A dosimetric comparison of helical tomotherapy treatment delivery with real-time adaption and no motion correction
[Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail...
Uložené v:
| Vydané v: | Physics and imaging in radiation oncology Ročník 34; s. 100741 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Netherlands
Elsevier B.V
01.04.2025
Elsevier |
| Predmet: | |
| ISSN: | 2405-6316, 2405-6316 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | [Display omitted]
•Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods.
This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption.
MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted. |
|---|---|
| AbstractList | This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted.This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted. •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted. [Display omitted] •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion correction.•Average reduction in 2 %/2 mm γ-fail rate was 17.3 % across 5 lung traces.•Average reduction in 2 %/2 mm γ-fail rate was 11.8 % across 3 prostate traces.•Helical tomotherapy system performed comparably to other real-time adaptive methods. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption. Radiotherapy, image-guided; Radiation therapy, targeted. This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time. To assess the delivery accuracy with motion, a unified testing framework was used. The average 2 %/2 mm γ-fail rates across all lung traces were 0.1 % for motion adapted and 17.4 % for no motion correction. Average 2 %/2 mm γ-fail rates across all prostate traces were 0.4 % for motion adapted and 12.2 % for no motion correction. Real-time motion adaption was shown to improve the accuracy of dose delivered to a moving phantom compared with no motion adaption.MeSH Keywords: Radiotherapy, image-guided; Radiation therapy, targeted. |
| ArticleNumber | 100741 |
| Author | Johnson, Julia Hindmarsh, Jonathan Walsh, Jemma Keall, Paul Sengupta, Chandrima Dieterich, Sonja Booth, Jeremy Crowe, Scott |
| Author_xml | – sequence: 1 givenname: Jonathan surname: Hindmarsh fullname: Hindmarsh, Jonathan email: jonathan.hindmarsh@sydney.edu.au organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia – sequence: 2 givenname: Scott surname: Crowe fullname: Crowe, Scott organization: Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia – sequence: 3 givenname: Julia surname: Johnson fullname: Johnson, Julia organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia – sequence: 4 givenname: Chandrima surname: Sengupta fullname: Sengupta, Chandrima organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia – sequence: 5 givenname: Jemma surname: Walsh fullname: Walsh, Jemma organization: Cancer Care Services, Royal Brisbane and Women’s Hospital, Herston, QLD, Australia – sequence: 6 givenname: Sonja surname: Dieterich fullname: Dieterich, Sonja organization: Department of Radiation Oncology, UC Davis Medical Center, Sacramento, CA, USA – sequence: 7 givenname: Jeremy surname: Booth fullname: Booth, Jeremy organization: Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia – sequence: 8 givenname: Paul surname: Keall fullname: Keall, Paul organization: Image X Institute, Faculty of Medicine and Health, University of Sydney, Eveleigh, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40129726$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUktv1DAQjlARfdA_wAH5yCWLH3GcRUioqihUqsQFzpZjT7pekjjY3kX775mQUrU9lJPn9X3jmflOi6MxjFAUbxhdMcrq99vVtIlhxSmXGKCqYi-KE15RWdaC1UcP7OPiPKUtpZSrtZCCviqOK8r4WvH6pIgXxIXkB8jRW2LDMJnoUxhJ6MgGem9NT3IYQt5ANNOB5AgmDzBm4jC7h3ggv33eEAz3ZUYeYpyZskcGMzoyBoLY2bMhRrCz-bp42Zk-wfnde1b8uPr8_fJrefPty_XlxU1ppRK5VJa10LKGguVdW7dccVlLqZoWqFOGW8EtlxLNViqoXVVVVnRMmobVBgDEWXG98LpgtnqKfjDxoIPx-m8gxFttYva2B-1Eo7ADqyxA1bkGPabo2jkqREM7g1yfFq5p1w7gLC4gmv4R6ePM6Df6Nuw1Y2vBeCWR4d0dQwy_dpCyHnyy0PdmhLBLWuCk60YqVWHp24fN7rv8uxoW8KXAxpBShO6-hFE9q0PjvKgOPatDL-pAUPMEZH0280Hww75_HvpxgQKea-8h6mQ9jBacn2-K-_TPwz88gdvej7O0fsLhf-A_cmvrRQ |
| CitedBy_id | crossref_primary_10_7759_cureus_82620 crossref_primary_10_7759_cureus_83532 crossref_primary_10_7759_cureus_84956 crossref_primary_10_7759_cureus_83023 crossref_primary_10_2478_pjmpe_2025_0020 |
| Cites_doi | 10.1016/j.clon.2022.03.001 10.1007/s13246-023-01318-4 10.1002/mp.16150 10.1016/j.ijrobp.2003.09.077 10.1088/1361-6560/ab2ba8 10.1016/j.ijrobp.2022.12.022 10.1002/mp.15410 10.1002/acm2.12978 10.1002/mp.14312 10.1118/1.2839095 10.1016/j.semradonc.2019.02.004 10.1016/j.semradonc.2019.02.007 10.1148/rycan.230011 10.1016/j.prro.2021.01.010 10.1088/1361-6560/ab1935 10.1016/j.meddos.2005.03.005 10.1016/j.ijrobp.2018.12.041 10.1016/j.semradonc.2019.02.005 10.1016/j.ejmp.2018.10.021 10.1088/0031-9155/42/1/008 10.1002/mp.12791 10.1016/j.jtcvs.2012.06.003 10.1088/0031-9155/53/13/016 10.1016/j.radonc.2016.03.006 10.1002/mp.14171 10.1002/acm2.13600 10.1016/j.ijrobp.2007.11.054 10.1002/mp.15667 10.4103/jmp.JMP_22_17 10.1016/j.semradonc.2019.02.011 10.1053/j.semradonc.2003.10.011 10.1016/j.ijrobp.2011.09.045 10.1016/j.ijrobp.2020.10.021 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s) 2025 The Author(s). 2025 The Author(s) 2025 |
| Copyright_xml | – notice: 2025 The Author(s) – notice: 2025 The Author(s). – notice: 2025 The Author(s) 2025 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.phro.2025.100741 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (ODIN) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-6316 |
| ExternalDocumentID | oai_doaj_org_article_d3876b214cee4fd88761709dd03380fa PMC11931245 40129726 10_1016_j_phro_2025_100741 S2405631625000466 |
| Genre | Journal Article |
| GroupedDBID | .1- .FO 0R~ AAEDW AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADVLN AEUPX AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E O9- OK1 ROL RPM SSZ Z5R 6I. AAFTH RIG AAYXX CITATION NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c573t-7c1beb180ec2fb6b272565578be0d7a2c32c255d7ab57e6d444c3f15a816aeee3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001443712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-6316 |
| IngestDate | Fri Oct 03 12:41:04 EDT 2025 Tue Sep 30 17:05:10 EDT 2025 Fri Jul 11 09:52:53 EDT 2025 Mon Jul 21 05:48:28 EDT 2025 Tue Nov 18 22:14:16 EST 2025 Thu Nov 13 04:34:34 EST 2025 Tue Jul 29 20:18:52 EDT 2025 Tue Aug 26 17:19:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time adaptive radiotherapy Organ motion Helical tomotherapy MLC tracking |
| Language | English |
| License | This is an open access article under the CC BY license. 2025 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c573t-7c1beb180ec2fb6b272565578be0d7a2c32c255d7ab57e6d444c3f15a816aeee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d3876b214cee4fd88761709dd03380fa |
| PMID | 40129726 |
| PQID | 3180985774 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d3876b214cee4fd88761709dd03380fa pubmedcentral_primary_oai_pubmedcentral_nih_gov_11931245 proquest_miscellaneous_3180985774 pubmed_primary_40129726 crossref_primary_10_1016_j_phro_2025_100741 crossref_citationtrail_10_1016_j_phro_2025_100741 elsevier_sciencedirect_doi_10_1016_j_phro_2025_100741 elsevier_clinicalkey_doi_10_1016_j_phro_2025_100741 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Physics and imaging in radiation oncology |
| PublicationTitleAlternate | Phys Imaging Radiat Oncol |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wu, Thongphiew, Wang, Chankong, Yin (b0030) 2008; 35 Bertholet, Knopf, Eiben, McClelland, Grimwood, Harris (b0060) 2019; 64 Brenner, Hall (b0045) 2018 Chen, Rong, Burmeister, Chao, Corradini, Followill (b0125) 2023; 50 Yarnold, Brunt, Chatterjee, Somaiah, Kirby (b0050) 2022; 34 Lukka, Deshmukh, Bruner, Bahary, Lawton, Efstathiou (b0160) 2023; 116 Yoganathan, Maria Das, Agarwal, Kumar (b0010) 2017; 42 Siva, Ball (b0040) 2019; 103 Schnarr, Beneke, Casey, Chao, Chappelow, Cox (b0105) 2018; 45 Alnaghy S, Sengupta C, Makhija K. 6 DoF Robotic Motion Phantom. Image X Inst 2022. Green, Henke, Hugo (b0080) 2019; 29 (accessed July 31, 2024). Dieterich, Green, Booth (b0055) 2018; 56 Bortfeld, Jiang, Rietzel (b0020) 2004; 14 Crowe, Maxwell, Brar, Yu, Kairn (b0175) 2023; 46 Vergalasova, Cai (b0015) 2020; 47 Okada, Doi, Tanooka, Sano, Nakamura, Sakai (b0115) 2021; 9 Chen, Tai, Keiper, Lim, Li (b0140) 2020; 47 Ferris, Kissick, Bayouth, Culberson, Smilowitz (b0130) 2020; 21 Fernando, Timmerman (b0155) 2012; 144 Byrne (b0005) 2005; 30 Brock (b0070) 2019; 29 Sonke, Aznar, Rasch (b0085) 2019; 29 Tse, Chan, Fok, Chiu, Yu (b0145) 2022; 23 Velec, Moseley, Craig, Dawson, Brock (b0035) 2012; 83 Goddard, Jeong, Tomé (b0120) 2022; 49 (accessed May 30, 2023). Glide-Hurst, Lee, Yock, Olsen, Cao, Siddiqui (b0095) 2021; 109 Image-X-Institute/Realtime-Benchmarking-Tools. Image X Inst 2024. Gierga, Chen, Kung, Betke, Lombardi, Willett (b0025) 2004; 58 Alnaghy, Kyme, Caillet, Nguyen, O’Brien, Booth (b0170) 2019; 64 Yan, Vicini, Wong, Martinez (b0065) 1997; 42 Ferris, Culberson, Bayouth (b0135) 2022; 49 Suh, Dieterich, Cho, Keall (b0180) 2008; 53 Lavrova, Garrett, Wang, Chin, Elliston, Savacool (b0090) 2023; 5 Colvill, Booth, Nill, Fast, Bedford, Oelfke (b0100) 2016; 119 Keall, Poulsen, Booth (b0075) 2019; 29 Chen, Tai, Puckett, Gore, Lim, Keiper (b0110) 2021; 11 Langen, Willoughby, Meeks, Santhanam, Cunningham, Levine (b0185) 2008; 71 Vergalasova (10.1016/j.phro.2025.100741_b0015) 2020; 47 Brock (10.1016/j.phro.2025.100741_b0070) 2019; 29 Goddard (10.1016/j.phro.2025.100741_b0120) 2022; 49 Gierga (10.1016/j.phro.2025.100741_b0025) 2004; 58 10.1016/j.phro.2025.100741_b0150 Glide-Hurst (10.1016/j.phro.2025.100741_b0095) 2021; 109 Byrne (10.1016/j.phro.2025.100741_b0005) 2005; 30 Yarnold (10.1016/j.phro.2025.100741_b0050) 2022; 34 Ferris (10.1016/j.phro.2025.100741_b0135) 2022; 49 Crowe (10.1016/j.phro.2025.100741_b0175) 2023; 46 Chen (10.1016/j.phro.2025.100741_b0125) 2023; 50 Lukka (10.1016/j.phro.2025.100741_b0160) 2023; 116 Bortfeld (10.1016/j.phro.2025.100741_b0020) 2004; 14 Suh (10.1016/j.phro.2025.100741_b0180) 2008; 53 Brenner (10.1016/j.phro.2025.100741_b0045) 2018 Tse (10.1016/j.phro.2025.100741_b0145) 2022; 23 Bertholet (10.1016/j.phro.2025.100741_b0060) 2019; 64 Green (10.1016/j.phro.2025.100741_b0080) 2019; 29 Okada (10.1016/j.phro.2025.100741_b0115) 2021; 9 Fernando (10.1016/j.phro.2025.100741_b0155) 2012; 144 Yoganathan (10.1016/j.phro.2025.100741_b0010) 2017; 42 Colvill (10.1016/j.phro.2025.100741_b0100) 2016; 119 Sonke (10.1016/j.phro.2025.100741_b0085) 2019; 29 Langen (10.1016/j.phro.2025.100741_b0185) 2008; 71 Wu (10.1016/j.phro.2025.100741_b0030) 2008; 35 Dieterich (10.1016/j.phro.2025.100741_b0055) 2018; 56 Lavrova (10.1016/j.phro.2025.100741_b0090) 2023; 5 Keall (10.1016/j.phro.2025.100741_b0075) 2019; 29 Alnaghy (10.1016/j.phro.2025.100741_b0170) 2019; 64 10.1016/j.phro.2025.100741_b0165 Ferris (10.1016/j.phro.2025.100741_b0130) 2020; 21 Chen (10.1016/j.phro.2025.100741_b0140) 2020; 47 Yan (10.1016/j.phro.2025.100741_b0065) 1997; 42 Schnarr (10.1016/j.phro.2025.100741_b0105) 2018; 45 Velec (10.1016/j.phro.2025.100741_b0035) 2012; 83 Siva (10.1016/j.phro.2025.100741_b0040) 2019; 103 Chen (10.1016/j.phro.2025.100741_b0110) 2021; 11 |
| References_xml | – volume: 103 start-page: 1085 year: 2019 end-page: 1087 ident: b0040 article-title: Single fraction SBRT for early stage lung cancer—less is more? publication-title: Int J Radiat Oncol Biol Phys – volume: 64 year: 2019 ident: b0060 article-title: Real-time intrafraction motion monitoring in external beam radiotherapy publication-title: Phys Med Biol – volume: 11 start-page: e486 year: 2021 end-page: e495 ident: b0110 article-title: Clinical implementation and initial experience of real-time motion tracking with jaws and multileaf collimator during helical tomotherapy delivery publication-title: Pract Radiat Oncol – volume: 83 start-page: 1132 year: 2012 end-page: 1140 ident: b0035 article-title: Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects publication-title: Int J Radiat Oncol – volume: 49 start-page: 3990 year: 2022 end-page: 3998 ident: b0135 article-title: Technical note: tracking target/chest relationship changes during motion-synchronized tomotherapy treatments publication-title: Med Phys – volume: 29 start-page: 228 year: 2019 end-page: 235 ident: b0075 article-title: See, think, and act: real-time adaptive radiotherapy publication-title: Semin Radiat Oncol – volume: 109 start-page: 1054 year: 2021 end-page: 1075 ident: b0095 article-title: Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology publication-title: Int J Radiat Oncol – volume: 116 start-page: 770 year: 2023 end-page: 778 ident: b0160 article-title: Five-year patient-reported outcomes in NRG oncology RTOG 0938, evaluating two ultrahypofractionated regimens for prostate cancer publication-title: Int J Radiat Oncol – volume: 64 year: 2019 ident: b0170 article-title: A six-degree-of-freedom robotic motion system for quality assurance of real-time image-guided radiotherapy publication-title: Phys Med Biol – volume: 42 start-page: 101 year: 2017 ident: b0010 article-title: Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: a comprehensive review publication-title: J Med Phys – reference: (accessed July 31, 2024). – volume: 47 start-page: 2814 year: 2020 end-page: 2825 ident: b0140 article-title: Technical Note: comprehensive performance tests of the first clinical real-time motion tracking and compensation system using MLC and jaws publication-title: Med Phys – volume: 47 start-page: e988 year: 2020 end-page: e1008 ident: b0015 article-title: A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy publication-title: Med Phys – volume: 29 start-page: 181 year: 2019 end-page: 184 ident: b0070 article-title: Adaptive radiotherapy: moving into the future publication-title: Semin Radiat Oncol – volume: 45 start-page: 1329 year: 2018 end-page: 1337 ident: b0105 article-title: Feasibility of real-time motion management with helical tomotherapy publication-title: Med Phys – volume: 144 start-page: S35 year: 2012 end-page: S38 ident: b0155 article-title: American College of Surgeons Oncology Group Z4099/Radiation Therapy Oncology Group 1021: a randomized study of sublobar resection compared with stereotactic body radiotherapy for high-risk stage I non–small cell lung cancer publication-title: J Thorac Cardiovasc Surg – volume: 14 start-page: 41 year: 2004 end-page: 51 ident: b0020 article-title: Effects of motion on the total dose distribution publication-title: Semin Radiat Oncol – reference: (accessed May 30, 2023). – volume: 58 start-page: 1584 year: 2004 end-page: 1595 ident: b0025 article-title: Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions publication-title: Int J Radiat Oncol – start-page: 7 year: 2018 ident: b0045 article-title: Hypofractionation in prostate cancer radiotherapy publication-title: Transl Cancer Res – volume: 46 start-page: 1811 year: 2023 end-page: 1817 ident: b0175 article-title: Use of light-weight foaming polylactic acid as a lung-equivalent material in 3D printed phantoms publication-title: Phys Eng Sci Med – volume: 71 start-page: 1084 year: 2008 end-page: 1090 ident: b0185 article-title: Observations on real-time prostate gland motion using electromagnetic tracking publication-title: Int J Radiat Oncol – volume: 56 start-page: 19 year: 2018 end-page: 24 ident: b0055 article-title: SBRT targets that move with respiration publication-title: Phys Med – volume: 9 year: 2021 ident: b0115 article-title: A first report of tumour-tracking radiotherapy with helical tomotherapy for lung and liver tumours: a double case report publication-title: SAGE Open Med Case Rep – volume: 23 year: 2022 ident: b0145 article-title: Dosimetric impact of phase shifts on Radixact Synchrony tracking system with patient-specific breathing patterns publication-title: J Appl Clin Med Phys – volume: 30 start-page: 155 year: 2005 end-page: 161 ident: b0005 article-title: A review of prostate motion with considerations for the treatment of prostate cancer publication-title: Med Dosim – volume: 34 start-page: 332 year: 2022 end-page: 339 ident: b0050 article-title: From 25 fractions to five: how hypofractionation has revolutionised adjuvant breast radiotherapy publication-title: Clin Oncol – volume: 42 start-page: 123 year: 1997 end-page: 132 ident: b0065 article-title: Adaptive radiation therapy publication-title: Phys Med Biol – reference: Image-X-Institute/Realtime-Benchmarking-Tools. Image X Inst 2024. – volume: 35 start-page: 1440 year: 2008 end-page: 1451 ident: b0030 article-title: The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer publication-title: Med Phys – volume: 29 start-page: 245 year: 2019 end-page: 257 ident: b0085 article-title: Adaptive radiotherapy for anatomical changes publication-title: Semin Radiat Oncol – volume: 21 start-page: 96 year: 2020 end-page: 106 ident: b0130 article-title: Evaluation of radixact motion synchrony for 3D respiratory motion: modeling accuracy and dosimetric fidelity publication-title: J Appl Clin Med Phys – volume: 119 start-page: 159 year: 2016 end-page: 165 ident: b0100 article-title: A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking publication-title: Radiother Oncol – volume: 50 start-page: e25 year: 2023 end-page: e52 ident: b0125 article-title: AAPM Task Group Report 306: quality control and assurance for tomotherapy: an update to Task Group Report 148 publication-title: Med Phys – volume: 49 start-page: 1181 year: 2022 end-page: 1195 ident: b0120 article-title: Commissioning and routine quality assurance of the Radixact Synchrony system publication-title: Med Phys – volume: 53 start-page: 3623 year: 2008 ident: b0180 article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients publication-title: Phys Med Biol – volume: 29 start-page: 219 year: 2019 end-page: 227 ident: b0080 article-title: Practical clinical workflows for online and offline adaptive radiation therapy publication-title: Semin Radiat Oncol – reference: Alnaghy S, Sengupta C, Makhija K. 6 DoF Robotic Motion Phantom. Image X Inst 2022. – volume: 5 year: 2023 ident: b0090 article-title: Adaptive radiation therapy: a review of CT-based techniques publication-title: Radiol Imaging Cancer – volume: 34 start-page: 332 year: 2022 ident: 10.1016/j.phro.2025.100741_b0050 article-title: From 25 fractions to five: how hypofractionation has revolutionised adjuvant breast radiotherapy publication-title: Clin Oncol doi: 10.1016/j.clon.2022.03.001 – volume: 46 start-page: 1811 year: 2023 ident: 10.1016/j.phro.2025.100741_b0175 article-title: Use of light-weight foaming polylactic acid as a lung-equivalent material in 3D printed phantoms publication-title: Phys Eng Sci Med doi: 10.1007/s13246-023-01318-4 – volume: 9 year: 2021 ident: 10.1016/j.phro.2025.100741_b0115 article-title: A first report of tumour-tracking radiotherapy with helical tomotherapy for lung and liver tumours: a double case report publication-title: SAGE Open Med Case Rep – volume: 50 start-page: e25 year: 2023 ident: 10.1016/j.phro.2025.100741_b0125 article-title: AAPM Task Group Report 306: quality control and assurance for tomotherapy: an update to Task Group Report 148 publication-title: Med Phys doi: 10.1002/mp.16150 – volume: 58 start-page: 1584 year: 2004 ident: 10.1016/j.phro.2025.100741_b0025 article-title: Quantification of respiration-induced abdominal tumor motion and its impact on IMRT dose distributions publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2003.09.077 – volume: 64 year: 2019 ident: 10.1016/j.phro.2025.100741_b0060 article-title: Real-time intrafraction motion monitoring in external beam radiotherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab2ba8 – volume: 116 start-page: 770 year: 2023 ident: 10.1016/j.phro.2025.100741_b0160 article-title: Five-year patient-reported outcomes in NRG oncology RTOG 0938, evaluating two ultrahypofractionated regimens for prostate cancer publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2022.12.022 – volume: 49 start-page: 1181 year: 2022 ident: 10.1016/j.phro.2025.100741_b0120 article-title: Commissioning and routine quality assurance of the Radixact Synchrony system publication-title: Med Phys doi: 10.1002/mp.15410 – volume: 21 start-page: 96 year: 2020 ident: 10.1016/j.phro.2025.100741_b0130 article-title: Evaluation of radixact motion synchrony for 3D respiratory motion: modeling accuracy and dosimetric fidelity publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.12978 – volume: 47 start-page: e988 year: 2020 ident: 10.1016/j.phro.2025.100741_b0015 article-title: A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy publication-title: Med Phys doi: 10.1002/mp.14312 – volume: 35 start-page: 1440 year: 2008 ident: 10.1016/j.phro.2025.100741_b0030 article-title: The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer publication-title: Med Phys doi: 10.1118/1.2839095 – volume: 29 start-page: 219 year: 2019 ident: 10.1016/j.phro.2025.100741_b0080 article-title: Practical clinical workflows for online and offline adaptive radiation therapy publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2019.02.004 – volume: 29 start-page: 245 year: 2019 ident: 10.1016/j.phro.2025.100741_b0085 article-title: Adaptive radiotherapy for anatomical changes publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2019.02.007 – volume: 5 year: 2023 ident: 10.1016/j.phro.2025.100741_b0090 article-title: Adaptive radiation therapy: a review of CT-based techniques publication-title: Radiol Imaging Cancer doi: 10.1148/rycan.230011 – volume: 11 start-page: e486 year: 2021 ident: 10.1016/j.phro.2025.100741_b0110 article-title: Clinical implementation and initial experience of real-time motion tracking with jaws and multileaf collimator during helical tomotherapy delivery publication-title: Pract Radiat Oncol doi: 10.1016/j.prro.2021.01.010 – ident: 10.1016/j.phro.2025.100741_b0150 – volume: 64 year: 2019 ident: 10.1016/j.phro.2025.100741_b0170 article-title: A six-degree-of-freedom robotic motion system for quality assurance of real-time image-guided radiotherapy publication-title: Phys Med Biol doi: 10.1088/1361-6560/ab1935 – volume: 30 start-page: 155 year: 2005 ident: 10.1016/j.phro.2025.100741_b0005 article-title: A review of prostate motion with considerations for the treatment of prostate cancer publication-title: Med Dosim doi: 10.1016/j.meddos.2005.03.005 – volume: 103 start-page: 1085 year: 2019 ident: 10.1016/j.phro.2025.100741_b0040 article-title: Single fraction SBRT for early stage lung cancer—less is more? publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2018.12.041 – volume: 29 start-page: 228 year: 2019 ident: 10.1016/j.phro.2025.100741_b0075 article-title: See, think, and act: real-time adaptive radiotherapy publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2019.02.005 – start-page: 7 year: 2018 ident: 10.1016/j.phro.2025.100741_b0045 article-title: Hypofractionation in prostate cancer radiotherapy publication-title: Transl Cancer Res – volume: 56 start-page: 19 year: 2018 ident: 10.1016/j.phro.2025.100741_b0055 article-title: SBRT targets that move with respiration publication-title: Phys Med doi: 10.1016/j.ejmp.2018.10.021 – volume: 42 start-page: 123 year: 1997 ident: 10.1016/j.phro.2025.100741_b0065 article-title: Adaptive radiation therapy publication-title: Phys Med Biol doi: 10.1088/0031-9155/42/1/008 – volume: 45 start-page: 1329 year: 2018 ident: 10.1016/j.phro.2025.100741_b0105 article-title: Feasibility of real-time motion management with helical tomotherapy publication-title: Med Phys doi: 10.1002/mp.12791 – volume: 144 start-page: S35 year: 2012 ident: 10.1016/j.phro.2025.100741_b0155 article-title: American College of Surgeons Oncology Group Z4099/Radiation Therapy Oncology Group 1021: a randomized study of sublobar resection compared with stereotactic body radiotherapy for high-risk stage I non–small cell lung cancer publication-title: J Thorac Cardiovasc Surg doi: 10.1016/j.jtcvs.2012.06.003 – volume: 53 start-page: 3623 year: 2008 ident: 10.1016/j.phro.2025.100741_b0180 article-title: An analysis of thoracic and abdominal tumour motion for stereotactic body radiotherapy patients publication-title: Phys Med Biol doi: 10.1088/0031-9155/53/13/016 – volume: 119 start-page: 159 year: 2016 ident: 10.1016/j.phro.2025.100741_b0100 article-title: A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking publication-title: Radiother Oncol doi: 10.1016/j.radonc.2016.03.006 – ident: 10.1016/j.phro.2025.100741_b0165 – volume: 47 start-page: 2814 year: 2020 ident: 10.1016/j.phro.2025.100741_b0140 article-title: Technical Note: comprehensive performance tests of the first clinical real-time motion tracking and compensation system using MLC and jaws publication-title: Med Phys doi: 10.1002/mp.14171 – volume: 23 year: 2022 ident: 10.1016/j.phro.2025.100741_b0145 article-title: Dosimetric impact of phase shifts on Radixact Synchrony tracking system with patient-specific breathing patterns publication-title: J Appl Clin Med Phys doi: 10.1002/acm2.13600 – volume: 71 start-page: 1084 year: 2008 ident: 10.1016/j.phro.2025.100741_b0185 article-title: Observations on real-time prostate gland motion using electromagnetic tracking publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2007.11.054 – volume: 49 start-page: 3990 year: 2022 ident: 10.1016/j.phro.2025.100741_b0135 article-title: Technical note: tracking target/chest relationship changes during motion-synchronized tomotherapy treatments publication-title: Med Phys doi: 10.1002/mp.15667 – volume: 42 start-page: 101 year: 2017 ident: 10.1016/j.phro.2025.100741_b0010 article-title: Magnitude, impact, and management of respiration-induced target motion in radiotherapy treatment: a comprehensive review publication-title: J Med Phys doi: 10.4103/jmp.JMP_22_17 – volume: 29 start-page: 181 year: 2019 ident: 10.1016/j.phro.2025.100741_b0070 article-title: Adaptive radiotherapy: moving into the future publication-title: Semin Radiat Oncol doi: 10.1016/j.semradonc.2019.02.011 – volume: 14 start-page: 41 year: 2004 ident: 10.1016/j.phro.2025.100741_b0020 article-title: Effects of motion on the total dose distribution publication-title: Semin Radiat Oncol doi: 10.1053/j.semradonc.2003.10.011 – volume: 83 start-page: 1132 year: 2012 ident: 10.1016/j.phro.2025.100741_b0035 article-title: Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2011.09.045 – volume: 109 start-page: 1054 year: 2021 ident: 10.1016/j.phro.2025.100741_b0095 article-title: Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology publication-title: Int J Radiat Oncol doi: 10.1016/j.ijrobp.2020.10.021 |
| SSID | ssj0002793530 |
| Score | 2.2947338 |
| Snippet | [Display omitted]
•Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption... This study assesses the ability of a helical tomotherapy system equipped with kV imaging and optical surface guidance to adapt to motion traces in real-time.... •Testing a helical tomotherapy system equipped with kV imaging and surface guidance.•A unified testing framework compared real-time adaption versus no motion... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 100741 |
| SubjectTerms | Helical tomotherapy MLC tracking Organ motion Real-time adaptive radiotherapy Technical Note |
| Title | A dosimetric comparison of helical tomotherapy treatment delivery with real-time adaption and no motion correction |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S2405631625000466 https://dx.doi.org/10.1016/j.phro.2025.100741 https://www.ncbi.nlm.nih.gov/pubmed/40129726 https://www.proquest.com/docview/3180985774 https://pubmed.ncbi.nlm.nih.gov/PMC11931245 https://doaj.org/article/d3876b214cee4fd88761709dd03380fa |
| Volume | 34 |
| WOSCitedRecordID | wos001443712100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-6316 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002793530 issn: 2405-6316 databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7aUEovpe-6j6BCb8XUsqyVdUxLQi8JPbSwN6En2bC1w-6m0Et-e0aSbdYtJJdejJEt72pe-kYazQB8tMIaLalF_XZN2RgpShOELoXnwlAp0X8zqdiEODtrl0v5fa_UV4wJy-mBM-E-O4b6amraoDVvgkOdiCnEpXMVOldVSNAIUc-eM3WRttMk46waTsnkgC4kTjztV_MUGdDQ2UyUEvbPJqR_AeffcZN7E9HJE3g8IEhylP_5U7jnu2fw8HTYI38OmyPi-u3qVyyVZYmd6gySPpBzH9fo1mQXY_ByPgEyhZoTh09Rsv-QuDhLsHldxtLzRDudDAvRnSNdT3LlH_z0JpnLvnsBP0-Of3z9Vg6VFUrLBduVwlKDRrqtvK2DQfIKRD4cldf4ygldW1Zb9DXw1nDhF65pGssC5bqlC-29Zy_hoOs7_xpItfCS8mC0RcdOam6cC4HVoWZCY2sogI5UVnZIOx6rX6zVGF92oSJnVOSMypwp4NPU5zIn3bj17S-RedObMWF2akAxUoMYqbvEqAA2sl6NZ1LRiuKHVrf-NJ96DYglI5E7-30YpUuhOsc9Gt35_mqrWMyn1nIE5QW8ytI2DayJi4aiXhTQzuRwNvL5k251nlKGU8TpiOT4m_9Bq7fwKI4lxy-9g4Pd5sq_hwf292613RzCfbFsD5M64vX0-vgGZbU-Eg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dosimetric+comparison+of+helical+tomotherapy+treatment+delivery+with+real-time+adaption+and+no+motion+correction&rft.jtitle=Physics+and+imaging+in+radiation+oncology&rft.au=Hindmarsh%2C+Jonathan&rft.au=Crowe%2C+Scott&rft.au=Johnson%2C+Julia&rft.au=Sengupta%2C+Chandrima&rft.date=2025-04-01&rft.pub=Elsevier&rft.eissn=2405-6316&rft.volume=34&rft_id=info:doi/10.1016%2Fj.phro.2025.100741&rft.externalDocID=PMC11931245 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-6316&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-6316&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-6316&client=summon |