Self-Supervised Audio-Visual Feature Learning for Single-modal Incremental Terrain Type Clustering

The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE Access Ročník 9; s. 1
Hlavní autoři: Ishikawa, Reina, Hachiuma, Ryo, Saito, Hideo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2021
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use them, especially in the robotics field. Some papers have successfully introduced single-modal or multi-modal methods. However, in practice, robots can be faced with extreme conditions; microphones do not work well in crowded scenes, and an RGB camera cannot capture terrains well in the dark. In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain type clustering by forcing the features to be closer together in the feature space. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time.We evaluated the clustering accuracy with a conventional multi-modal terrain type clustering method and we conducted ablation studies to show the effectiveness of our approach.
AbstractList The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such as RGB cameras, depth sensors, vibration sensors, and microphones, are used as the multi-modal data. Many studies have explored ways to use them, especially in the robotics field. Some papers have successfully introduced single-modal or multi-modal methods. However, in practice, robots can be faced with extreme conditions; microphones do not work well in crowded scenes, and an RGB camera cannot capture terrains well in the dark. In this paper, we present a novel framework using the multi-modal variational autoencoder and the Gaussian mixture model clustering algorithm on image data and audio data for terrain type clustering by forcing the features to be closer together in the feature space. Our method enables the terrain type clustering even if one of the modalities (either image or audio) is missing at the test-time. We evaluated the clustering accuracy with a conventional multi-modal terrain type clustering method and we conducted ablation studies to show the effectiveness of our approach.
Author Ishikawa, Reina
Hachiuma, Ryo
Saito, Hideo
Author_xml – sequence: 1
  givenname: Reina
  surname: Ishikawa
  fullname: Ishikawa, Reina
  organization: Department of Information and Computer Science, Keio University, Yokohama, Japan. (e-mail: reina-ishikawa@keio.jp)
– sequence: 2
  givenname: Ryo
  surname: Hachiuma
  fullname: Hachiuma, Ryo
  organization: Department of Information and Computer Science, Keio University, Yokohama, Japan
– sequence: 3
  givenname: Hideo
  surname: Saito
  fullname: Saito, Hideo
  organization: Department of Information and Computer Science, Keio University, Yokohama, Japan
BackLink https://cir.nii.ac.jp/crid/1874242817766052608$$DView record in CiNii
BookMark eNp9kUtr3DAUhU1JoWmaX5CNod16ovdjOZikHRjowtNuhSxdBw0eaSrbhfz7auq0lC6ihXS5fOfci8776iqmCFV1h9EGY6Tvt2370HUbggjeUCQ5V-RNdU2w0A3lVFz9U7-rbqfpiMpRpcXlddV3MA5Nt5wh_wwT-Hq7-JCa72Fa7Fg_gp2XDPUebI4hPtVDynVXihGaU_KF2EWX4QRxLvUBcrYh1ofnM9TtuEwz5MJ-qN4Odpzg9uW9qb49PhzaL83-6-ddu903jks6NwS0760UBIT32LKhd5Jb7jHhGkuFNBK9Z9JhioBrxnpQRWjVQDV1dCD0ptqtvj7ZoznncLL52SQbzO9Gyk_G5jm4EYyjVjHinEfMsR5TWyw0lJFIWuEcKl4fV69zTj8WmGZzTEuOZX1DONZaSCxpofRKuZymKcNgXJjtHFKcy0eMBiNzScisCZlLQuYloaKl_2n_bPy66tOqiiGUYZcbK8kIIwpLKQTiRCBVsLsVCwDw11gzLJgS9BeKhqj3
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_electronics12153238
crossref_primary_10_1016_j_neucom_2025_129750
crossref_primary_10_1002_rob_22054
Cites_doi 10.1007/978-3-642-16138-4_9
10.1109/CVPR.2016.278
10.1109/CVPR.2017.632
10.1162/089976602760128018
10.1007/978-3-319-70096-0_39
10.1109/ROBOT.2008.4543710
10.1109/LRA.2019.2895390
10.1109/ROBOT.2005.1570411
10.1109/ICSMC.2009.5345942
10.1109/ACCESS.2019.2916480
10.1109/TIP.2003.812327
10.1016/j.proeng.2012.07.253
10.1109/ICRA.2012.6225357
10.1109/ROBOT.2004.1302529
10.1002/rob.20113
10.1109/ICCV.2019.00715
10.1145/3334480.3382925
10.1109/IROS.2018.8593786
10.1016/j.ipm.2020.102270
10.1007/978-3-319-46487-9_40
10.1109/AERO.2015.7119022
10.1109/ICCV.2019.00654
10.1109/IJCNN48605.2020.9207523
10.1109/ICRA.2016.7487543
10.1109/LRA.2016.2525040
10.1109/IROS.2016.7758088
10.3390/app9153099
10.1109/IROS.2009.5354535
10.1109/IROS.2012.6386042
10.1109/CVPR.2007.383024
10.1080/00423110802450193
10.1109/CVPR.2016.90
10.1016/j.procs.2020.03.209
10.1109/AERO.2007.352693
10.1109/ACCESS.2021.3059620
10.1109/IVS.2018.8500506
10.24963/ijcai.2017/273
10.1023/B:AURO.0000047286.62481.1d
10.1109/ICASSP.2015.7178827
10.1109/TRO.2005.855994
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
RYH
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3075582
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_c3a842ccd04c4b13a93c9e4fb07a6cc0
10_1109_ACCESS_2021_3075582
9416486
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
RYH
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c573t-2e9dba762e6dd1a4fbc75a5d12591780906bd47c130e5944be8c57a8f393c3f23
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000645860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:50:27 EDT 2025
Sun Nov 30 03:50:42 EST 2025
Tue Nov 18 22:11:50 EST 2025
Sat Nov 29 06:12:12 EST 2025
Thu Jun 26 22:19:19 EDT 2025
Wed Aug 27 02:30:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-2e9dba762e6dd1a4fbc75a5d12591780906bd47c130e5944be8c57a8f393c3f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2421-9862
0000-0003-4792-6380
OpenAccessLink https://doaj.org/article/c3a842ccd04c4b13a93c9e4fb07a6cc0
PQID 2519967173
PQPubID 4845423
PageCount 1
ParticipantIDs ieee_primary_9416486
doaj_primary_oai_doaj_org_article_c3a842ccd04c4b13a93c9e4fb07a6cc0
proquest_journals_2519967173
crossref_primary_10_1109_ACCESS_2021_3075582
nii_cinii_1874242817766052608
crossref_citationtrail_10_1109_ACCESS_2021_3075582
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE Access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
Institute of Electrical and Electronics Engineers (IEEE)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers (IEEE)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref53
ref52
ref11
ref10
zürn (ref6) 2019
ref17
ref16
ramachandran (ref55) 2017
ref18
valada (ref13) 2018
wu (ref28) 2018
tschannen (ref26) 2018
ref50
ref46
ref45
ref48
ref42
ref41
ref44
ref43
neverova (ref36) 2014
ref49
ref8
ref7
xie (ref37) 2016; 48
ref9
higgins (ref51) 2017
ref4
ref3
xie (ref19) 2020; 100
ref5
ref40
baur (ref47) 2018
van der maaten (ref57) 2008; 9
kingma (ref56) 2015
ref35
ref34
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
hu (ref23) 2020
ref24
takahashi (ref15) 2018
ref20
ref22
ref21
ref29
paszke (ref54) 2019
xie (ref25) 2016
ishikawa (ref27) 2020
References_xml – year: 2019
  ident: ref6
  article-title: Self-supervised visual terrain classification from unsupervised acoustic feature learning
  publication-title: arXiv 1912 03227
– ident: ref53
  doi: 10.1007/978-3-642-16138-4_9
– ident: ref44
  doi: 10.1109/CVPR.2016.278
– ident: ref46
  doi: 10.1109/CVPR.2017.632
– year: 2017
  ident: ref55
  article-title: Searching for activation functions
  publication-title: arXiv 1710 05941
– ident: ref52
  doi: 10.1162/089976602760128018
– ident: ref38
  doi: 10.1007/978-3-319-70096-0_39
– ident: ref32
  doi: 10.1109/ROBOT.2008.4543710
– ident: ref42
  doi: 10.1109/LRA.2019.2895390
– ident: ref3
  doi: 10.1109/ROBOT.2005.1570411
– year: 2020
  ident: ref23
  article-title: Ambient sound helps: Audiovisual crowd counting in extreme conditions
  publication-title: arXiv 2005 07097
– ident: ref33
  doi: 10.1109/ICSMC.2009.5345942
– ident: ref17
  doi: 10.1109/ACCESS.2019.2916480
– ident: ref34
  doi: 10.1109/TIP.2003.812327
– year: 2016
  ident: ref25
  article-title: Aggregated residual transformations for deep neural networks
  publication-title: arXiv 1611 05431
– ident: ref16
  doi: 10.1016/j.proeng.2012.07.253
– year: 2018
  ident: ref26
  article-title: Recent advances in autoencoder-based representation learning
  publication-title: arXiv 1812 05069
– ident: ref11
  doi: 10.1109/ICRA.2012.6225357
– ident: ref4
  doi: 10.1109/ROBOT.2004.1302529
– ident: ref12
  doi: 10.1002/rob.20113
– start-page: 9399
  year: 2020
  ident: ref27
  article-title: Single-modal incremental terrain clustering from self-supervised audio-visual feature learning
  publication-title: Proc Int Conf Pattern Recognit (ICPR)
– year: 2015
  ident: ref56
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc 3rd Int Conf Learn Represent (ICLR)
– ident: ref20
  doi: 10.1109/ICCV.2019.00715
– ident: ref7
  doi: 10.1145/3334480.3382925
– ident: ref21
  doi: 10.1109/IROS.2018.8593786
– year: 2014
  ident: ref36
  article-title: ModDrop: Adaptive multi-modal gesture recognition
  publication-title: arXiv 1501 00102
– ident: ref50
  doi: 10.1016/j.ipm.2020.102270
– ident: ref45
  doi: 10.1007/978-3-319-46487-9_40
– start-page: 5580
  year: 2018
  ident: ref28
  article-title: Multimodal generative models for scalable weakly-supervised learning
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref29
  doi: 10.1109/AERO.2015.7119022
– volume: 100
  start-page: 1369
  year: 2020
  ident: ref19
  article-title: The best of both modes: Separately leveraging RGB and depth for unseen object instance segmentation
  publication-title: Proc Conf Robot Learn
– ident: ref40
  doi: 10.1109/ICCV.2019.00654
– ident: ref41
  doi: 10.1109/IJCNN48605.2020.9207523
– ident: ref10
  doi: 10.1109/ICRA.2016.7487543
– ident: ref5
  doi: 10.1109/LRA.2016.2525040
– ident: ref14
  doi: 10.1109/IROS.2016.7758088
– ident: ref8
  doi: 10.3390/app9153099
– ident: ref30
  doi: 10.1109/IROS.2009.5354535
– year: 2018
  ident: ref47
  article-title: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images
  publication-title: arXiv 1804 04488
– ident: ref35
  doi: 10.1109/IROS.2012.6386042
– start-page: 21
  year: 2018
  ident: ref13
  publication-title: Deep Feature Learning for Acoustics-Based Terrain Classification
– ident: ref1
  doi: 10.1109/CVPR.2007.383024
– ident: ref18
  doi: 10.1080/00423110802450193
– ident: ref24
  doi: 10.1109/CVPR.2016.90
– volume: 48
  start-page: 478
  year: 2016
  ident: ref37
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: Proc 33rd Int Conf Int Conf Mach Learn (ICML)
– ident: ref49
  doi: 10.1016/j.procs.2020.03.209
– ident: ref43
  doi: 10.1109/AERO.2007.352693
– ident: ref22
  doi: 10.1109/ACCESS.2021.3059620
– year: 2017
  ident: ref51
  article-title: Beta-VAE: Learning basic visual concepts with a constrained variational framework
  publication-title: Proc 5th Int Conf Learn Represent (ICLR)
– ident: ref9
  doi: 10.1109/IVS.2018.8500506
– ident: ref39
  doi: 10.24963/ijcai.2017/273
– start-page: 8024
  year: 2019
  ident: ref54
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref57
  article-title: Visualizing data using T-SNE
  publication-title: J Mach Learn Res
– ident: ref2
  doi: 10.1023/B:AURO.0000047286.62481.1d
– year: 2018
  ident: ref15
  article-title: Deep visuo-tactile learning: Estimation of material properties from images
  publication-title: arXiv 1803 03435
– ident: ref48
  doi: 10.1109/ICASSP.2015.7178827
– ident: ref31
  doi: 10.1109/TRO.2005.855994
SSID ssj0000816957
Score 2.233185
Snippet The key to an accurate understanding of terrain is to extract the informative features from the multi-modal data obtained from different devices. Sensors, such...
SourceID doaj
proquest
crossref
nii
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Ablation
Algorithms
Audio data
Cameras
Clustering
Data mining
Electrical engineering. Electronics. Nuclear engineering
Electronic devices
Feature extraction
Machine learning
Microphones
Modal data
Multi-modal learning
Probabilistic models
Robotics
Robots
Self-supervised
Sensors
Terrain
Terrain type clustering
Testing
TK1-9971
Training
Visualization
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6S0EN76CstcZsUH3qMEtmW9ThuloYcQihsGnIztjQuhu1u2F3393fGVkxLSqEXI4wkNJ7R6NNY-gbgs7NeBq9z0ZTKCAa8oi5MITLUTeszK8OQDuju2tzc2Pt793UPTqe7MIg4HD7DMy4O__LD2vccKjt3hB6U1fuwb4we72pN8RROIOFKE4mFMunOZ_M5yUBbwDw7I0suS5v_sfgMHP0xqQqtLKuue-KPh0Xm8tX_De81vIxgMp2N2n8De7h6Cy9-oxg8hGaBy1Ys-gf2CVsM6awP3VrcddueWjIA7DeYRpbV7ylB2HRBhSWKH-tANch_jBFEKt_ihhNKpLx3TefLnjkWqO47-Hb55XZ-JWJeBeFLU-xEji40NXlB1CFktWobb8q6DIR1aPNmpZO6Ccp4Wt6wdEo1aKlhbdvCFb5o8-I9HKzWKzyClAAaEgIy2KJRmOe1RtW01FZj6QmKJZA_fvDKR9Jxzn2xrIbNh3TVqKWKtVRFLSVwOjV6GDk3_l39gjU5VWXC7OEFKaeK86_yRW1V7n2QyqsmK2oSxSGJLk2tvZcJHLJCp06iLhM4IbugofOT0xcSorEZWZ9mnhxpEzh-tJgqTv5txZeBnebjDR_-3utHeM4CjJGcYzjYbXo8gWf-567bbj4Ndv0LdjvzIQ
  priority: 102
  providerName: IEEE
Title Self-Supervised Audio-Visual Feature Learning for Single-modal Incremental Terrain Type Clustering
URI https://ieeexplore.ieee.org/document/9416486
https://cir.nii.ac.jp/crid/1874242817766052608
https://www.proquest.com/docview/2519967173
https://doaj.org/article/c3a842ccd04c4b13a93c9e4fb07a6cc0
Volume 9
WOSCitedRecordID wos000645860200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SPOhB1CqOtmUOHo3NzOTzuC4tHmwRtpbeQj7eyMCyW3Z3PPq3-5JJlxVBL15CGN4bkpeX5PdC8nuEvDc6sBhkS73giibAS12nOtqA9H1oNIs5HdDtF3V9re_uzNeDVF_pTthEDzwZ7jx0TvM2hMh44L7pnOmCAd57ppwMIUfrTJmDYCqvwbqRRqhCM9Qwcz6bz7FHGBC2zUf0ayF0-9tWlBn7S4oV3GdWw_DH6py3nMvn5FnBivVsauML8ghWL8nTAwbBY-IXsOzpYrxPU34LsZ6NcVjT22E7ombCd-MG6kKi-r1GhFovsLIEerWOKIHLw3RAiPUb2KR8EXUKTev5ckwUCij7iny7vLiZf6YlbQINQnU72oKJ3uEiBzLGxqGpghJORIQyGJtpZpj0kauAuxcIw7kHjYpO9x2atuvb7jU5Wq1X8IbUiL8AAY6CHhSHtnUSuO9RV4IIiLQq0j5Y0IbCKZ5SWyxtji2YsZPZbTK7LWavyIe90v1EqfF38U9paPaiiQ87f0AvscVL7L-8pCLHaWD3PzGIQ7mWFTnFgcampzJlJ0TAohulpEw0OExX5OTBBWyZ21ub3voamW4vvP0fTXtHnqTuTsc6J-RotxnhlDwOP3bDdnOW3RrLq58XZ_lx4i-GDPkd
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGQAIe-BqIwAZ54HHeHMefj6ViGqJUSC3T3qzEvqBIpZ3ahr-fc-JFIBASL5EVnS1fzj7_fLF_R8g7azwLXnFaS6FpBLy0KnVJC1B14wvDQp8O6Gqm53NzfW2_HJDT8S4MAPSHz-AsFvt_-WHjuxgqO7eIHoRRd8hdKQRnw22tMaISU0hYqRO1UMHs-WQ6RS1wE8iLMxzLUhr-2_LTs_SntCq4tqzb9g-P3C8zF4__r4NPyKMEJ_PJYP-n5ADWz8jDX0gGj0i9gFVDF91N9Ao7CPmkC-2GXrW7DmtGCNhtIU88q99yBLH5AgsroN83ASXQgwwxRCwvYRtTSuRx95pPV11kWUDZ5-TrxYfl9JKmzArUS13uKQcb6gr9IKgQiko0tdeykgHRDm7fDLNM1UFojwscSCtEDQYrVqYpbenLhpcvyOF6s4aXJEeIBoiBNDSgBXBeKRB1g3UVSI9gLCP89oM7n2jHY_aLleu3H8y6wUouWsklK2XkdKx0M7Bu_Fv8fbTkKBops_sXaByXZqDzZWUE9z4w4UVdlBWqYgFVZ7pS3rOMHEWDjo0kW2bkBMcFdj0-YwJDxDSm0FqpyJTDTEaOb0eMS9N_5-J1YKviAYdXf2_1Lbl_ufw8c7OP80-vyYOozBDXOSaH-20HJ-Se_7Fvd9s3_Rj_CT7u9mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Supervised+Audio-Visual+Feature+Learning+for+Single-Modal+Incremental+Terrain+Type+Clustering&rft.jtitle=IEEE+access&rft.au=Ishikawa%2C+Reina&rft.au=Hachiuma%2C+Ryo&rft.au=Saito%2C+Hideo&rft.date=2021-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=9&rft.spage=64346&rft_id=info:doi/10.1109%2FACCESS.2021.3075582&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon