05.055_b0005 doi: 10.1016/j.biotechadv.2012.01.002 |
| SSID | ssj0003172 |
| Score | 2.553134 |
| Snippet | ► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch... Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 61 |
| SubjectTerms | analysis Autotrophic Processes Autotrophic Processes - drug effects Autotrophic Processes - radiation effects Biofuels biomass production biosynthesis byproducts carbon Carbon - metabolism Carbon - pharmacology Cell Culture Techniques Cell Culture Techniques - methods Cheese whey Chlorella vulgaris Chlorella vulgaris - drug effects Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism Chlorella vulgaris - radiation effects culture media Dairying drug effects Galactose Galactose - metabolism glucose Glucose - metabolism growth & development Industrial Waste Industrial Waste - analysis industrial wastes Light lipids Lipids - analysis Lipids - biosynthesis metabolism methods Microalgae Microalgae - drug effects Microalgae - growth & development Microalgae - metabolism Microalgae - radiation effects Mixotrophic nutrients Organic Chemicals Organic Chemicals - metabolism Organic Chemicals - pharmacology organic wastes pharmacology Pigments, Biological Pigments, Biological - metabolism proteins Proteins - analysis radiation effects starch Starch - biosynthesis Starch - metabolism whey powder |
| Title | Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source |
| URI | https://dx.doi.org/10.1016/j.biortech.2012.05.055 https://www.ncbi.nlm.nih.gov/pubmed/22705507 https://www.proquest.com/docview/1024100167 https://www.proquest.com/docview/1038617090 https://www.proquest.com/docview/1365044039 |
| Volume | 118 |
| WOSCitedRecordID | wos000307259600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dgl4QDBu4zIZCfFShSV2ndiP1dQJ0Cg8dKhvkZM4kGlKStKW8sRf5zi206KxCw9IUVQlsZPmfLGPz-1D6DWRKidBnno8pLBACSLlJYL7HslyIaWe4_y8JZuIJhM-m4nPvd4vlwuzOo_Kkq_XYv5fRQ3HQNg6dfYfxN11CgfgNwgd9iB22N9I8B-LdbWoq_m3Im3JaC19mYm7gNW5DncarJY6haNoBsvGJLV0BB6ZLOqfgx8SpD9ow9V1rmaqK1gn0Imx9f_hCS6gS3N4sLhgpx_BintpAiflJpXMGa8bi66ycme-FDpaVNmyBjDeVBtj61QVa1XU0jkutg0WOvKDO4OFtTyGvseZSZ3uBmE7Cpth1NRntxOyYWW5MNQbq8PZ26TQUcmtY0nbdRlsbDO5OYf-5FN8fHpyEk_Hs-mb-XdP045p97zlYNlBuyRigvfR7uj9ePahm8xBvWodUe6Zt5LM_37ry_Sby9YvrR4zvY_u2QUIHhngPEA9Ve6hu6OvtS3CovbQ7SPHAghntgpWPkTpFrjwFrhwleMOXNiBC7fgwhtw4RZcuAUXlg224MIGXNig6BE6PR5Pj955lqbDS1lEF16WsgT0nCSUSSAzIkOZBiLLia9prWmeyUyJLNHWyyxKQOPMAxbSMBxm1JdBkAj6GPXLqlRPEWaRLyn3icqVHGaSS8GVokQSwXKVU7GPmHu5cWpr2GsqlfPYBSuexU4osRZK7DPY2D467NrNTRWXa1sIJ7vY6qJGx4wBf9e2feWEHYO0tAdOlqpaNtAIFOY28-eqayjXLAnCv-IaCgur4dDXb-SJQVP3vwjRBbL86NkN7vAc3dl8oS9Qf1Ev1Ut0K10tiqY-QDvRjB_YL-I3dm_etA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixotrophic+cultivation+of+Chlorella+vulgaris+using+industrial+dairy+waste+as+organic+carbon+source&rft.jtitle=Bioresource+technology&rft.au=Abreu%2C+Ana+P&rft.au=Fernandes%2C+Bruno&rft.au=Vicente%2C+Antonio+A&rft.au=Teixeira%2C+Jose&rft.date=2012-08-01&rft.issn=0960-8524&rft.volume=118&rft.spage=61&rft.epage=66&rft_id=info:doi/10.1016%2Fj.biortech.2012.05.055&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |