A dosimetric comparison of helical tomotherapy treatment delivery with real-time adaption and no motion correction

[Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Physics and imaging in radiation oncology Ročník 34; s. 100741
Hlavní autori: Hindmarsh, Jonathan, Crowe, Scott, Johnson, Julia, Sengupta, Chandrima, Walsh, Jemma, Dieterich, Sonja, Booth, Jeremy, Keall, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.04.2025
Elsevier
Predmet:
ISSN:2405-6316, 2405-6316
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract [Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.
AbstractList This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.
•Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.
[Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.
This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. Radiotherapy, image-guided; Radiation therapy, targeted.
This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption.MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.
ArticleNumber 100741
Author Johnson, Julia
Hindmarsh, Jonathan
Walsh, Jemma
Keall, Paul
Sengupta, Chandrima
Dieterich, Sonja
Booth, Jeremy
Crowe, Scott
Author_xml – sequence: 1
  givenname: Jonathan
  surname: Hindmarsh
  fullname: Hindmarsh, Jonathan
  email: jonathan.hindmarsh@sydney.edu.au
  organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia
– sequence: 2
  givenname: Scott
  surname: Crowe
  fullname: Crowe, Scott
  organization: Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
– sequence: 3
  givenname: Julia
  surname: Johnson
  fullname: Johnson, Julia
  organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia
– sequence: 4
  givenname: Chandrima
  surname: Sengupta
  fullname: Sengupta, Chandrima
  organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia
– sequence: 5
  givenname: Jemma
  surname: Walsh
  fullname: Walsh, Jemma
  organization: Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia
– sequence: 6
  givenname: Sonja
  surname: Dieterich
  fullname: Dieterich, Sonja
  organization: Department of Radiation Oncology, UC Davis Medical Center, Sacramento, CA, USA
– sequence: 7
  givenname: Jeremy
  surname: Booth
  fullname: Booth, Jeremy
  organization: Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
– sequence: 8
  givenname: Paul
  surname: Keall
  fullname: Keall, Paul
  organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40129726$$D View this record in MEDLINE/PubMed
BookMark eNqFUktv1DAQjlARfdA_wAH5yCWLH3GcRUioqihUqsQFzpZjT7pekjjY3kX775mQUrU9lJPn9X3jmflOi6MxjFAUbxhdMcrq99vVtIlhxSmXGKCqYi-KE15RWdaC1UcP7OPiPKUtpZSrtZCCviqOK8r4WvH6pIgXxIXkB8jRW2LDMJnoUxhJ6MgGem9NT3IYQt5ANNOB5AgmDzBm4jC7h3ggv33eEAz3ZUYeYpyZskcGMzoyBoLY2bMhRrCz-bp42Zk-wfnde1b8uPr8_fJrefPty_XlxU1ppRK5VJa10LKGguVdW7dccVlLqZoWqFOGW8EtlxLNViqoXVVVVnRMmobVBgDEWXG98LpgtnqKfjDxoIPx-m8gxFttYva2B-1Eo7ADqyxA1bkGPabo2jkqREM7g1yfFq5p1w7gLC4gmv4R6ePM6Df6Nuw1Y2vBeCWR4d0dQwy_dpCyHnyy0PdmhLBLWuCk60YqVWHp24fN7rv8uxoW8KXAxpBShO6-hFE9q0PjvKgOPatDL-pAUPMEZH0280Hww75_HvpxgQKea-8h6mQ9jBacn2-K-_TPwz88gdvej7O0fsLhf-A_cmvrRQ
CitedBy_id crossref_primary_10_7759_cureus_82620
crossref_primary_10_7759_cureus_83532
crossref_primary_10_7759_cureus_84956
crossref_primary_10_7759_cureus_83023
crossref_primary_10_2478_pjmpe_2025_0020
Cites_doi 10.1016/j.clon.2022.03.001
10.1007/s13246-023-01318-4
10.1002/mp.16150
10.1016/j.ijrobp.2003.09.077
10.1088/1361-6560/ab2ba8
10.1016/j.ijrobp.2022.12.022
10.1002/mp.15410
10.1002/acm2.12978
10.1002/mp.14312
10.1118/1.2839095
10.1016/j.semradonc.2019.02.004
10.1016/j.semradonc.2019.02.007
10.1148/rycan.230011
10.1016/j.prro.2021.01.010
10.1088/1361-6560/ab1935
10.1016/j.meddos.2005.03.005
10.1016/j.ijrobp.2018.12.041
10.1016/j.semradonc.2019.02.005
10.1016/j.ejmp.2018.10.021
10.1088/0031-9155/42/1/008
10.1002/mp.12791
10.1016/j.jtcvs.2012.06.003
10.1088/0031-9155/53/13/016
10.1016/j.radonc.2016.03.006
10.1002/mp.14171
10.1002/acm2.13600
10.1016/j.ijrobp.2007.11.054
10.1002/mp.15667
10.4103/jmp.JMP_22_17
10.1016/j.semradonc.2019.02.011
10.1053/j.semradonc.2003.10.011
10.1016/j.ijrobp.2011.09.045
10.1016/j.ijrobp.2020.10.021
ContentType Journal Article
Copyright 2025 The Author(s)
2025 The Author(s).
2025 The Author(s) 2025
Copyright_xml – notice: 2025 The Author(s)
– notice: 2025 The Author(s).
– notice: 2025 The Author(s) 2025
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.phro.2025.100741
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-6316
ExternalDocumentID oai_doaj_org_article_d3876b214cee4fd88761709dd03380fa
PMC11931245
40129726
10_1016_j_phro_2025_100741
S2405631625000466
Genre Journal Article
GroupedDBID .1-
.FO
0R~
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
O9-
OK1
ROL
RPM
SSZ
Z5R
6I.
AAFTH
RIG
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c573t-7c1beb180ec2fb6b272565578be0d7a2c32c255d7ab57e6d444c3f15a816aeee3
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-6316
IngestDate Fri Oct 03 12:41:04 EDT 2025
Tue Sep 30 17:05:10 EDT 2025
Fri Jul 11 09:52:53 EDT 2025
Mon Jul 21 05:48:28 EDT 2025
Tue Nov 18 22:14:16 EST 2025
Thu Nov 13 04:34:34 EST 2025
Tue Jul 29 20:18:52 EDT 2025
Tue Aug 26 17:19:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Real-time adaptive radiotherapy
Organ motion
Helical tomotherapy
MLC tracking
Language English
License This is an open access article under the CC BY license.
2025 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-7c1beb180ec2fb6b272565578be0d7a2c32c255d7ab57e6d444c3f15a816aeee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d3876b214cee4fd88761709dd03380fa
PMID 40129726
PQID 3180985774
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d3876b214cee4fd88761709dd03380fa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11931245
proquest_miscellaneous_3180985774
pubmed_primary_40129726
crossref_primary_10_1016_j_phro_2025_100741
crossref_citationtrail_10_1016_j_phro_2025_100741
elsevier_sciencedirect_doi_10_1016_j_phro_2025_100741
elsevier_clinicalkey_doi_10_1016_j_phro_2025_100741
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Physics and imaging in radiation oncology
PublicationTitleAlternate Phys Imaging Radiat Oncol
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wu, Thongphiew, Wang, Chankong, Yin (b0030) 2008; 35
Bertholet, Knopf, Eiben, McClelland, Grimwood, Harris (b0060) 2019; 64
Brenner, Hall (b0045) 2018
Chen, Rong, Burmeister, Chao, Corradini, Followill (b0125) 2023; 50
Yarnold, Brunt, Chatterjee, Somaiah, Kirby (b0050) 2022; 34
Lukka, Deshmukh, Bruner, Bahary, Lawton, Efstathiou (b0160) 2023; 116
Yoganathan, Maria Das, Agarwal, Kumar (b0010) 2017; 42
Siva, Ball (b0040) 2019; 103
Schnarr, Beneke, Casey, Chao, Chappelow, Cox (b0105) 2018; 45
Alnaghy S, Sengupta C, Makhija K. 6 DoF Robotic Motion Phantom. Image X Inst 2022.
Green, Henke, Hugo (b0080) 2019; 29
(accessed July 31, 2024).
Dieterich, Green, Booth (b0055) 2018; 56
Bortfeld, Jiang, Rietzel (b0020) 2004; 14
Crowe, Maxwell, Brar, Yu, Kairn (b0175) 2023; 46
Vergalasova, Cai (b0015) 2020; 47
Okada, Doi, Tanooka, Sano, Nakamura, Sakai (b0115) 2021; 9
Chen, Tai, Keiper, Lim, Li (b0140) 2020; 47
Ferris, Kissick, Bayouth, Culberson, Smilowitz (b0130) 2020; 21
Fernando, Timmerman (b0155) 2012; 144
Byrne (b0005) 2005; 30
Brock (b0070) 2019; 29
Sonke, Aznar, Rasch (b0085) 2019; 29
Tse, Chan, Fok, Chiu, Yu (b0145) 2022; 23
Velec, Moseley, Craig, Dawson, Brock (b0035) 2012; 83
Goddard, Jeong, Tomé (b0120) 2022; 49
(accessed May 30, 2023).
Glide-Hurst, Lee, Yock, Olsen, Cao, Siddiqui (b0095) 2021; 109
Image-X-Institute/Realtime-Benchmarking-Tools. Image X Inst 2024.
Gierga, Chen, Kung, Betke, Lombardi, Willett (b0025) 2004; 58
Alnaghy, Kyme, Caillet, Nguyen, O’Brien, Booth (b0170) 2019; 64
Yan, Vicini, Wong, Martinez (b0065) 1997; 42
Ferris, Culberson, Bayouth (b0135) 2022; 49
Suh, Dieterich, Cho, Keall (b0180) 2008; 53
Lavrova, Garrett, Wang, Chin, Elliston, Savacool (b0090) 2023; 5
Colvill, Booth, Nill, Fast, Bedford, Oelfke (b0100) 2016; 119
Keall, Poulsen, Booth (b0075) 2019; 29
Chen, Tai, Puckett, Gore, Lim, Keiper (b0110) 2021; 11
Langen, Willoughby, Meeks, Santhanam, Cunningham, Levine (b0185) 2008; 71
Vergalasova (10.1016/j.phro.2025.100741_b0015) 2020; 47
Brock (10.1016/j.phro.2025.100741_b0070) 2019; 29
Goddard (10.1016/j.phro.2025.100741_b0120) 2022; 49
Gierga (10.1016/j.phro.2025.100741_b0025) 2004; 58
10.1016/j.phro.2025.100741_b0150
Glide-Hurst (10.1016/j.phro.2025.100741_b0095) 2021; 109
Byrne (10.1016/j.phro.2025.100741_b0005) 2005; 30
Yarnold (10.1016/j.phro.2025.100741_b0050) 2022; 34
Ferris (10.1016/j.phro.2025.100741_b0135) 2022; 49
Crowe (10.1016/j.phro.2025.100741_b0175) 2023; 46
Chen (10.1016/j.phro.2025.100741_b0125) 2023; 50
Lukka (10.1016/j.phro.2025.100741_b0160) 2023; 116
Bortfeld (10.1016/j.phro.2025.100741_b0020) 2004; 14
Suh (10.1016/j.phro.2025.100741_b0180) 2008; 53
Brenner (10.1016/j.phro.2025.100741_b0045) 2018
Tse (10.1016/j.phro.2025.100741_b0145) 2022; 23
Bertholet (10.1016/j.phro.2025.100741_b0060) 2019; 64
Green (10.1016/j.phro.2025.100741_b0080) 2019; 29
Okada (10.1016/j.phro.2025.100741_b0115) 2021; 9
Fernando (10.1016/j.phro.2025.100741_b0155) 2012; 144
Yoganathan (10.1016/j.phro.2025.100741_b0010) 2017; 42
Colvill (10.1016/j.phro.2025.100741_b0100) 2016; 119
Sonke (10.1016/j.phro.2025.100741_b0085) 2019; 29
Langen (10.1016/j.phro.2025.100741_b0185) 2008; 71
Wu (10.1016/j.phro.2025.100741_b0030) 2008; 35
Dieterich (10.1016/j.phro.2025.100741_b0055) 2018; 56
Lavrova (10.1016/j.phro.2025.100741_b0090) 2023; 5
Keall (10.1016/j.phro.2025.100741_b0075) 2019; 29
Alnaghy (10.1016/j.phro.2025.100741_b0170) 2019; 64
10.1016/j.phro.2025.100741_b0165
Ferris (10.1016/j.phro.2025.100741_b0130) 2020; 21
Chen (10.1016/j.phro.2025.100741_b0140) 2020; 47
Yan (10.1016/j.phro.2025.100741_b0065) 1997; 42
Schnarr (10.1016/j.phro.2025.100741_b0105) 2018; 45
Velec (10.1016/j.phro.2025.100741_b0035) 2012; 83
Siva (10.1016/j.phro.2025.100741_b0040) 2019; 103
Chen (10.1016/j.phro.2025.100741_b0110) 2021; 11
References_xml – volume: 103
  start-page: 1085
  year: 2019
  end-page: 1087
  ident: b0040
  article-title: Single fraction SBRT for early stage lung cancer—less is more?
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 64
  year: 2019
  ident: b0060
  article-title: Real-time intrafraction motion monitoring in external beam radiotherapy
  publication-title: Phys Med Biol
– volume: 11
  start-page: e486
  year: 2021
  end-page: e495
  ident: b0110
  article-title: Clinical implementation and initial experience of real-time motion tracking with jaws and multileaf collimator during helical tomotherapy delivery
  publication-title: Pract Radiat Oncol
– volume: 83
  start-page: 1132
  year: 2012
  end-page: 1140
  ident: b0035
  article-title: Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects
  publication-title: Int J Radiat Oncol
– volume: 49
  start-page: 3990
  year: 2022
  end-page: 3998
  ident: b0135
  article-title: Technical note: tracking target/chest relationship changes during motion-synchronized tomotherapy treatments
  publication-title: Med Phys
– volume: 29
  start-page: 228
  year: 2019
  end-page: 235
  ident: b0075
  article-title: See, think, and act: real-time adaptive radiotherapy
  publication-title: Semin Radiat Oncol
– volume: 109
  start-page: 1054
  year: 2021
  end-page: 1075
  ident: b0095
  article-title: Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology
  publication-title: Int J Radiat Oncol
– volume: 116
  start-page: 770
  year: 2023
  end-page: 778
  ident: b0160
  article-title: Five-year patient-reported outcomes in NRG oncology RTOG 0938, evaluating two ultrahypofractionated regimens for prostate cancer
  publication-title: Int J Radiat Oncol
– volume: 64
  year: 2019
  ident: b0170
  article-title: A six-degree-of-freedom robotic motion system for quality assurance of real-time image-guided radiotherapy
  publication-title: Phys Med Biol
– volume: 42
  start-page: 101
  year: 2017
  ident: b0010
  article-title: Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: a comprehensive review
  publication-title: J Med Phys
– reference: (accessed July 31, 2024).
– volume: 47
  start-page: 2814
  year: 2020
  end-page: 2825
  ident: b0140
  article-title: Technical Note: comprehensive performance tests of the first clinical real-time motion tracking and compensation system using MLC and jaws
  publication-title: Med Phys
– volume: 47
  start-page: e988
  year: 2020
  end-page: e1008
  ident: b0015
  article-title: A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy
  publication-title: Med Phys
– volume: 29
  start-page: 181
  year: 2019
  end-page: 184
  ident: b0070
  article-title: Adaptive radiotherapy: moving into the future
  publication-title: Semin Radiat Oncol
– volume: 45
  start-page: 1329
  year: 2018
  end-page: 1337
  ident: b0105
  article-title: Feasibility of real-time motion management with helical tomotherapy
  publication-title: Med Phys
– volume: 144
  start-page: S35
  year: 2012
  end-page: S38
  ident: b0155
  article-title: American College of Surgeons Oncology Group Z4099/Radiation Therapy Oncology Group 1021: a randomized study of sublobar resection compared with stereotactic body radiotherapy for high-risk stage I non–small cell lung cancer
  publication-title: J Thorac Cardiovasc Surg
– volume: 14
  start-page: 41
  year: 2004
  end-page: 51
  ident: b0020
  article-title: Effects of motion on the total dose distribution
  publication-title: Semin Radiat Oncol
– reference: (accessed May 30, 2023).
– volume: 58
  start-page: 1584
  year: 2004
  end-page: 1595
  ident: b0025
  article-title: Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions
  publication-title: Int J Radiat Oncol
– start-page: 7
  year: 2018
  ident: b0045
  article-title: Hypofractionation in prostate cancer radiotherapy
  publication-title: Transl Cancer Res
– volume: 46
  start-page: 1811
  year: 2023
  end-page: 1817
  ident: b0175
  article-title: Use of light-weight foaming polylactic acid as a lung-equivalent material in 3D printed phantoms
  publication-title: Phys Eng Sci Med
– volume: 71
  start-page: 1084
  year: 2008
  end-page: 1090
  ident: b0185
  article-title: Observations on real-time prostate gland motion using electromagnetic tracking
  publication-title: Int J Radiat Oncol
– volume: 56
  start-page: 19
  year: 2018
  end-page: 24
  ident: b0055
  article-title: SBRT targets that move with respiration
  publication-title: Phys Med
– volume: 9
  year: 2021
  ident: b0115
  article-title: A first report of tumour-tracking radiotherapy with helical tomotherapy for lung and liver tumours: a double case report
  publication-title: SAGE Open Med Case Rep
– volume: 23
  year: 2022
  ident: b0145
  article-title: Dosimetric impact of phase shifts on Radixact Synchrony tracking system with patient-specific breathing patterns
  publication-title: J Appl Clin Med Phys
– volume: 30
  start-page: 155
  year: 2005
  end-page: 161
  ident: b0005
  article-title: A review of prostate motion with considerations for the treatment of prostate cancer
  publication-title: Med Dosim
– volume: 34
  start-page: 332
  year: 2022
  end-page: 339
  ident: b0050
  article-title: From 25 fractions to five: how hypofractionation has revolutionised adjuvant breast radiotherapy
  publication-title: Clin Oncol
– volume: 42
  start-page: 123
  year: 1997
  end-page: 132
  ident: b0065
  article-title: Adaptive radiation therapy
  publication-title: Phys Med Biol
– reference: Image-X-Institute/Realtime-Benchmarking-Tools. Image X Inst 2024.
– volume: 35
  start-page: 1440
  year: 2008
  end-page: 1451
  ident: b0030
  article-title: The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer
  publication-title: Med Phys
– volume: 29
  start-page: 245
  year: 2019
  end-page: 257
  ident: b0085
  article-title: Adaptive radiotherapy for anatomical changes
  publication-title: Semin Radiat Oncol
– volume: 21
  start-page: 96
  year: 2020
  end-page: 106
  ident: b0130
  article-title: Evaluation of radixact motion synchrony for 3D respiratory motion: modeling accuracy and dosimetric fidelity
  publication-title: J Appl Clin Med Phys
– volume: 119
  start-page: 159
  year: 2016
  end-page: 165
  ident: b0100
  article-title: A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking
  publication-title: Radiother Oncol
– volume: 50
  start-page: e25
  year: 2023
  end-page: e52
  ident: b0125
  article-title: AAPM Task Group Report 306: quality control and assurance for tomotherapy: an update to Task Group Report 148
  publication-title: Med Phys
– volume: 49
  start-page: 1181
  year: 2022
  end-page: 1195
  ident: b0120
  article-title: Commissioning and routine quality assurance of the Radixact Synchrony system
  publication-title: Med Phys
– volume: 53
  start-page: 3623
  year: 2008
  ident: b0180
  article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients
  publication-title: Phys Med Biol
– volume: 29
  start-page: 219
  year: 2019
  end-page: 227
  ident: b0080
  article-title: Practical clinical workflows for online and offline adaptive radiation therapy
  publication-title: Semin Radiat Oncol
– reference: Alnaghy S, Sengupta C, Makhija K. 6 DoF Robotic Motion Phantom. Image X Inst 2022.
– volume: 5
  year: 2023
  ident: b0090
  article-title: Adaptive radiation therapy: a review of CT-based techniques
  publication-title: Radiol Imaging Cancer
– volume: 34
  start-page: 332
  year: 2022
  ident: 10.1016/j.phro.2025.100741_b0050
  article-title: From 25 fractions to five: how hypofractionation has revolutionised adjuvant breast radiotherapy
  publication-title: Clin Oncol
  doi: 10.1016/j.clon.2022.03.001
– volume: 46
  start-page: 1811
  year: 2023
  ident: 10.1016/j.phro.2025.100741_b0175
  article-title: Use of light-weight foaming polylactic acid as a lung-equivalent material in 3D printed phantoms
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-023-01318-4
– volume: 9
  year: 2021
  ident: 10.1016/j.phro.2025.100741_b0115
  article-title: A first report of tumour-tracking radiotherapy with helical tomotherapy for lung and liver tumours: a double case report
  publication-title: SAGE Open Med Case Rep
– volume: 50
  start-page: e25
  year: 2023
  ident: 10.1016/j.phro.2025.100741_b0125
  article-title: AAPM Task Group Report 306: quality control and assurance for tomotherapy: an update to Task Group Report 148
  publication-title: Med Phys
  doi: 10.1002/mp.16150
– volume: 58
  start-page: 1584
  year: 2004
  ident: 10.1016/j.phro.2025.100741_b0025
  article-title: Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2003.09.077
– volume: 64
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0060
  article-title: Real-time intrafraction motion monitoring in external beam radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab2ba8
– volume: 116
  start-page: 770
  year: 2023
  ident: 10.1016/j.phro.2025.100741_b0160
  article-title: Five-year patient-reported outcomes in NRG oncology RTOG 0938, evaluating two ultrahypofractionated regimens for prostate cancer
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2022.12.022
– volume: 49
  start-page: 1181
  year: 2022
  ident: 10.1016/j.phro.2025.100741_b0120
  article-title: Commissioning and routine quality assurance of the Radixact Synchrony system
  publication-title: Med Phys
  doi: 10.1002/mp.15410
– volume: 21
  start-page: 96
  year: 2020
  ident: 10.1016/j.phro.2025.100741_b0130
  article-title: Evaluation of radixact motion synchrony for 3D respiratory motion: modeling accuracy and dosimetric fidelity
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12978
– volume: 47
  start-page: e988
  year: 2020
  ident: 10.1016/j.phro.2025.100741_b0015
  article-title: A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy
  publication-title: Med Phys
  doi: 10.1002/mp.14312
– volume: 35
  start-page: 1440
  year: 2008
  ident: 10.1016/j.phro.2025.100741_b0030
  article-title: The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer
  publication-title: Med Phys
  doi: 10.1118/1.2839095
– volume: 29
  start-page: 219
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0080
  article-title: Practical clinical workflows for online and offline adaptive radiation therapy
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2019.02.004
– volume: 29
  start-page: 245
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0085
  article-title: Adaptive radiotherapy for anatomical changes
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2019.02.007
– volume: 5
  year: 2023
  ident: 10.1016/j.phro.2025.100741_b0090
  article-title: Adaptive radiation therapy: a review of CT-based techniques
  publication-title: Radiol Imaging Cancer
  doi: 10.1148/rycan.230011
– volume: 11
  start-page: e486
  year: 2021
  ident: 10.1016/j.phro.2025.100741_b0110
  article-title: Clinical implementation and initial experience of real-time motion tracking with jaws and multileaf collimator during helical tomotherapy delivery
  publication-title: Pract Radiat Oncol
  doi: 10.1016/j.prro.2021.01.010
– ident: 10.1016/j.phro.2025.100741_b0150
– volume: 64
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0170
  article-title: A six-degree-of-freedom robotic motion system for quality assurance of real-time image-guided radiotherapy
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab1935
– volume: 30
  start-page: 155
  year: 2005
  ident: 10.1016/j.phro.2025.100741_b0005
  article-title: A review of prostate motion with considerations for the treatment of prostate cancer
  publication-title: Med Dosim
  doi: 10.1016/j.meddos.2005.03.005
– volume: 103
  start-page: 1085
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0040
  article-title: Single fraction SBRT for early stage lung cancer—less is more?
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2018.12.041
– volume: 29
  start-page: 228
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0075
  article-title: See, think, and act: real-time adaptive radiotherapy
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2019.02.005
– start-page: 7
  year: 2018
  ident: 10.1016/j.phro.2025.100741_b0045
  article-title: Hypofractionation in prostate cancer radiotherapy
  publication-title: Transl Cancer Res
– volume: 56
  start-page: 19
  year: 2018
  ident: 10.1016/j.phro.2025.100741_b0055
  article-title: SBRT targets that move with respiration
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2018.10.021
– volume: 42
  start-page: 123
  year: 1997
  ident: 10.1016/j.phro.2025.100741_b0065
  article-title: Adaptive radiation therapy
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/42/1/008
– volume: 45
  start-page: 1329
  year: 2018
  ident: 10.1016/j.phro.2025.100741_b0105
  article-title: Feasibility of real-time motion management with helical tomotherapy
  publication-title: Med Phys
  doi: 10.1002/mp.12791
– volume: 144
  start-page: S35
  year: 2012
  ident: 10.1016/j.phro.2025.100741_b0155
  article-title: American College of Surgeons Oncology Group Z4099/Radiation Therapy Oncology Group 1021: a randomized study of sublobar resection compared with stereotactic body radiotherapy for high-risk stage I non–small cell lung cancer
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2012.06.003
– volume: 53
  start-page: 3623
  year: 2008
  ident: 10.1016/j.phro.2025.100741_b0180
  article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/53/13/016
– volume: 119
  start-page: 159
  year: 2016
  ident: 10.1016/j.phro.2025.100741_b0100
  article-title: A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2016.03.006
– ident: 10.1016/j.phro.2025.100741_b0165
– volume: 47
  start-page: 2814
  year: 2020
  ident: 10.1016/j.phro.2025.100741_b0140
  article-title: Technical Note: comprehensive performance tests of the first clinical real-time motion tracking and compensation system using MLC and jaws
  publication-title: Med Phys
  doi: 10.1002/mp.14171
– volume: 23
  year: 2022
  ident: 10.1016/j.phro.2025.100741_b0145
  article-title: Dosimetric impact of phase shifts on Radixact Synchrony tracking system with patient-specific breathing patterns
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.13600
– volume: 71
  start-page: 1084
  year: 2008
  ident: 10.1016/j.phro.2025.100741_b0185
  article-title: Observations on real-time prostate gland motion using electromagnetic tracking
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2007.11.054
– volume: 49
  start-page: 3990
  year: 2022
  ident: 10.1016/j.phro.2025.100741_b0135
  article-title: Technical note: tracking target/chest relationship changes during motion-synchronized tomotherapy treatments
  publication-title: Med Phys
  doi: 10.1002/mp.15667
– volume: 42
  start-page: 101
  year: 2017
  ident: 10.1016/j.phro.2025.100741_b0010
  article-title: Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: a comprehensive review
  publication-title: J Med Phys
  doi: 10.4103/jmp.JMP_22_17
– volume: 29
  start-page: 181
  year: 2019
  ident: 10.1016/j.phro.2025.100741_b0070
  article-title: Adaptive radiotherapy: moving into the future
  publication-title: Semin Radiat Oncol
  doi: 10.1016/j.semradonc.2019.02.011
– volume: 14
  start-page: 41
  year: 2004
  ident: 10.1016/j.phro.2025.100741_b0020
  article-title: Effects of motion on the total dose distribution
  publication-title: Semin Radiat Oncol
  doi: 10.1053/j.semradonc.2003.10.011
– volume: 83
  start-page: 1132
  year: 2012
  ident: 10.1016/j.phro.2025.100741_b0035
  article-title: Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2011.09.045
– volume: 109
  start-page: 1054
  year: 2021
  ident: 10.1016/j.phro.2025.100741_b0095
  article-title: Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology
  publication-title: Int J Radiat Oncol
  doi: 10.1016/j.ijrobp.2020.10.021
SSID ssj0002793530
Score 2.2947338
Snippet [Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption...
This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time....
•Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 100741
SubjectTerms Helical tomotherapy
MLC tracking
Organ motion
Real-time adaptive radiotherapy
Technical Note
Title A dosimetric comparison of helical tomotherapy treatment delivery with real-time adaption and no motion correction
URI https://www.clinicalkey.com/#!/content/1-s2.0-S2405631625000466
https://dx.doi.org/10.1016/j.phro.2025.100741
https://www.ncbi.nlm.nih.gov/pubmed/40129726
https://www.proquest.com/docview/3180985774
https://pubmed.ncbi.nlm.nih.gov/PMC11931245
https://doaj.org/article/d3876b214cee4fd88761709dd03380fa
Volume 34
WOSCitedRecordID wos001443712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-6316
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002793530
  issn: 2405-6316
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aUEovpe-6j6BCb8XUsqyVdUxLQi8JPbSwN6En2bC1w-6m0Et-e0aSbdYtJJdejJEt72pe-kYazQB8tMIaLalF_XZN2RgpShOELoXnwlAp0X8zqdiEODtrl0v5fa_UV4wJy-mBM-E-O4b6amraoDVvgkOdiCnEpXMVOldVSNAIUc-eM3WRttMk46waTsnkgC4kTjztV_MUGdDQ2UyUEvbPJqR_AeffcZN7E9HJE3g8IEhylP_5U7jnu2fw8HTYI38OmyPi-u3qVyyVZYmd6gySPpBzH9fo1mQXY_ByPgEyhZoTh09Rsv-QuDhLsHldxtLzRDudDAvRnSNdT3LlH_z0JpnLvnsBP0-Of3z9Vg6VFUrLBduVwlKDRrqtvK2DQfIKRD4cldf4ygldW1Zb9DXw1nDhF65pGssC5bqlC-29Zy_hoOs7_xpItfCS8mC0RcdOam6cC4HVoWZCY2sogI5UVnZIOx6rX6zVGF92oSJnVOSMypwp4NPU5zIn3bj17S-RedObMWF2akAxUoMYqbvEqAA2sl6NZ1LRiuKHVrf-NJ96DYglI5E7-30YpUuhOsc9Gt35_mqrWMyn1nIE5QW8ytI2DayJi4aiXhTQzuRwNvL5k251nlKGU8TpiOT4m_9Bq7fwKI4lxy-9g4Pd5sq_hwf292613RzCfbFsD5M64vX0-vgGZbU-Eg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dosimetric+comparison+of+helical+tomotherapy+treatment+delivery+with+real-time+adaption+and+no+motion+correction&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Hindmarsh%2C+Jonathan&rft.au=Crowe%2C+Scott&rft.au=Johnson%2C+Julia&rft.au=Sengupta%2C+Chandrima&rft.date=2025-04-01&rft.pub=Elsevier&rft.eissn=2405-6316&rft.volume=34&rft_id=info:doi/10.1016%2Fj.phro.2025.100741&rft.externalDocID=PMC11931245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon