Changepoint Detection in the Presence of Outliers

Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will infer additional changepoints to fit the outliers. To overcome this problem, data often needs to be preprocessed to remove outliers, though this is diffi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of the American Statistical Association Ročník 114; číslo 525; s. 169 - 183
Hlavní autori: Fearnhead, Paul, Rigaill, Guillem
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Alexandria Taylor & Francis 02.01.2019
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Predmet:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will infer additional changepoints to fit the outliers. To overcome this problem, data often needs to be preprocessed to remove outliers, though this is difficult for applications where the data needs to be analyzed online. We present an approach to changepoint detection that is robust to the presence of outliers. The idea is to adapt existing penalized cost approaches for detecting changes so that they use loss functions that are less sensitive to outliers. We argue that loss functions that are bounded, such as the classical biweight loss, are particularly suitable-as we show that only bounded loss functions are robust to arbitrarily extreme outliers. We present an efficient dynamic programming algorithm that can find the optimal segmentation under our penalized cost criteria. Importantly, this algorithm can be used in settings where the data needs to be analyzed online. We show that we can consistently estimate the number of changepoints, and accurately estimate their locations, using the biweight loss function. We demonstrate the usefulness of our approach for applications such as analyzing well-log data, detecting copy number variation, and detecting tampering of wireless devices. Supplementary materials for this article are available online.
AbstractList Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will infer additional changepoints to fit the outliers. To overcome this problem, data often needs to be preprocessed to remove outliers, though this is difficult for applications where the data needs to be analyzed online. We present an approach to changepoint detection that is robust to the presence of outliers. The idea is to adapt existing penalized cost approaches for detecting changes so that they use loss functions that are less sensitive to outliers. We argue that loss functions that are bounded, such as the classical biweight loss, are particularly suitable-as we show that only bounded loss functions are robust to arbitrarily extreme outliers. We present an efficient dynamic programming algorithm that can find the optimal segmentation under our penalized cost criteria. Importantly, this algorithm can be used in settings where the data needs to be analyzed online. We show that we can consistently estimate the number of changepoints, and accurately estimate their locations, using the biweight loss function. We demonstrate the usefulness of our approach for applications such as analyzing well-log data, detecting copy number variation, and detecting tampering of wireless devices. Supplementary materials for this article are available online.
Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will infer additional changepoints in order to fit the outliers. To overcome this problem, data often needs to be pre-processed to remove outliers, though this is difficult for applications where the data needs to be analysed online. We present an approach to changepoint detection that is robust to the presence of outliers. The idea is to adapt existing penalised cost approaches for detecting changes so that they use loss functions that are less sensitive to outliers. We argue that loss functions that are bounded, such as the classical biweight loss, are particularly suitable - as we show that only bounded loss functions are robust to arbitrarily extreme outliers. We present an efficient dynamic programming algorithm that can find the optimal segmentation under our penalised cost criteria. Importantly, this algorithm can be used in settings where the data needs to be analysed online. We show that we can consistently estimate the number of changepoints, and accurately estimate their locations, using the biweight loss function. We demonstrate the usefulness of our approach for applications such as analysing well-log data, detecting copy number variation, and detecting tampering of wireless devices.
Author Fearnhead, Paul
Rigaill, Guillem
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0002-9386-2341
  surname: Fearnhead
  fullname: Fearnhead, Paul
  email: p.fearnhead@lancaster.ac.uk
  organization: Department of Mathematics and Statistics, Lancaster University
– sequence: 2
  givenname: Guillem
  surname: Rigaill
  fullname: Rigaill, Guillem
  organization: Laboratoire de Mathématiques at Modélisation d'Evry (LaMME), Université d'Evry Val d'Essonne
BackLink https://hal.inrae.fr/hal-02622377$$DView record in HAL
BookMark eNqFkE9rHCEYh6Uk0M2mHyEw0Et7mK2v76gz9NKw_ZPCQnJooTdxHe26zOpW3ZZ8-84waQ45NF4EfX6-_p4LchZisIRcAV0Bbek7CoJBw7sVoyBXgC1vhHhBFsBR1kw2P87IYmLqCXpJLnLe03HJtl0QWO90-GmP0YdSfbTFmuJjqHyoys5Wd8lmG4ytoqtuT2XwNuVLcu70kO2rh31Jvn_-9G19U29uv3xdX29qwyWWunWy5brbNhxRWNcDM12H0DOKVmyhQzSib5wxDFkreC97ajrs0DiN0my3uCRv53d3elDH5A863auovbq53qjpjDLBGEr5G0b2zcweU_x1srmog8_GDoMONp6yYowjG_s27Yi-foLu4ymFsclIAQiOLUwUnymTYs7JuscfAFWTdPVPupqkqwfpY-79k5zxRU9KS9J-eDZ9Naf3ucT0OLLhAMDHrkvyYb73wcV00H9iGnpV9P0Qk0s6GJ8V_n_EX0dLouY
CitedBy_id crossref_primary_10_1080_10618600_2023_2182312
crossref_primary_10_1016_j_eswa_2022_118260
crossref_primary_10_3390_math10244722
crossref_primary_10_1093_nargab_lqad098
crossref_primary_10_3390_math11020355
crossref_primary_10_1080_00949655_2022_2083127
crossref_primary_10_1186_s12864_019_5998_1
crossref_primary_10_1109_TIT_2025_3565748
crossref_primary_10_1007_s11749_023_00851_4
crossref_primary_10_1002_env_2710
crossref_primary_10_1002_sta4_291
crossref_primary_10_1007_s11222_024_10542_1
crossref_primary_10_1007_s10844_025_00949_1
crossref_primary_10_1109_JSEN_2024_3462493
crossref_primary_10_1073_pnas_2123393119
crossref_primary_10_1145_3512959
crossref_primary_10_1080_01621459_2021_1909598
crossref_primary_10_1080_00224065_2022_2035284
crossref_primary_10_1109_TIT_2021_3130330
crossref_primary_10_1080_07350015_2024_2362269
crossref_primary_10_1080_10618600_2021_1987257
crossref_primary_10_1007_s10664_022_10247_x
crossref_primary_10_1214_25_AOAS2052
crossref_primary_10_1016_j_apm_2019_09_009
crossref_primary_10_1007_s11222_022_10176_1
crossref_primary_10_1016_j_spasta_2021_100538
crossref_primary_10_1007_s10957_020_01762_2
crossref_primary_10_1109_TSP_2021_3125136
crossref_primary_10_1109_TIM_2024_3470041
crossref_primary_10_1080_01621459_2020_1859380
crossref_primary_10_12688_wellcomeopenres_24078_1
crossref_primary_10_1016_j_eswa_2023_120158
crossref_primary_10_3390_math9192394
crossref_primary_10_1007_s10463_023_00892_4
crossref_primary_10_3390_math11244959
crossref_primary_10_3390_math12050750
crossref_primary_10_1177_03611981221086643
crossref_primary_10_3390_land13050612
crossref_primary_10_1016_j_engappai_2023_106466
crossref_primary_10_1063_5_0226455
crossref_primary_10_1002_cjs_11816
crossref_primary_10_1051_0004_6361_202142941
crossref_primary_10_1080_10618600_2021_2000873
crossref_primary_10_1080_01621459_2024_2302200
crossref_primary_10_3150_24_BEJ1732
crossref_primary_10_1080_03610926_2019_1589515
crossref_primary_10_1111_jtsa_70010
crossref_primary_10_1109_TSP_2019_2953670
crossref_primary_10_1080_00401706_2018_1438926
crossref_primary_10_1007_s10114_025_3362_8
crossref_primary_10_1109_TPDS_2023_3327750
crossref_primary_10_1109_TMM_2020_3017921
crossref_primary_10_1007_s00180_020_01028_5
crossref_primary_10_1177_01423312221092527
crossref_primary_10_1002_env_2775
crossref_primary_10_1016_j_ejor_2023_03_033
crossref_primary_10_1080_00401706_2024_2365730
crossref_primary_10_1093_aje_kwae091
crossref_primary_10_1002_wics_1628
crossref_primary_10_1016_j_ecosta_2021_10_008
crossref_primary_10_1111_insr_12511
crossref_primary_10_1016_j_jmva_2021_104892
crossref_primary_10_1109_TIT_2024_3423325
crossref_primary_10_17721_2706_9699_2025_1_09
crossref_primary_10_1051_itmconf_20213601006
crossref_primary_10_3390_app11094280
crossref_primary_10_1007_s11004_020_09909_7
crossref_primary_10_1080_10618600_2020_1868304
crossref_primary_10_1002_sam_11586
crossref_primary_10_1016_j_ecolind_2023_110922
crossref_primary_10_1093_biomet_asaa004
crossref_primary_10_1007_s11222_022_10112_3
crossref_primary_10_1017_S0266466621000293
crossref_primary_10_1080_02664763_2024_2436008
crossref_primary_10_1002_sim_10050
Cites_doi 10.1175/JAM2493.1
10.1093/biomet/asw002
10.1017/S0266466600005831
10.1198/073500104000000352
10.17226/18374
10.1007/978-1-4612-0717-7
10.1214/14-AOS1245
10.1007/978-3-662-02571-0_6
10.1007/s11222-016-9687-5
10.1080/01621459.2012.737745
10.1111/rssb.12047
10.1093/biomet/58.3.509
10.1093/bib/bbu026
10.1007/s11222-006-8450-8
10.1214/aos/1176346802
10.1214/11-BA620
10.1080/01621459.1979.10482519
10.1016/j.oceaneng.2010.04.009
10.1080/03610918.2012.625790
10.1080/10618600.2015.1116445
10.1080/10618600.2012.681238
10.1145/2818000.2818028
10.1109/TNB.2013.2284063
10.1093/bioinformatics/btu180
10.1093/biostatistics/kxh008
10.1007/s11222-016-9636-3
10.1093/biomet/41.1-2.100
10.1016/j.csda.2015.11.010
10.1111/1467-9892.00172
10.1007/978-3-662-06824-3_2
10.1093/biomet/asv031
ContentType Journal Article
Copyright 2018 The Author(s). Published with license by Taylor & Francis. 2018
Copyright © 2019 American Statistical Association
2018 The Author(s). Published with license by Taylor & Francis.
Attribution
Copyright_xml – notice: 2018 The Author(s). Published with license by Taylor & Francis. 2018
– notice: Copyright © 2019 American Statistical Association
– notice: 2018 The Author(s). Published with license by Taylor & Francis.
– notice: Attribution
DBID 0YH
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
1XC
VOOES
DOI 10.1080/01621459.2017.1385466
DatabaseName Taylor & Francis Open Access
CrossRef
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

AGRICOLA


Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Journals (OA)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
EISSN 1537-274X
EndPage 183
ExternalDocumentID oai:HAL:hal-02622377v1
10_1080_01621459_2017_1385466
45111522
1385466
Genre Article
GrantInformation_xml – fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N031938/1
  funderid: 10.13039/501100000266
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
0YH
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AAAVZ
AABCJ
AAENE
AAGDL
AAHBH
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABRLO
ABTAI
ABUFD
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADXHL
AEISY
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFRVT
AFVYC
AFXHP
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FJW
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IPNFZ
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K60
K6~
KYCEM
LJTGL
LU7
M4Z
MS~
MW2
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
ZGOLN
~S~
ADYSH
AFSUE
ALIPV
AMPGV
AAYXX
CITATION
8BJ
FQK
JBE
K9.
7S9
L.6
.-4
.GJ
07G
1OL
1XC
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAFWJ
AAIKQ
AAKBW
AAWIL
ABAWQ
ABEFU
ABJCF
ABPQH
ABUWG
ABXSQ
ACAGQ
ACGEE
ACHJO
ACTCW
ADBBV
ADULT
AEUMN
AFKRA
AFQQW
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AI.
AIHAF
ALCKM
AMATQ
AMEWO
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FEDTE
FRNLG
FVMVE
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IVXBP
K9-
KQ8
L6V
M0C
M0R
M0T
M1P
M2O
M2P
M7S
MVM
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
RNS
S0X
SJN
TAQ
TFMCV
UB9
UKHRP
UQL
VH1
VOH
VOOES
WHG
YXB
YYP
ZCG
ZGI
ZUP
ZXP
ID FETCH-LOGICAL-c573t-8f785a9b45336efd12c9931d203e6b1933c6d4fcc232865d7d0c9393cfa37cbb3
IEDL.DBID 0YH
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000471325500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-1459
1537-274X
IngestDate Tue Oct 14 20:59:12 EDT 2025
Fri Oct 03 00:05:14 EDT 2025
Sun Nov 09 06:42:58 EST 2025
Tue Nov 18 22:15:22 EST 2025
Sat Nov 29 03:56:43 EST 2025
Thu May 29 08:47:49 EDT 2025
Mon Oct 20 23:49:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 525
Keywords Penalised likelihood
Robust Statistics
Biweight loss
M-estimation
Cusum
Binary Segmentation
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-8f785a9b45336efd12c9931d203e6b1933c6d4fcc232865d7d0c9393cfa37cbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9386-2341
0000-0002-7176-7511
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1385466
PQID 2211653818
PQPubID 41715
PageCount 15
ParticipantIDs crossref_primary_10_1080_01621459_2017_1385466
crossref_citationtrail_10_1080_01621459_2017_1385466
hal_primary_oai_HAL_hal_02622377v1
proquest_journals_2211653818
jstor_primary_45111522
informaworld_taylorfrancis_310_1080_01621459_2017_1385466
proquest_miscellaneous_2253278848
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Group,LLC
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group,LLC
– name: Taylor & Francis Ltd
References cit0011
Huber P. J. (cit0016) 2011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Rigaill G. (cit0036) 2013; 28
Rigaill G. (cit0035) 2015; 156
Hušková M. (cit0020) 2005; 67
cit0019
cit0017
cit0039
Adams R. P. (cit0001) 2007
cit0015
cit0037
Vostrikova L. (cit0038) 1981; 259
cit0013
cit0014
cit0022
cit0023
cit0021
cit0040
cit0041
(cit0018) 2013
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
Yao Y.-C. (cit0042) 1989; 51
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0034
  doi: 10.1175/JAM2493.1
– ident: cit0027
  doi: 10.1093/biomet/asw002
– ident: cit0004
  doi: 10.1017/S0266466600005831
– ident: cit0025
  doi: 10.1198/073500104000000352
– ident: cit0029
  doi: 10.17226/18374
– ident: cit0031
  doi: 10.1007/978-1-4612-0717-7
– year: 2007
  ident: cit0001
  publication-title: arXiv:  0710.3742
– ident: cit0010
  doi: 10.1214/14-AOS1245
– ident: cit0002
– ident: cit0021
  doi: 10.1007/978-3-662-02571-0_6
– ident: cit0013
  doi: 10.1007/s11222-016-9687-5
– ident: cit0024
  doi: 10.1080/01621459.2012.737745
– ident: cit0009
  doi: 10.1111/rssb.12047
– ident: cit0014
  doi: 10.1093/biomet/58.3.509
– ident: cit0033
  doi: 10.1093/bib/bbu026
– ident: cit0008
  doi: 10.1007/s11222-006-8450-8
– ident: cit0006
– volume: 28
  start-page: 172
  year: 2013
  ident: cit0036
  publication-title: Proceedings of the 30th International Conference on Machine Learning, JMLR W&CP
– ident: cit0041
  doi: 10.1214/aos/1176346802
– start-page: 171
  volume-title: Robustness and Complex Data Structures
  year: 2013
  ident: cit0018
– ident: cit0040
  doi: 10.1214/11-BA620
– ident: cit0039
  doi: 10.1080/01621459.1979.10482519
– volume: 67
  start-page: 200
  year: 2005
  ident: cit0020
  publication-title: Sankhyā: The Indian Journal of Statistics
– ident: cit0023
  doi: 10.1016/j.oceaneng.2010.04.009
– ident: cit0019
  doi: 10.1080/03610918.2012.625790
– ident: cit0012
  doi: 10.1080/10618600.2015.1116445
– ident: cit0022
  doi: 10.1080/10618600.2012.681238
– ident: cit0003
  doi: 10.1145/2818000.2818028
– ident: cit0015
  doi: 10.1109/TNB.2013.2284063
– ident: cit0011
  doi: 10.1093/bioinformatics/btu180
– ident: cit0030
  doi: 10.1093/biostatistics/kxh008
– ident: cit0028
  doi: 10.1007/s11222-016-9636-3
– ident: cit0032
  doi: 10.1093/biomet/41.1-2.100
– volume: 156
  start-page: 180
  year: 2015
  ident: cit0035
  publication-title: Journal de la Société Française de Statistique
– ident: cit0037
  doi: 10.1016/j.csda.2015.11.010
– year: 2011
  ident: cit0016
  publication-title: Robust Statistics
– ident: cit0005
– ident: cit0026
  doi: 10.1111/1467-9892.00172
– volume: 51
  start-page: 370
  year: 1989
  ident: cit0042
  publication-title: Sankhyā: The Indian Journal of Statistics
– ident: cit0017
  doi: 10.1007/978-3-662-06824-3_2
– volume: 259
  start-page: 270
  year: 1981
  ident: cit0038
  publication-title: Doklady Akademii Nauk SSSR
– ident: cit0007
  doi: 10.1093/biomet/asv031
SSID ssj0000788
Score 2.6160433
Snippet Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will infer...
Many traditional methods for identifying changepoints can struggle in the presence of outliers, or when the noise is heavy-tailed. Often they will Infer...
SourceID hal
proquest
crossref
jstor
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Algorithms
Binary segmentation
Biweight loss
Change detection
copy number variation
Cusum
Data
Data analysis
Dynamic programming
equations
Identification methods
Internet
Life Sciences
M-estimation
Needs
Noise
Outliers (statistics)
Penalized likelihood
Regression analysis
Robust statistics
Segmentation
Statistical methods
Statistics
Theory and Methods
Usefulness
Vegetal Biology
Wireless communications
Title Changepoint Detection in the Presence of Outliers
URI https://www.tandfonline.com/doi/abs/10.1080/01621459.2017.1385466
https://www.jstor.org/stable/45111522
https://www.proquest.com/docview/2211653818
https://www.proquest.com/docview/2253278848
https://hal.inrae.fr/hal-02622377
Volume 114
WOSCitedRecordID wos000471325500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 1537-274X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000788
  issn: 0162-1459
  databaseCode: TFW
  dateStart: 19220301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7x6IELbWkRAVqlVa-hazux4yNqu9oDohwo0JPl-KEioSxis_x-ZpxkC6oqDu0lUhJPnNjj8Wdn5huAT1zamusYCl9JXZQ8-sLyQG5i3jZRxRiTt_vFiTo9ra-u9NngTbgY3CppDR17oohkq2lw22YxesR9RpRC_NoUZsLUERN1VUq5Dpsclya0_pr8nP02xiqlniSRgmTGIJ6_PebJ9LT-KzlHPqYwHd0W_zDdaT6avvwPX_IKtgcwmh_32vMa1kK7A1uEP3v65jfA-uiD2_l12-VfQ5cct9r8us0ROOZnKXbJhXwe8-_L7obSar-FH9Nv519mxZBloXCVEl1RR1VXVjclAj8ZomfcIWZhnk9EkA3iO-GkL6NziL1qWXnlJ04LLVy0QrmmEbuw0c7bsAc58_QUVTNrq5I10iodtHQcYYzEgiKDcmxc4wYKcsqEcWPYyFQ6NIihBjFDg2RwtBK77Tk4nhP4iD23KksM2rPjE0PXcMmJgEipe5aBftyxpks7JLFPZ2LEMxXsJi1YVUEsb4iEeAaHo1qYwRgsDOfEcUTQKIMPq9s4jOnfjG3DfEllKsFRV8t6_x_e6wC28FSnLSJ-CBvd3TK8gxfuHtXm7n0aGXg8n14-AJvNBZ0
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RgkQvvCsCLQTENaW2Ezs-VqWrRSwLhwV6sxw_1EpVtirZ_n5mnGS7CKEe4Bp77MQejz87M98AvOPS1lzHUPhK6qLk0ReWB3IT87aJKsaYvN2_z9R8Xp-e6s1YGHKrpDN07Ikikq2mxU2X0aNL3HuEKUSwTXEmTB0wUVellFtwt8K9lvjzF5MfN9ZYpdyTJFKQzBjF87dmftufts6Sd-Qmh-not_iH7U4b0uTh__iUR_BggKP5Ua8_j-FOaJ_ADiHQnsD5KbA-_uByed52-YfQJdetNj9vc4SO-dcUveRCvoz5l1V3QYm1n8G3ycnieFoMeRYKVynRFXVUdWV1UyL0kyF6xh2iFub5oQiyQYQnnPRldA7RVy0rr_yh00ILF61QrmnELmy3yzY8h5x5akXVzNqqZI20SgctHUcgI7GiyKAcR9e4gYSccmFcGDZylQ4DYmhAzDAgGRysxS57Fo7bBN7i1K3rEof29Ghm6BkeOhESKXXNMtCbM2u6dEcS-4QmRtzSwW5Sg3UXxPOGWIhnsDfqhRnMwU_DObEcETjK4M26GBcy_Z2xbViuqE4lOCprWb_4h_d6Dfeni88zM_s4__QSdrBIpwsjvgfb3dUq7MM9d40qdPUqLZNfikEItQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RglAvvEpFoNCAek2p7cSOjxVlVdTVsocCvVmOH2qlKrtqs_39zDjJUoRQD3CNPXYyHtufnZlvAPa5tDXXMRS-krooefSF5YHcxLxtoooxJm_371M1m9Xn53o-eBPeDG6VdIaOPVFEWqtpci99HD3iPiJKIX5tCjNh6oCJuiql3ICHCJ0lGfnZ5MevxVil1JMkUpDMGMTzt2Z-2542LpJz5F0K09Ft8Y-lO-1Hk6f_4UuewZMBjOZHvfU8hwehfQFbhD97-uZtYH30wXJx2Xb5ceiS41abX7Y5Asd8nmKXXMgXMf-66q4orfZL-Db5fPbppBiyLBSuUqIr6qjqyuqmROAnQ_SMO8QszPNDEWSD-E446cvoHGKvWlZe-UOnhRYuWqFc04gd2GwXbXgFOfPUiqqZtVXJGmmVDlo6jjBGYkWRQTkq17iBgpwyYVwZNjKVDgoxpBAzKCSDg7XYsufguE_gA47cui4xaJ8cTQ09wyMnAiKlblkG-u7Ami7dkMQ-nYkR93Swk6xg3QWxvCES4hnsjmZhhsXgxnBOHEcEjTJ4vy7GaUz_ZmwbFiuqUwmOtlrWr__hvfbg8fx4YqZfZqdvYAtLdLot4ruw2V2vwlt45G7Rgq7fpUnyE1INB2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Changepoint+detection+in+the+presence+of+outliers&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Fearnhead%2C+Paul&rft.au=Rigaill%2C+Guillem&rft.date=2019-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=114&rft.issue=525&rft.spage=169&rft.epage=183&rft_id=info:doi/10.1080%2F01621459.2017.1385466&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02622377v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon