Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source

► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture. Growth par...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioresource technology Ročník 118; s. 61 - 66
Hlavní autoři: Abreu, Ana P., Fernandes, Bruno, Vicente, António A., Teixeira, José, Dragone, Giuliano
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.08.2012
Témata:
ISSN:0960-8524, 1873-2976, 1873-2976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract ► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture. Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.
AbstractList Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.
Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.
► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch productivity was achieved under mixotrophic conditions. ► Highest pigment content (0.74%) was obtained in the photoautotrophic culture. Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium.
Author Abreu, Ana P.
Teixeira, José
Dragone, Giuliano
Fernandes, Bruno
Vicente, António A.
Author_xml – sequence: 1
  givenname: Ana P.
  surname: Abreu
  fullname: Abreu, Ana P.
– sequence: 2
  givenname: Bruno
  surname: Fernandes
  fullname: Fernandes, Bruno
– sequence: 3
  givenname: António A.
  surname: Vicente
  fullname: Vicente, António A.
– sequence: 4
  givenname: José
  surname: Teixeira
  fullname: Teixeira, José
– sequence: 5
  givenname: Giuliano
  surname: Dragone
  fullname: Dragone, Giuliano
  email: gdragone@deb.uminho.pt, giulianodragone@hotmail.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22705507$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi3UiqaFv1D5yGXD2F7buxIHUFQ-pCIu5Wz5axNHm3WwvYH--zqk5cCllUaay_O-0sxzic6mOHmErgksCRDxfrs0Iabi7WZJgdAl8Dr8FVqQTrKG9lKcoQX0ApqO0_YCXea8BQBGJH2NLiiVlQa5QPZ7-BNLivtNsNjOYwkHXUKccBzwajPG5MdR48M8rnUKGc85TGscJjfnkoIesdMh3ePfOhePdcYxrfV0bNLJ1JIc52T9G3Q-6DH7t4_7Cv38fHO3-trc_vjybfXptrFcstI4y00HxAhtiHZUC21J7wYKvJWMDU473ztDAbiTBjo6EC6YEK1joAkxPbtC7069-xR_zT4XtQvZHg-YfJyzIkxwaFtgL0CBdYJI6OEFKG0JVCeyoteP6Gx23ql9Cjud7tXTuysgToBNMefkh38IAXX0qrbqyas6elXA6_Aa_PBf0IbyV1RJOozPxz-e4r6-_xB8UtkGP1nvQvK2KBfDcxUPDfDDnQ
CitedBy_id crossref_primary_10_3390_microorganisms12040835
crossref_primary_10_1016_j_algal_2018_10_023
crossref_primary_10_1016_j_jwpe_2025_107820
crossref_primary_10_1186_s13213_020_01618_0
crossref_primary_10_5004_dwt_2020_26427
crossref_primary_10_3389_fbioe_2023_1199472
crossref_primary_10_1007_s11101_021_09784_y
crossref_primary_10_1016_j_biortech_2019_121879
crossref_primary_10_1016_j_jclepro_2022_132939
crossref_primary_10_1007_s12649_020_01185_0
crossref_primary_10_1111_raq_12700
crossref_primary_10_1007_s13399_025_06802_3
crossref_primary_10_1016_j_jece_2022_108514
crossref_primary_10_1007_s13213_013_0768_9
crossref_primary_10_1007_s10811_016_0919_z
crossref_primary_10_1007_s10811_014_0485_1
crossref_primary_10_1007_s10811_024_03425_5
crossref_primary_10_1007_s13399_021_01817_y
crossref_primary_10_3390_en13236427
crossref_primary_10_1007_s13399_023_03849_y
crossref_primary_10_1016_S1995_7645_14_60313_8
crossref_primary_10_1016_j_bcab_2024_103205
crossref_primary_10_1016_j_biortech_2019_121887
crossref_primary_10_1016_j_biortech_2020_122840
crossref_primary_10_1016_j_rser_2016_02_008
crossref_primary_10_3390_su15021409
crossref_primary_10_1016_j_ibiod_2016_04_005
crossref_primary_10_1016_j_enzmictec_2023_110371
crossref_primary_10_1016_j_biortech_2017_02_057
crossref_primary_10_1016_j_csite_2024_104825
crossref_primary_10_1016_j_rser_2016_04_074
crossref_primary_10_1038_s41598_019_42521_2
crossref_primary_10_1080_11263504_2014_991361
crossref_primary_10_1007_s11270_019_4334_3
crossref_primary_10_1007_s12155_020_10160_5
crossref_primary_10_1002_ep_13334
crossref_primary_10_3390_fermentation8060261
crossref_primary_10_1016_j_enconman_2018_03_022
crossref_primary_10_1016_j_algal_2019_101480
crossref_primary_10_1016_j_egyr_2022_09_143
crossref_primary_10_1134_S1063074019060105
crossref_primary_10_1007_s11356_016_7320_y
crossref_primary_10_1016_j_biteb_2021_100676
crossref_primary_10_1016_j_jclepro_2018_05_174
crossref_primary_10_1007_s11783_019_1162_z
crossref_primary_10_1016_j_chemosphere_2022_134703
crossref_primary_10_1016_j_algal_2020_102146
crossref_primary_10_1002_elsc_201900071
crossref_primary_10_1016_j_rser_2022_112247
crossref_primary_10_1016_j_biortech_2013_01_034
crossref_primary_10_1016_j_rser_2018_04_066
crossref_primary_10_1007_s11356_023_30470_3
crossref_primary_10_3389_fbioe_2021_628597
crossref_primary_10_1007_s00449_020_02381_x
crossref_primary_10_3390_su132011159
crossref_primary_10_1007_s10811_020_02076_6
crossref_primary_10_4491_eer_2018_193
crossref_primary_10_1016_j_chemosphere_2018_11_146
crossref_primary_10_1016_j_scp_2023_101173
crossref_primary_10_1016_j_biortech_2017_01_030
crossref_primary_10_1016_j_scitotenv_2019_01_144
crossref_primary_10_1007_s10532_023_10033_6
crossref_primary_10_1007_s12010_014_1134_5
crossref_primary_10_1016_j_algal_2016_10_014
crossref_primary_10_1016_j_bcab_2024_103341
crossref_primary_10_1002_jctb_6161
crossref_primary_10_3390_su13179882
crossref_primary_10_1016_j_tifs_2023_07_015
crossref_primary_10_1016_j_bej_2020_107741
crossref_primary_10_1016_j_nexus_2022_100122
crossref_primary_10_1016_j_procbio_2016_05_019
crossref_primary_10_1007_s12649_018_0256_3
crossref_primary_10_1007_s11356_021_17427_0
crossref_primary_10_22392_actaquatr_1644988
crossref_primary_10_1186_s13068_017_0707_2
crossref_primary_10_1007_s00253_014_6125_5
crossref_primary_10_1007_s10811_018_1720_y
crossref_primary_10_1016_j_algal_2024_103545
crossref_primary_10_1016_j_chemosphere_2018_04_039
crossref_primary_10_1007_s12010_016_2185_6
crossref_primary_10_1016_j_jclepro_2024_142829
crossref_primary_10_1016_j_heliyon_2023_e16656
crossref_primary_10_3390_molecules27154817
crossref_primary_10_1007_s10811_022_02685_3
crossref_primary_10_1016_j_rser_2019_04_052
crossref_primary_10_1016_j_cjche_2017_08_010
crossref_primary_10_1016_j_biortech_2022_127021
crossref_primary_10_1016_j_jece_2019_103135
crossref_primary_10_1016_j_jphotobiol_2016_07_025
crossref_primary_10_1016_j_scitotenv_2019_06_024
crossref_primary_10_1016_j_bcab_2017_07_007
crossref_primary_10_1016_j_ecoleng_2016_06_017
crossref_primary_10_3389_fmicb_2020_00875
crossref_primary_10_1002_ep_13625
crossref_primary_10_1016_j_apenergy_2015_05_045
crossref_primary_10_1016_j_jcou_2019_11_023
crossref_primary_10_1016_j_enconman_2016_07_033
crossref_primary_10_1016_j_jclepro_2019_01_111
crossref_primary_10_1007_s10811_021_02593_y
crossref_primary_10_5004_dwt_2019_24810
crossref_primary_10_1080_20479700_2024_2405326
crossref_primary_10_1016_j_biortech_2015_08_100
crossref_primary_10_1089_ind_2019_0011
crossref_primary_10_1080_10408398_2018_1432561
crossref_primary_10_1515_psr_2020_0059
crossref_primary_10_1016_j_jbiotec_2014_11_026
crossref_primary_10_1016_j_rser_2019_01_064
crossref_primary_10_1016_j_algal_2016_08_018
crossref_primary_10_1080_19443994_2013_769917
crossref_primary_10_1016_j_tifs_2024_104386
crossref_primary_10_1016_j_biortech_2014_09_084
crossref_primary_10_4491_eer_2016_024
crossref_primary_10_1007_s13399_021_01906_y
crossref_primary_10_1007_s11356_021_16163_9
crossref_primary_10_1080_09593330_2024_2311082
crossref_primary_10_1007_s10811_025_03479_z
crossref_primary_10_1007_s13369_023_08187_9
crossref_primary_10_1088_1742_6596_1655_1_012123
crossref_primary_10_1016_j_renene_2021_07_123
crossref_primary_10_1016_j_jenvman_2020_110693
crossref_primary_10_1016_j_algal_2022_102753
crossref_primary_10_1186_s13068_019_1367_1
crossref_primary_10_1016_j_biortech_2014_11_080
crossref_primary_10_1016_j_biombioe_2023_106795
crossref_primary_10_1016_j_algal_2020_102060
crossref_primary_10_1080_10826068_2014_995812
crossref_primary_10_1016_j_biteb_2019_100255
crossref_primary_10_1051_e3sconf_202562701008
crossref_primary_10_1080_17597269_2020_1763094
crossref_primary_10_1088_1755_1315_299_1_012013
crossref_primary_10_1002_cjce_24245
crossref_primary_10_3389_fbioe_2017_00043
crossref_primary_10_1016_j_jchromb_2018_04_040
crossref_primary_10_1016_j_jece_2020_104518
crossref_primary_10_1007_s11270_023_06780_0
crossref_primary_10_3390_ijms17060962
crossref_primary_10_1016_j_procbio_2019_11_022
crossref_primary_10_1007_s10811_017_1181_8
crossref_primary_10_1016_j_algal_2016_03_022
crossref_primary_10_7717_peerj_3473
crossref_primary_10_1016_j_jclepro_2022_135236
crossref_primary_10_1016_j_watres_2018_03_050
crossref_primary_10_1002_jctb_7188
crossref_primary_10_3390_md21030190
crossref_primary_10_1016_j_cej_2013_01_100
crossref_primary_10_1080_17597269_2019_1580970
crossref_primary_10_3390_microorganisms12040676
crossref_primary_10_3390_su14010499
crossref_primary_10_1016_j_jclepro_2020_124352
crossref_primary_10_1016_j_enconman_2019_06_017
crossref_primary_10_1007_s12155_016_9780_9
crossref_primary_10_1016_j_biortech_2017_04_073
crossref_primary_10_1016_j_algal_2021_102485
crossref_primary_10_1016_j_algal_2022_102895
crossref_primary_10_1016_j_algal_2015_09_009
crossref_primary_10_1016_j_scitotenv_2020_142168
crossref_primary_10_1016_j_biortech_2013_03_144
crossref_primary_10_1007_s10098_022_02460_5
crossref_primary_10_1007_s11694_024_02993_x
crossref_primary_10_1007_s13762_021_03436_6
crossref_primary_10_1007_s00449_013_0922_6
crossref_primary_10_1007_s13399_022_02313_7
crossref_primary_10_1007_s11783_016_0831_4
crossref_primary_10_1016_j_jclepro_2021_126926
crossref_primary_10_3390_md23030120
crossref_primary_10_1016_j_algal_2017_09_023
crossref_primary_10_1016_j_jenvman_2019_06_085
crossref_primary_10_17341_gazimmfd_337627
crossref_primary_10_3390_su141710759
crossref_primary_10_1080_19443994_2016_1186572
crossref_primary_10_1016_j_psep_2017_09_018
crossref_primary_10_1007_s12649_023_02081_z
crossref_primary_10_1016_j_rser_2019_06_001
crossref_primary_10_1007_s13762_020_02909_4
crossref_primary_10_1016_j_jwpe_2022_102932
crossref_primary_10_1016_j_jece_2021_105375
crossref_primary_10_1007_s11705_016_1602_2
crossref_primary_10_3390_plants9040463
crossref_primary_10_1080_10826068_2015_1031398
crossref_primary_10_1007_s00449_020_02350_4
crossref_primary_10_1038_s41598_021_86372_2
crossref_primary_10_1007_s10499_022_00857_z
crossref_primary_10_1016_j_jenvman_2024_121796
crossref_primary_10_1016_j_biteb_2023_101686
crossref_primary_10_1016_j_biortech_2016_08_032
crossref_primary_10_1016_j_biortech_2020_123767
crossref_primary_10_1007_s10811_016_0841_4
crossref_primary_10_1016_j_algal_2019_101649
crossref_primary_10_3389_fbioe_2020_588210
crossref_primary_10_1007_s41207_023_00451_6
crossref_primary_10_1016_j_biortech_2017_03_041
crossref_primary_10_1007_s11356_017_9742_6
crossref_primary_10_1016_j_biortech_2016_09_070
crossref_primary_10_1007_s40995_020_01055_3
crossref_primary_10_1007_s12010_016_2330_2
crossref_primary_10_1007_s42452_025_06588_z
crossref_primary_10_1016_j_hazadv_2025_100769
crossref_primary_10_1016_j_jcou_2020_101235
crossref_primary_10_1016_j_biortech_2019_122351
crossref_primary_10_1016_j_phytochem_2017_08_018
crossref_primary_10_1016_j_biortech_2019_122232
crossref_primary_10_4491_eer_2015_151
crossref_primary_10_1016_j_watres_2021_117464
crossref_primary_10_1016_j_algal_2019_101753
crossref_primary_10_1080_10889868_2017_1282936
crossref_primary_10_1016_j_bcab_2020_101799
crossref_primary_10_1080_03610470_2024_2417133
crossref_primary_10_1016_j_biortech_2017_03_156
crossref_primary_10_1002_jctb_4829
crossref_primary_10_1016_j_algal_2024_103616
crossref_primary_10_1016_j_cscee_2025_101239
crossref_primary_10_1016_j_bej_2021_108299
crossref_primary_10_1016_j_jenvman_2015_05_037
crossref_primary_10_1089_ind_2017_0006
crossref_primary_10_1016_j_biortech_2013_04_032
crossref_primary_10_1016_j_envres_2023_116533
crossref_primary_10_1016_j_biortech_2019_03_075
crossref_primary_10_1186_s13068_015_0327_7
crossref_primary_10_1016_j_jclepro_2020_124030
crossref_primary_10_1080_17597269_2020_1802809
crossref_primary_10_1016_j_biortech_2021_125532
crossref_primary_10_1007_s11356_021_14357_9
crossref_primary_10_1186_s13068_021_01890_5
crossref_primary_10_1007_s12649_024_02751_6
crossref_primary_10_1016_j_ijhydene_2015_12_010
crossref_primary_10_1016_j_biortech_2016_11_060
crossref_primary_10_1016_j_biotechadv_2018_04_004
crossref_primary_10_1016_j_jclepro_2017_02_026
crossref_primary_10_2216_17_82_1
crossref_primary_10_1007_s12223_019_00732_0
crossref_primary_10_1016_j_procbio_2018_09_024
crossref_primary_10_1088_1755_1315_390_1_012020
crossref_primary_10_1007_s00253_012_4398_0
crossref_primary_10_1007_s13205_015_0314_5
crossref_primary_10_1007_s00248_024_02376_1
crossref_primary_10_3390_v15102010
crossref_primary_10_1016_j_biortech_2019_121568
crossref_primary_10_1016_j_cej_2022_139631
crossref_primary_10_1016_j_jclepro_2021_129436
crossref_primary_10_1007_s10811_020_02163_8
crossref_primary_10_1002_biot_201500617
crossref_primary_10_1016_j_biteb_2020_100604
crossref_primary_10_1016_j_biortech_2014_07_096
crossref_primary_10_1051_e3sconf_202343604001
crossref_primary_10_3390_su15031767
crossref_primary_10_1186_s13068_024_02547_9
crossref_primary_10_1016_j_algal_2021_102508
crossref_primary_10_1016_j_rser_2022_112284
crossref_primary_10_3390_en17194819
crossref_primary_10_1016_j_algal_2024_103483
crossref_primary_10_1016_j_biortech_2016_01_044
crossref_primary_10_1007_s10811_023_03142_5
crossref_primary_10_1016_j_envres_2023_117284
crossref_primary_10_1016_j_scitotenv_2020_137594
crossref_primary_10_1016_j_bcab_2021_102239
crossref_primary_10_1007_s10811_023_03082_0
crossref_primary_10_1016_j_biortech_2014_01_032
crossref_primary_10_1016_j_biortech_2017_06_147
crossref_primary_10_1007_s12010_015_1646_7
crossref_primary_10_3390_molecules28083603
crossref_primary_10_1016_j_biortech_2013_11_047
crossref_primary_10_1016_j_algal_2018_04_006
crossref_primary_10_1016_j_algal_2017_07_014
crossref_primary_10_1016_j_jenvman_2015_03_003
crossref_primary_10_3390_fermentation8100474
crossref_primary_10_1016_j_scitotenv_2021_149504
crossref_primary_10_1016_j_watres_2016_02_062
crossref_primary_10_3390_ijerph19063674
crossref_primary_10_1002_cben_201600023
crossref_primary_10_1016_j_heliyon_2022_e10766
crossref_primary_10_1016_j_protis_2024_126035
crossref_primary_10_1016_j_rser_2014_02_026
crossref_primary_10_1080_00207233_2017_1361611
crossref_primary_10_1007_s10123_024_00600_z
crossref_primary_10_1007_s13762_021_03423_x
crossref_primary_10_1002_bbb_1726
crossref_primary_10_1016_j_nbt_2019_02_001
Cites_doi 10.1016/j.biortech.2006.10.005
10.1007/s10811-008-9341-5
10.1016/j.procbio.2003.08.003
10.1007/s10529-009-9975-7
10.1099/00221287-18-1-107
10.1007/BF02186320
10.1016/j.foodchem.2008.07.005
10.1016/j.apenergy.2010.12.064
10.1007/s12010-009-8783-9
10.1007/s10811-008-9355-z
10.1007/BF02930672
10.1016/j.apenergy.2011.03.012
10.1016/S0032-9592(98)00101-0
10.1007/BF00508106
10.1016/j.biortech.2010.06.159
10.1002/bit.260260707
10.1016/j.procbio.2004.01.016
10.1016/j.biombioe.2011.02.036
10.1016/S1369-703X(00)00080-2
10.1016/j.renene.2011.02.002
10.3168/jds.S0022-0302(73)85321-4
10.1016/j.procbio.2008.07.014
10.1016/j.biombioe.2011.01.045
10.1016/0960-8524(96)00036-3
10.1016/j.jtice.2011.11.007
10.1186/1475-2859-2-2
10.1016/j.rser.2009.10.009
10.1099/00221287-43-1-139
10.1016/j.biotechadv.2012.01.002
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7S9
L.6
DOI 10.1016/j.biortech.2012.05.055
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 66
ExternalDocumentID 22705507
10_1016_j_biortech_2012_05_055
S0960852412007997
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7QO
8FD
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c573t-dc5b801b6ab1ad2a6ac19df2054733fdade9db2005d7b082f1563664d30a11b93
ISICitedReferencesCount 299
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307259600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-8524
1873-2976
IngestDate Sun Sep 28 01:27:45 EDT 2025
Tue Oct 07 09:32:59 EDT 2025
Mon Sep 29 05:13:50 EDT 2025
Mon Jul 21 05:50:32 EDT 2025
Sat Nov 29 03:59:01 EST 2025
Tue Nov 18 21:34:02 EST 2025
Fri Feb 23 02:34:26 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cheese whey
Microalgae
Mixotrophic
Biofuels
Chlorella vulgaris
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573t-dc5b801b6ab1ad2a6ac19df2054733fdade9db2005d7b082f1563664d30a11b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960852412007997
PMID 22705507
PQID 1024100167
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_1365044039
proquest_miscellaneous_1038617090
proquest_miscellaneous_1024100167
pubmed_primary_22705507
crossref_primary_10_1016_j_biortech_2012_05_055
crossref_citationtrail_10_1016_j_biortech_2012_05_055
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_05_055
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Ding, Hoe, Low (b0110) 1996; 8
Dragone, Mussatto, Oliveira, Teixeira (b0055) 2009; 112
Dragone, Fernandes, Abreu, Vicente, Teixeira (b0045) 2011; 88
Dragone, Mussatto, Almeida e Silva, Teixeira (b0050) 2011; 35
Dvořáková-Hladká (b0060) 1966; 8
Sun, Wang, Li, Huang, Chen (b0155) 2008; 43
Yu, Jia, Dai (b0175) 2009; 21
Dere, Güneş, Sivaci (b0035) 1998; 22
Liu, Duan, Li, Xu, Cai, Hu (b0120) 2009; 21
Abad, S., Turon, X., in press. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol. Adv.
Chen, Yeh, Aisyah, Lee, Chang (b0025) 2011; 102
Yang, Hua, Shimizu (b0170) 2000; 6
Brennan, Owende (b0015) 2010; 14
Fernandes, Dragone, Teixeira, Vicente (b0070) 2010; 161
González Siso (b0080) 1996; 57
Liang, Sarkany, Cui (b0115) 2009; 31
Rodríguez-López (b0140) 1966; 43
Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J., in press. Carbon metabolism and energy conversion of
Lalucat, Imperial, Parés (b0105) 1984; 26
a comparison between acid and enzymatic methods. J. Appl. Phycol., 1–6.
Freyssinet, Nigon (b0075) 1980; 9
Heredia-Arroyo, Wei, Ruan, Hu (b0085) 2011; 35
Richmond (b0135) 2004
Samejima, Myers (b0145) 1958; 18
Shi, Liu, Zhang, Chen (b0150) 1999; 34
Das, Aziz, Obbard (b0030) 2011; 36
Viitanen, Vasala, Neubauer, Alatossava (b0160) 2003; 2
Dragone, Fernandes, Vicente, Teixeira (b0040) 2010; vol. 2
Mavropoulou, Kosikowski (b0125) 1973; 56
Cerón García, Sánchez Mirón, Fernández Sevilla, Molina Grima, García Camacho (b0020) 2005; 40
Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G., in press. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by
Ip, Wong, Chen (b0090) 2004; 39
Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., Vicente, A., in press. Starch determination in
Bhatnagar, Chinnasamy, Singh, Das (b0010) 2011; 88
Ozmihci, Kargi (b0130) 2007; 98
sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J. Appl. Phycol., 1–12.
Kong, Song, Cao, Yang, Hua, Xia (b0100) 2011; 10
using response surface methodology. J. Taiwan Inst. Chem. Eng.
Liu (10.1016/j.biortech.2012.05.055_b0120) 2009; 21
Mavropoulou (10.1016/j.biortech.2012.05.055_b0125) 1973; 56
Bhatnagar (10.1016/j.biortech.2012.05.055_b0010) 2011; 88
10.1016/j.biortech.2012.05.055_b0005
Fernandes (10.1016/j.biortech.2012.05.055_b0070) 2010; 161
Shi (10.1016/j.biortech.2012.05.055_b0150) 1999; 34
10.1016/j.biortech.2012.05.055_b0065
10.1016/j.biortech.2012.05.055_b0165
Cerón García (10.1016/j.biortech.2012.05.055_b0020) 2005; 40
Viitanen (10.1016/j.biortech.2012.05.055_b0160) 2003; 2
Rodríguez-López (10.1016/j.biortech.2012.05.055_b0140) 1966; 43
Dragone (10.1016/j.biortech.2012.05.055_b0050) 2011; 35
Dragone (10.1016/j.biortech.2012.05.055_b0040) 2010; vol. 2
Richmond (10.1016/j.biortech.2012.05.055_b0135) 2004
Chen (10.1016/j.biortech.2012.05.055_b0025) 2011; 102
Yu (10.1016/j.biortech.2012.05.055_b0175) 2009; 21
Yang (10.1016/j.biortech.2012.05.055_b0170) 2000; 6
Das (10.1016/j.biortech.2012.05.055_b0030) 2011; 36
Lalucat (10.1016/j.biortech.2012.05.055_b0105) 1984; 26
Sun (10.1016/j.biortech.2012.05.055_b0155) 2008; 43
Dragone (10.1016/j.biortech.2012.05.055_b0045) 2011; 88
Dvořáková-Hladká (10.1016/j.biortech.2012.05.055_b0060) 1966; 8
Freyssinet (10.1016/j.biortech.2012.05.055_b0075) 1980; 9
González Siso (10.1016/j.biortech.2012.05.055_b0080) 1996; 57
Dragone (10.1016/j.biortech.2012.05.055_b0055) 2009; 112
Lee (10.1016/j.biortech.2012.05.055_b0110) 1996; 8
Heredia-Arroyo (10.1016/j.biortech.2012.05.055_b0085) 2011; 35
Dere (10.1016/j.biortech.2012.05.055_b0035) 1998; 22
Ip (10.1016/j.biortech.2012.05.055_b0090) 2004; 39
Liang (10.1016/j.biortech.2012.05.055_b0115) 2009; 31
Ozmihci (10.1016/j.biortech.2012.05.055_b0130) 2007; 98
Brennan (10.1016/j.biortech.2012.05.055_b0015) 2010; 14
10.1016/j.biortech.2012.05.055_b0095
Kong (10.1016/j.biortech.2012.05.055_b0100) 2011; 10
Samejima (10.1016/j.biortech.2012.05.055_b0145) 1958; 18
References_xml – volume: 31
  start-page: 1043
  year: 2009
  end-page: 1049
  ident: b0115
  article-title: Biomass and lipid productivities of
  publication-title: Biotechnol. Lett.
– volume: 88
  start-page: 3331
  year: 2011
  end-page: 3335
  ident: b0045
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
– volume: 21
  start-page: 127
  year: 2009
  end-page: 133
  ident: b0175
  article-title: Growth characteristics of the cyanobacterium
  publication-title: J. Appl. Phycol.
– volume: 36
  start-page: 2524
  year: 2011
  end-page: 2528
  ident: b0030
  article-title: Two phase microalgae growth in the open system for enhanced lipid productivity
  publication-title: Renewable Energy
– volume: 18
  start-page: 107
  year: 1958
  end-page: 117
  ident: b0145
  article-title: On the heterotrophic growth of
  publication-title: J. Gen. Microbiol.
– volume: 39
  start-page: 1761
  year: 2004
  end-page: 1766
  ident: b0090
  article-title: Enhanced production of astaxanthin by the green microalga
  publication-title: Process Biochem.
– reference: Abad, S., Turon, X., in press. Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol. Adv.
– volume: 98
  start-page: 2978
  year: 2007
  end-page: 2984
  ident: b0130
  article-title: Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 1977
  year: 2011
  end-page: 1982
  ident: b0050
  article-title: Optimal fermentation conditions for maximizing the ethanol production by
  publication-title: Biomass Bioenergy
– volume: 43
  start-page: 1288
  year: 2008
  end-page: 1292
  ident: b0155
  article-title: Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic
  publication-title: Process Biochem.
– volume: 35
  start-page: 2245
  year: 2011
  end-page: 2253
  ident: b0085
  article-title: Mixotrophic cultivation of
  publication-title: Biomass Bioenergy
– reference: using response surface methodology. J. Taiwan Inst. Chem. Eng.
– volume: 40
  start-page: 297
  year: 2005
  end-page: 305
  ident: b0020
  article-title: Mixotrophic growth of the microalga
  publication-title: Process Biochem.
– volume: 57
  start-page: 1
  year: 1996
  end-page: 11
  ident: b0080
  article-title: The biotechnological utilization of cheese whey: a review
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 1
  year: 2003
  end-page: 10
  ident: b0160
  article-title: Cheese whey-induced high-cell-density production of recombinant proteins in
  publication-title: Microb. Cell Fact.
– volume: 161
  start-page: 218
  year: 2010
  end-page: 226
  ident: b0070
  article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content
  publication-title: Appl. Biochem. Biotechnol.
– reference: Fernandes, B., Dragone, G., Abreu, A., Geada, P., Teixeira, J., Vicente, A., in press. Starch determination in
– volume: 34
  start-page: 341
  year: 1999
  end-page: 347
  ident: b0150
  article-title: Production of biomass and lutein by
  publication-title: Process Biochem.
– volume: 102
  start-page: 71
  year: 2011
  end-page: 81
  ident: b0025
  article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
  publication-title: Bioresour. Technol.
– volume: 8
  start-page: 354
  year: 1966
  end-page: 361
  ident: b0060
  article-title: Utilization of organic substrates during mixotrophic and heterotrophic cultivation of algae
  publication-title: Biol. Plant.
– reference: sp. PCC 7942 under mixotrophic conditions: comparison with photoautotrophic condition. J. Appl. Phycol., 1–12.
– volume: 112
  start-page: 929
  year: 2009
  end-page: 935
  ident: b0055
  article-title: Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation
  publication-title: Food Chem.
– volume: 22
  start-page: 13
  year: 1998
  end-page: 18
  ident: b0035
  article-title: Spectrophotometric determination of chlorophyll – a, b and total carotenoid contents of some algae species using different solvents
  publication-title: Turk. J. Bot.
– reference: Kong, W.-B., Hua, S.-F., Cao, H., Mu, Y.-W., Yang, H., Song, H., Xia, C.-G., in press. Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by
– volume: 8
  start-page: 163
  year: 1996
  end-page: 169
  ident: b0110
  article-title: Mixotrophic growth of
  publication-title: J. Appl. Phycol.
– volume: 6
  start-page: 87
  year: 2000
  end-page: 102
  ident: b0170
  article-title: Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions
  publication-title: Biochem. Eng. J.
– volume: 26
  start-page: 677
  year: 1984
  end-page: 681
  ident: b0105
  article-title: Utilization of light for the assimilation of organic matter in
  publication-title: Biotechnol. Bioeng.
– volume: 88
  start-page: 3425
  year: 2011
  end-page: 3431
  ident: b0010
  article-title: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters
  publication-title: Appl. Energy
– volume: 10
  start-page: 11620
  year: 2011
  end-page: 11630
  ident: b0100
  article-title: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of
  publication-title: Afr. J. Biotechnol.
– volume: vol. 2
  start-page: 1355
  year: 2010
  end-page: 1366
  ident: b0040
  article-title: Third generation biofuels from microalgae
  publication-title: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology
– year: 2004
  ident: b0135
  article-title: Handbook of microalgal culture: biotechnology and applied phycology
– volume: 43
  start-page: 139
  year: 1966
  end-page: 143
  ident: b0140
  article-title: Utilization of sugars by
  publication-title: J. Gen. Microbiol.
– volume: 14
  start-page: 557
  year: 2010
  end-page: 577
  ident: b0015
  article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renewable Sustainable Energy Rev.
– reference: – a comparison between acid and enzymatic methods. J. Appl. Phycol., 1–6.
– volume: 56
  start-page: 1128
  year: 1973
  end-page: 1134
  ident: b0125
  article-title: Composition, solubility, and stability of whey powders
  publication-title: J. Dairy Sci.
– reference: Yan, R., Zhu, D., Zhang, Z., Zeng, Q., Chu, J., in press. Carbon metabolism and energy conversion of
– volume: 9
  start-page: 295
  year: 1980
  end-page: 303
  ident: b0075
  article-title: Growth of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 21
  start-page: 239
  year: 2009
  end-page: 246
  ident: b0120
  article-title: Effects of organic carbon sources on growth, photosynthesis, and respiration of
  publication-title: J. Appl. Phycol.
– volume: 10
  start-page: 11620
  issue: 55
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0100
  article-title: The characteristics of biomass production, lipid accumulation and chlorophyll biosynthesis of Chlorella vulgaris under mixotrophic cultivation
  publication-title: Afr. J. Biotechnol.
– volume: 98
  start-page: 2978
  issue: 16
  year: 2007
  ident: 10.1016/j.biortech.2012.05.055_b0130
  article-title: Kinetics of batch ethanol fermentation of cheese-whey powder (CWP) solution as function of substrate and yeast concentrations
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.10.005
– volume: 21
  start-page: 127
  issue: 1
  year: 2009
  ident: 10.1016/j.biortech.2012.05.055_b0175
  article-title: Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-008-9341-5
– volume: 39
  start-page: 1761
  issue: 11
  year: 2004
  ident: 10.1016/j.biortech.2012.05.055_b0090
  article-title: Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2003.08.003
– volume: 31
  start-page: 1043
  issue: 7
  year: 2009
  ident: 10.1016/j.biortech.2012.05.055_b0115
  article-title: Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions
  publication-title: Biotechnol. Lett.
  doi: 10.1007/s10529-009-9975-7
– volume: 18
  start-page: 107
  year: 1958
  ident: 10.1016/j.biortech.2012.05.055_b0145
  article-title: On the heterotrophic growth of Chlorella pyrenoidosa
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-18-1-107
– volume: 8
  start-page: 163
  issue: 2
  year: 1996
  ident: 10.1016/j.biortech.2012.05.055_b0110
  article-title: Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor
  publication-title: J. Appl. Phycol.
  doi: 10.1007/BF02186320
– volume: 112
  start-page: 929
  issue: 4
  year: 2009
  ident: 10.1016/j.biortech.2012.05.055_b0055
  article-title: Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2008.07.005
– volume: 88
  start-page: 3425
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0010
  article-title: Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.12.064
– volume: 161
  start-page: 218
  issue: 1
  year: 2010
  ident: 10.1016/j.biortech.2012.05.055_b0070
  article-title: Light regime characterization in an airlift photobioreactor for production of microalgae with high starch content
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-009-8783-9
– volume: 21
  start-page: 239
  issue: 2
  year: 2009
  ident: 10.1016/j.biortech.2012.05.055_b0120
  article-title: Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-008-9355-z
– volume: 8
  start-page: 354
  issue: 5
  year: 1966
  ident: 10.1016/j.biortech.2012.05.055_b0060
  article-title: Utilization of organic substrates during mixotrophic and heterotrophic cultivation of algae
  publication-title: Biol. Plant.
  doi: 10.1007/BF02930672
– volume: 88
  start-page: 3331
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0045
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.03.012
– volume: 34
  start-page: 341
  issue: 4
  year: 1999
  ident: 10.1016/j.biortech.2012.05.055_b0150
  article-title: Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures
  publication-title: Process Biochem.
  doi: 10.1016/S0032-9592(98)00101-0
– volume: 9
  start-page: 295
  issue: 4
  year: 1980
  ident: 10.1016/j.biortech.2012.05.055_b0075
  article-title: Growth of Euglena gracilis on whey
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00508106
– volume: 102
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0025
  article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.159
– volume: vol. 2
  start-page: 1355
  year: 2010
  ident: 10.1016/j.biortech.2012.05.055_b0040
  article-title: Third generation biofuels from microalgae
– volume: 26
  start-page: 677
  issue: 7
  year: 1984
  ident: 10.1016/j.biortech.2012.05.055_b0105
  article-title: Utilization of light for the assimilation of organic matter in Chlorella sp. VJ79
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.260260707
– volume: 40
  start-page: 297
  issue: 1
  year: 2005
  ident: 10.1016/j.biortech.2012.05.055_b0020
  article-title: Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2004.01.016
– ident: 10.1016/j.biortech.2012.05.055_b0065
– volume: 35
  start-page: 2245
  issue: 5
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0085
  article-title: Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.02.036
– volume: 6
  start-page: 87
  issue: 2
  year: 2000
  ident: 10.1016/j.biortech.2012.05.055_b0170
  article-title: Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions
  publication-title: Biochem. Eng. J.
  doi: 10.1016/S1369-703X(00)00080-2
– volume: 36
  start-page: 2524
  issue: 9
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0030
  article-title: Two phase microalgae growth in the open system for enhanced lipid productivity
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2011.02.002
– volume: 22
  start-page: 13
  issue: 1
  year: 1998
  ident: 10.1016/j.biortech.2012.05.055_b0035
  article-title: Spectrophotometric determination of chlorophyll – a, b and total carotenoid contents of some algae species using different solvents
  publication-title: Turk. J. Bot.
– volume: 56
  start-page: 1128
  issue: 9
  year: 1973
  ident: 10.1016/j.biortech.2012.05.055_b0125
  article-title: Composition, solubility, and stability of whey powders
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(73)85321-4
– year: 2004
  ident: 10.1016/j.biortech.2012.05.055_b0135
– volume: 43
  start-page: 1288
  issue: 11
  year: 2008
  ident: 10.1016/j.biortech.2012.05.055_b0155
  article-title: Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta)
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2008.07.014
– volume: 35
  start-page: 1977
  issue: 5
  year: 2011
  ident: 10.1016/j.biortech.2012.05.055_b0050
  article-title: Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2011.01.045
– volume: 57
  start-page: 1
  issue: 1
  year: 1996
  ident: 10.1016/j.biortech.2012.05.055_b0080
  article-title: The biotechnological utilization of cheese whey: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/0960-8524(96)00036-3
– ident: 10.1016/j.biortech.2012.05.055_b0095
  doi: 10.1016/j.jtice.2011.11.007
– volume: 2
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.biortech.2012.05.055_b0160
  article-title: Cheese whey-induced high-cell-density production of recombinant proteins in Escherichia coli
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-2-2
– volume: 14
  start-page: 557
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2012.05.055_b0015
  article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2009.10.009
– ident: 10.1016/j.biortech.2012.05.055_b0165
– volume: 43
  start-page: 139
  issue: 1
  year: 1966
  ident: 10.1016/j.biortech.2012.05.055_b0140
  article-title: Utilization of sugars by Chlorella under various conditions
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-43-1-139
– ident: 10.1016/j.biortech.2012.05.055_b0005
  doi: 10.1016/j.biotechadv.2012.01.002
SSID ssj0003172
Score 2.55307
Snippet ► Cheese whey was used as carbon source for Chlorella vulgaris growth. ► Mixotrophic microalgae grew faster than photoautotrophic cells. ► Maximum starch...
Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 61
SubjectTerms analysis
Autotrophic Processes
Autotrophic Processes - drug effects
Autotrophic Processes - radiation effects
Biofuels
biomass production
biosynthesis
byproducts
carbon
Carbon - metabolism
Carbon - pharmacology
Cell Culture Techniques
Cell Culture Techniques - methods
Cheese whey
Chlorella vulgaris
Chlorella vulgaris - drug effects
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
Chlorella vulgaris - radiation effects
culture media
Dairying
drug effects
Galactose
Galactose - metabolism
glucose
Glucose - metabolism
growth & development
Industrial Waste
Industrial Waste - analysis
industrial wastes
Light
lipids
Lipids - analysis
Lipids - biosynthesis
metabolism
methods
Microalgae
Microalgae - drug effects
Microalgae - growth & development
Microalgae - metabolism
Microalgae - radiation effects
Mixotrophic
nutrients
Organic Chemicals
Organic Chemicals - metabolism
Organic Chemicals - pharmacology
organic wastes
pharmacology
Pigments, Biological
Pigments, Biological - metabolism
proteins
Proteins - analysis
radiation effects
starch
Starch - biosynthesis
Starch - metabolism
whey powder
Title Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source
URI https://dx.doi.org/10.1016/j.biortech.2012.05.055
https://www.ncbi.nlm.nih.gov/pubmed/22705507
https://www.proquest.com/docview/1024100167
https://www.proquest.com/docview/1038617090
https://www.proquest.com/docview/1365044039
Volume 118
WOSCitedRecordID wos000307259600011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6Dgl4QDBu5TIZibeqkMZxYj-WaQiQmHgYqG-R7TiQaSRV0pbyA_jfHMd2Ghjd4AEpiqo4dtV-X5xzPwg9D4liimgT3cDoJIo1nfAgl5OMh4LJBESQLGqbTSQnJ2w-5x8Ggx8-F2Z9npQl22z44r9CDdcAbJM6-w9wd4vCBfgMoMMZYIfzXwH_vthUy7pafClU24zWtS-zcRegnZtwp_F6ZVI4ima8amxSS9fAIxNF_X38TQD64zZc3eRqKlPBWsIi1tb_iye4gCXt5fHygp1-Bhr3ygZOim0qmTdeN45dZeVHPhUmWlS7sgbGi_-KlEW1tbie6mKji1o474X18_dNFyYGhHnThbbbLUtMJznbAabbj92GbHdUW6r9wkZvbQ5nL2RhYpJbt5Kx6lI4aH8CYLP42iIdhqZwkG2x-1uJbT-0h_bDhHI2RPuzt8fzd90rHYSssJde_uevNXWl3UK7hJxdSkwrzJzeRrecFoJnlj130ECXB-jm7HPtKrHoA3T9yLcChJFe1cq7SPUYhnsMw1WOO4ZhzzDcMgxvGYZbhuGWYVg02DEMW4ZhS6V76OPr49OjNxPXq2OiaEKWk0xRCcKOjIWciiwUsVBTnuVhYHpbkzwTmeaZNCbMLJEgduZTGpM4jjISiOlUcnIfDcuq1A8R1qHO4kASwZWMWEykUZNzqlgeRlwF0QhR_-emyhWyN_1UzlMfsXiWenxSg08aUDjoCL3s5i1sKZcrZ3CPXeoEUitopkDDK-c-82CngJZxw4lSV6sGJoHU3Kb_XHYPYaZVAg8uuYeAdhVFAeEj9MCyqftdnoiPdo48Rje2j-QTNFzWK_0UXVPrZdHUh2gvmbND9xj8BGp613k
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixotrophic+cultivation+of+Chlorella+vulgaris+using+industrial+dairy+waste+as+organic+carbon+source&rft.jtitle=Bioresource+technology&rft.au=Abreu%2C+Ana+P&rft.au=Fernandes%2C+Bruno&rft.au=Vicente%2C+Ant%C3%B3nio+A&rft.au=Teixeira%2C+Jos%C3%A9&rft.date=2012-08-01&rft.eissn=1873-2976&rft.volume=118&rft.spage=61&rft_id=info:doi/10.1016%2Fj.biortech.2012.05.055&rft_id=info%3Apmid%2F22705507&rft.externalDocID=22705507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon