Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution
Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the...
Uloženo v:
| Vydáno v: | PeerJ (San Francisco, CA) Ročník 10; s. e12752 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
PeerJ. Ltd
04.01.2022
PeerJ, Inc PeerJ Inc |
| Témata: | |
| ISSN: | 2167-8359, 2167-8359 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.
We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.
Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects.
The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. |
|---|---|
| AbstractList | Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°,±5°,±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average±SD RMSE of 0.16±0.04 BW and relative RMSE of 6.4±1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Nineteen subjects ran on a force-measuring treadmill at five slopes (0°,±5°,±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average±SD RMSE of 0.16±0.04 BW and relative RMSE of 6.4±1.5% across all conditions and subjects. The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. View Twitter Abstract Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.BACKGROUNDGround reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.PURPOSEWe sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects.METHODSNineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects.The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.RESULTSThe recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running. |
| ArticleNumber | e12752 |
| Audience | Academic |
| Author | Alcantara, Ryan S. Grabowski, Alena M. Millet, Guillaume Y. Edwards, W. Brent |
| Author_xml | – sequence: 1 givenname: Ryan S. surname: Alcantara fullname: Alcantara, Ryan S. organization: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America, Department of Bioengineering, Stanford University, Stanford, CA, United States of America – sequence: 2 givenname: W. Brent surname: Edwards fullname: Edwards, W. Brent organization: Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada – sequence: 3 givenname: Guillaume Y. surname: Millet fullname: Millet, Guillaume Y. organization: Laboratoire Interuniversitaire de Biologie de la Motricité, Université Lyon, UJM-Saint-Etienne, Saint-Etienne, France – sequence: 4 givenname: Alena M. surname: Grabowski fullname: Grabowski, Alena M. organization: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35036107$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkk1v1DAQhiNUREvpiTuKhISQ0BY7jmOHA1JV8VGpEhzgbHknk10vWXuxYyr-AT-byW5b7VZNDmN7nnnHM57nxZEPHoviJWfnSnH1foMYV-e8UrJ6UpxUvFEzLWR7tLc-Ls5SWjH6dNUwLZ4Vx0Iy0XCmTop_3yN2DkbnFyUETzaHnMpFDNl3ZURLruDLPkTAVPYxrEsLgAPSCkeMqexynILzZumGobQU1YUbv93E7D35PpSWlCDHiH4sPeZoBzLjTYi_yhSGPKV4UTzt7ZDw7NaeFj8_f_px-XV2_e3L1eXF9QykEuOMt0qzrunnLQewVF2rK65sh8IyJjkwzVkvGMgGtK418J6rOYDuGOiWfOK0uNrpdsGuzCa6tY1_TbDObA9CXBgbRwcDGqh6yVHwyjaybjmzreQWrehsDSgQSevjTmuT52vsgMqj0g5EDz3eLc0i_DFa1XTZigTe3grE8DtjGs3aJeruYD3SM5iqqZiSteac0NcP0FXI0VOriOJNrURd71ELSwU43wfKC5OouVBM10pKPaU9f4Siv8O1oynA3tH5QcCbvYAl2mFc3j1cOgRf7XfkvhV3A0fAux0AMaQUsb9HODPTRJvtRJvtRBPNH9DgRjtlpQu74dGY_5g1-uM |
| CitedBy_id | crossref_primary_10_1038_s41598_023_27899_4 crossref_primary_10_3390_s23042246 crossref_primary_10_1007_s13735_022_00261_6 crossref_primary_10_1016_j_medengphy_2025_104338 crossref_primary_10_1080_10255842_2023_2224912 crossref_primary_10_3390_s23094229 crossref_primary_10_3389_fbioe_2024_1426677 crossref_primary_10_1123_jab_2024_0126 crossref_primary_10_3390_s22249640 crossref_primary_10_1080_10255842_2024_2400318 crossref_primary_10_3390_s25133870 crossref_primary_10_1016_j_jbiomech_2022_111301 crossref_primary_10_1038_s41598_023_29314_4 crossref_primary_10_3390_s24072163 crossref_primary_10_1016_j_bspc_2023_105372 crossref_primary_10_1109_TBME_2024_3465373 crossref_primary_10_1002_art_42744 crossref_primary_10_1186_s12938_025_01409_1 crossref_primary_10_3389_fspor_2022_1037438 crossref_primary_10_3390_s23218719 crossref_primary_10_1002_jor_26101 crossref_primary_10_1123_jab_2024_0113 crossref_primary_10_1016_j_compbiomed_2024_108016 crossref_primary_10_1038_s41746_025_01677_0 crossref_primary_10_1109_TBME_2024_3361888 crossref_primary_10_1186_s40537_024_01026_0 crossref_primary_10_3390_s24165318 crossref_primary_10_3390_vibration6030042 crossref_primary_10_3389_fspor_2023_974186 crossref_primary_10_1371_journal_pcbi_1011556 crossref_primary_10_1371_journal_pone_0287978 crossref_primary_10_1080_02640414_2024_2353405 crossref_primary_10_1186_s40798_025_00824_x crossref_primary_10_3390_s25041249 crossref_primary_10_1371_journal_pdig_0000343 crossref_primary_10_3390_app13042136 crossref_primary_10_1371_journal_pone_0330042 crossref_primary_10_3390_s22093338 crossref_primary_10_1109_TNSRE_2023_3296280 crossref_primary_10_1016_j_jbiomech_2023_111712 crossref_primary_10_1016_j_jbiomech_2025_112888 |
| Cites_doi | 10.1097/00005768-199801000-00018 10.1152/jappl.1987.62.6.2326 10.1016/j.jbiomech.2020.110118 10.1016/j.biomech.2019.109416 10.1080/17461391.2019.1664639 10.1371/journal.pone.0048182 10.3390/ijerph17072276 10.1038/s41586-020-2649-2 10.1111/sms.12413 10.3390/s18082564 10.1016/j.medengphy.2020.02.002 10.1111/sms.13708 10.1242/jeb.053157 10.1007/s00421-020-04437-y 10.3389/fphys.2018.00218 10.1007/s40279-019-01110-z 10.1007/978-0-387-98141-3 10.1111/j.1748-1716.1989.tb08655.x 10.3390/s19235227 10.1016/j.jbiomech.2004.04.023 10.7717/peerj.11199 10.3390/s19132974 10.1097/00005768-200206000-00015 10.1038/s41746-019-0178-x 10.1242/jeb.106518 10.1162/neco.1997.9.8.1735 10.21105/joss.01910 10.1038/s41592-019-0686-2 10.1016/j.jbiomech.2018.09.009 10.3389/fbioe.2020.00033 10.3389/fbioe.2020.00604 10.1007/s004240050451 10.1093/gigascience/gix019 10.1016/j.jbiomech.2008.06.001 10.1016/j.medengphy.2020.10.001 10.1098/rspb.1998.0388 10.2519/jospt.2015.6019 10.1080/14763141.2016.1212917 10.1016/j.jbiomech.2021.110323 10.1152/japplphysiol.00546.2015 10.1109/TBME.2020.3006158 10.1016/j.jbiomech.2018.04.001 10.3390/s19061480 10.1016/j.gaitpost.2009.09.004 10.1016/j.jbiomech.2014.03.002 10.1123/jab.2018-0453 10.18653/v1/N16-1170 10.1519/JSC.0000000000001221 10.1123/ijsb.7.3.303 10.1111/sms.13735 10.1002/pmrj.12335 10.1016/j.jbiomech.2016.08.032 10.1007/s00779-010-0293-9 10.1249/MSS.0000000000002032 10.1016/0021-9290(89)90224-8 10.1016/j.jbiomech.2018.05.017 |
| ContentType | Journal Article |
| Copyright | 2022 Alcantara et al. COPYRIGHT 2022 PeerJ. Ltd. 2022 Alcantara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Alcantara et al. 2022 Alcantara et al. |
| Copyright_xml | – notice: 2022 Alcantara et al. – notice: COPYRIGHT 2022 PeerJ. Ltd. – notice: 2022 Alcantara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Alcantara et al. 2022 Alcantara et al. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.7717/peerj.12752 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2167-8359 |
| ExternalDocumentID | oai_doaj_org_article_c2f51e312a654910a951aea3da4ce3ee PMC8740512 A708475582 35036107 10_7717_peerj_12752 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GrantInformation_xml | – fundername: The National Science Foundation grantid: ACI-1532235; ACI-1532236 |
| GroupedDBID | 53G 5VS 88I 8FE 8FH AAFWJ AAYXX ABUWG ADBBV ADRAZ AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DIK DWQXO ECGQY GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE IAO IEA IHR IHW ITC KQ8 LK8 M2P M48 M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RPM W2D YAO CGR CUY CVF ECM EIF H13 NPM 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c573t-19780d6fb91cca35998217ade3a0051c0810f30c56c8848c1f17bcc8d0c898103 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741712900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2167-8359 |
| IngestDate | Fri Oct 03 12:43:27 EDT 2025 Tue Nov 04 01:58:23 EST 2025 Thu Oct 02 07:45:54 EDT 2025 Fri Jul 25 11:40:04 EDT 2025 Tue Nov 11 08:19:18 EST 2025 Tue Nov 04 17:27:48 EST 2025 Thu May 22 21:22:10 EDT 2025 Thu Apr 03 06:57:22 EDT 2025 Sat Nov 29 02:31:45 EST 2025 Tue Nov 18 21:12:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biomechanics IMU LSTM RNN Machine learning Biofeedback GRF |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 2022 Alcantara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c573t-19780d6fb91cca35998217ade3a0051c0810f30c56c8848c1f17bcc8d0c898103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/2616473441?pq-origsite=%requestingapplication% |
| PMID | 35036107 |
| PQID | 2616473441 |
| PQPubID | 2045935 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c2f51e312a654910a951aea3da4ce3ee pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740512 proquest_miscellaneous_2620754811 proquest_journals_2616473441 gale_infotracmisc_A708475582 gale_infotracacademiconefile_A708475582 gale_healthsolutions_A708475582 pubmed_primary_35036107 crossref_primary_10_7717_peerj_12752 crossref_citationtrail_10_7717_peerj_12752 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-04 |
| PublicationDateYYYYMMDD | 2022-01-04 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Diego – name: San Diego, USA |
| PublicationTitle | PeerJ (San Francisco, CA) |
| PublicationTitleAlternate | PeerJ |
| PublicationYear | 2022 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Figo (10.7717/peerj.12752/ref-20) 2010; 14 Khassetarash (10.7717/peerj.12752/ref-33) 2020; 30 Harris (10.7717/peerj.12752/ref-26) 2020; 585 Kiernan (10.7717/peerj.12752/ref-34) 2018; 73 Ren (10.7717/peerj.12752/ref-48) 2008; 41 Gottschall (10.7717/peerj.12752/ref-23) 2005; 38 Cavagna (10.7717/peerj.12752/ref-8) 1997; 434 Gurchiek (10.7717/peerj.12752/ref-24) 2019; 19 McMahon (10.7717/peerj.12752/ref-38) 1987; 62 R Core Team (10.7717/peerj.12752/ref-46) 2020 Neugebauer (10.7717/peerj.12752/ref-41) 2012; 7 Alcantara (10.7717/peerj.12752/ref-3) 2021; 9 Giovanelli (10.7717/peerj.12752/ref-22) 2016; 120 Mundt (10.7717/peerj.12752/ref-40) 2020; 86 Yong (10.7717/peerj.12752/ref-66) 2018; 76 Ferris (10.7717/peerj.12752/ref-19) 1998; 265 Pogson (10.7717/peerj.12752/ref-45) 2020; 78 Ruder (10.7717/peerj.12752/ref-49) 2019; 51 Wickham (10.7717/peerj.12752/ref-61) 2009 Running USA (10.7717/peerj.12752/ref-50) 2019 Giandolini (10.7717/peerj.12752/ref-21) 2014; 47 Wickham (10.7717/peerj.12752/ref-62) 2019 Wickham (10.7717/peerj.12752/ref-63) 2020 Derie (10.7717/peerj.12752/ref-15) 2020; 8 Chaibub Neto (10.7717/peerj.12752/ref-10) 2019; 2 Clermont (10.7717/peerj.12752/ref-12) 2019; 35 Li (10.7717/peerj.12752/ref-37) 2018; 18 Blickhan (10.7717/peerj.12752/ref-7) 1989; 22 Davidson (10.7717/peerj.12752/ref-13) 2019; 19 Voloshina (10.7717/peerj.12752/ref-58) 2015; 218 Vernillo (10.7717/peerj.12752/ref-55) 2020; 30 Derrick (10.7717/peerj.12752/ref-17) 1998; 30 Molnar (10.7717/peerj.12752/ref-39) 2019 Alcantara (10.7717/peerj.12752/ref-2) 2019; 4 Reenalda (10.7717/peerj.12752/ref-47) 2016; 49 Hochreiter (10.7717/peerj.12752/ref-28) 1997; 9 Johnson (10.7717/peerj.12752/ref-31) 2020; 113 Whiting (10.7717/peerj.12752/ref-60) 2020; 120 Abadi (10.7717/peerj.12752/ref-1) 2016 Nilsson (10.7717/peerj.12752/ref-42) 1989; 136 Hennig (10.7717/peerj.12752/ref-27) 1991; 7 Day (10.7717/peerj.12752/ref-14) 2021; 1 Wouda (10.7717/peerj.12752/ref-65) 2018; 9 Derrick (10.7717/peerj.12752/ref-16) 2002; 34 Choi (10.7717/peerj.12752/ref-11) 2019; 19 Virtanen (10.7717/peerj.12752/ref-57) 2020; 17 Kingma (10.7717/peerj.12752/ref-35) 2017 Ancillao (10.7717/peerj.12752/ref-5) 2018; 18 Pandas Development Team (10.7717/peerj.12752/ref-43) 2020 Johnson (10.7717/peerj.12752/ref-32) 2021; 68 Vincent (10.7717/peerj.12752/ref-56) 2020; 12 Halilaj (10.7717/peerj.12752/ref-25) 2018; 81 Janssen (10.7717/peerj.12752/ref-30) 2020; 17 Peters (10.7717/peerj.12752/ref-44) 2010; 31 International Trail Running Association (10.7717/peerj.12752/ref-29) 2020 Dorschky (10.7717/peerj.12752/ref-18) 2020; 8 Kipp (10.7717/peerj.12752/ref-36) 2017; 16 Saeb (10.7717/peerj.12752/ref-51) 2017; 6 Willy (10.7717/peerj.12752/ref-64) 2016; 26 Baggaley (10.7717/peerj.12752/ref-6) 2019; 20 Snyder (10.7717/peerj.12752/ref-53) 2011; 214 Wang (10.7717/peerj.12752/ref-59) 2016 Ceyssens (10.7717/peerj.12752/ref-9) 2019; 49 Almeida (10.7717/peerj.12752/ref-4) 2015; 45 Scott (10.7717/peerj.12752/ref-52) 2016; 30 Tan (10.7717/peerj.12752/ref-54) 2019; 97 |
| References_xml | – volume: 30 start-page: 128 year: 1998 ident: 10.7717/peerj.12752/ref-17 article-title: Energy absorption of impacts during running at various stride lengths publication-title: Medicine and Science in Sports and Exercise doi: 10.1097/00005768-199801000-00018 – volume: 62 start-page: 2326 year: 1987 ident: 10.7717/peerj.12752/ref-38 article-title: Groucho running publication-title: Journal of Applied Physiology doi: 10.1152/jappl.1987.62.6.2326 – volume: 113 start-page: 110118 year: 2020 ident: 10.7717/peerj.12752/ref-31 article-title: A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2020.110118 – volume: 97 start-page: 109416 year: 2019 ident: 10.7717/peerj.12752/ref-54 article-title: Influence of IMU position and orientation placement errors on ground reaction force estimation publication-title: Journal of Biomechanics doi: 10.1016/j.biomech.2019.109416 – volume: 20 start-page: 756 issue: 6 year: 2019 ident: 10.7717/peerj.12752/ref-6 article-title: Step length and grade effects on energy absorption and impact attenuation in running publication-title: European Journal of Sport Science doi: 10.1080/17461391.2019.1664639 – volume: 7 start-page: e48182 year: 2012 ident: 10.7717/peerj.12752/ref-41 article-title: Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor publication-title: PLOS ONE doi: 10.1371/journal.pone.0048182 – volume: 17 start-page: 2276 year: 2020 ident: 10.7717/peerj.12752/ref-30 article-title: Understanding different types of recreational runners and how they use running-related technology publication-title: International Journal of Environmental Research and Public Health doi: 10.3390/ijerph17072276 – volume: 585 start-page: 357 year: 2020 ident: 10.7717/peerj.12752/ref-26 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 26 start-page: 197 year: 2016 ident: 10.7717/peerj.12752/ref-64 article-title: In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture publication-title: Scandinavian Journal of Medicine & Science in Sports doi: 10.1111/sms.12413 – volume: 18 start-page: 2564 year: 2018 ident: 10.7717/peerj.12752/ref-5 article-title: Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review publication-title: Sensors doi: 10.3390/s18082564 – volume: 78 start-page: 82 year: 2020 ident: 10.7717/peerj.12752/ref-45 article-title: A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2020.02.002 – volume: 30 start-page: 1632 year: 2020 ident: 10.7717/peerj.12752/ref-55 article-title: Biomechanics of graded running: part I - Stride parameters, external forces, muscle activations publication-title: Scandinavian Journal of Medicine & Science in Sports doi: 10.1111/sms.13708 – volume: 214 start-page: 2089 year: 2011 ident: 10.7717/peerj.12752/ref-53 article-title: Energetically optimal stride frequency in running: the effects of incline and decline publication-title: The Journal of Experimental Biology doi: 10.1242/jeb.053157 – volume: 120 start-page: 2147 year: 2020 ident: 10.7717/peerj.12752/ref-60 article-title: Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations publication-title: European Journal of Applied Physiology doi: 10.1007/s00421-020-04437-y – volume: 9 start-page: 218 year: 2018 ident: 10.7717/peerj.12752/ref-65 article-title: Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors publication-title: Frontiers in Physiology doi: 10.3389/fphys.2018.00218 – volume: 49 start-page: 1095 year: 2019 ident: 10.7717/peerj.12752/ref-9 article-title: Biomechanical risk factors associated with running-related injuries: a systematic review publication-title: Sports Medicine doi: 10.1007/s40279-019-01110-z – year: 2009 ident: 10.7717/peerj.12752/ref-61 article-title: ggplot2: elegant graphics for data analysis doi: 10.1007/978-0-387-98141-3 – volume: 136 start-page: 217 year: 1989 ident: 10.7717/peerj.12752/ref-42 article-title: Ground reaction forces at different speeds of human walking and running publication-title: Acta Physiological ScandInavica doi: 10.1111/j.1748-1716.1989.tb08655.x – volume: 19 start-page: 5227 year: 2019 ident: 10.7717/peerj.12752/ref-24 article-title: Estimating biomechanical time-series with wearable sensors: a systematic review of machine learning techniques publication-title: Sensors doi: 10.3390/s19235227 – volume: 38 start-page: 445 year: 2005 ident: 10.7717/peerj.12752/ref-23 article-title: Ground reaction forces during downhill and uphill running publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2004.04.023 – volume: 9 start-page: e11199 year: 2021 ident: 10.7717/peerj.12752/ref-3 article-title: Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds publication-title: PeerJ doi: 10.7717/peerj.11199 – volume: 18 start-page: 1 year: 2018 ident: 10.7717/peerj.12752/ref-37 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization publication-title: Journal of Machine Learning Research – year: 2020 ident: 10.7717/peerj.12752/ref-43 article-title: pandas-dev/pandas: Pandas. Zenodo – volume: 19 start-page: 2974 year: 2019 ident: 10.7717/peerj.12752/ref-11 article-title: Single inertial sensor-based neural networks to estimate COM-COP inclination angle during walking publication-title: Sensors doi: 10.3390/s19132974 – volume: 34 start-page: 998 issue: 6 year: 2002 ident: 10.7717/peerj.12752/ref-16 article-title: Impacts and kinematic adjustments during an exhaustive run publication-title: Medicine and Science in Sports and Exercise doi: 10.1097/00005768-200206000-00015 – volume: 2 start-page: 1 year: 2019 ident: 10.7717/peerj.12752/ref-10 article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications publication-title: Npj Digital Medicine doi: 10.1038/s41746-019-0178-x – volume: 218 start-page: 711 year: 2015 ident: 10.7717/peerj.12752/ref-58 article-title: Biomechanics and energetics of running on uneven terrain publication-title: Journal of Experimental Biology doi: 10.1242/jeb.106518 – volume: 9 start-page: 1735 year: 1997 ident: 10.7717/peerj.12752/ref-28 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 4 start-page: 1910 year: 2019 ident: 10.7717/peerj.12752/ref-2 article-title: Dryft: a python and MATLAB package to correct drifting ground reaction force signals during treadmill running publication-title: Journal of Open Source Software doi: 10.21105/joss.01910 – year: 2017 ident: 10.7717/peerj.12752/ref-35 article-title: Adam: a method for stochastic optimization – volume-title: Interpretable machine learning: a guide for making black box models explainable year: 2019 ident: 10.7717/peerj.12752/ref-39 article-title: Permutation feature importance – year: 2019 ident: 10.7717/peerj.12752/ref-62 article-title: stringr: simple, consistent wrappers for common string operations – volume: 17 start-page: 261 year: 2020 ident: 10.7717/peerj.12752/ref-57 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nature Methods doi: 10.1038/s41592-019-0686-2 – volume: 81 start-page: 1 year: 2018 ident: 10.7717/peerj.12752/ref-25 article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2018.09.009 – volume: 8 start-page: 33 year: 2020 ident: 10.7717/peerj.12752/ref-15 article-title: Tibial acceleration-based prediction of maximal vertical loading rate during overground running: a machine learning approach publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2020.00033 – volume: 8 start-page: 604 year: 2020 ident: 10.7717/peerj.12752/ref-18 article-title: CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2020.00604 – volume: 434 start-page: 678 year: 1997 ident: 10.7717/peerj.12752/ref-8 article-title: The resonant step frequency in human running publication-title: Pflügers Archiv doi: 10.1007/s004240050451 – volume: 6 start-page: gix019 issue: 5 year: 2017 ident: 10.7717/peerj.12752/ref-51 article-title: The need to approximate the use-case in clinical machine learning publication-title: GigaScience doi: 10.1093/gigascience/gix019 – volume: 41 start-page: 2750 year: 2008 ident: 10.7717/peerj.12752/ref-48 article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2008.06.001 – volume: 86 start-page: 29 year: 2020 ident: 10.7717/peerj.12752/ref-40 article-title: Prediction of ground reaction force and joint moments based on optical motion capture data during gait publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2020.10.001 – volume: 265 start-page: 989 year: 1998 ident: 10.7717/peerj.12752/ref-19 article-title: Running in the real world: adjusting leg stiffness for different surfaces publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences doi: 10.1098/rspb.1998.0388 – volume: 45 start-page: 738 year: 2015 ident: 10.7717/peerj.12752/ref-4 article-title: Biomechanical differences of foot-strike patterns during running: a systematic review with meta-analysis publication-title: Journal of Orthopaedic & Sports Physical Therapy doi: 10.2519/jospt.2015.6019 – volume: 16 start-page: 152 year: 2017 ident: 10.7717/peerj.12752/ref-36 article-title: Ground reaction forces during steeplechase hurdling and waterjumps publication-title: Sports Biomechanics doi: 10.1080/14763141.2016.1212917 – volume: 1 start-page: 110323 year: 2021 ident: 10.7717/peerj.12752/ref-14 article-title: Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2021.110323 – volume: 120 start-page: 370 year: 2016 ident: 10.7717/peerj.12752/ref-22 article-title: Energetics of vertical kilometer foot races; is steeper cheaper? publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00546.2015 – year: 2020 ident: 10.7717/peerj.12752/ref-46 article-title: R: a language and environment for statistical computing – year: 2016 ident: 10.7717/peerj.12752/ref-1 article-title: TensorFlow: large-Scale machine learning on heterogeneous distributed systems – volume: 68 start-page: 289 year: 2021 ident: 10.7717/peerj.12752/ref-32 article-title: Multidimensional ground reaction forces and moments from wearable sensor accelerations via deep learning publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2020.3006158 – year: 2020 ident: 10.7717/peerj.12752/ref-63 article-title: dplyr: a grammar of data manipulation – volume: 73 start-page: 201 year: 2018 ident: 10.7717/peerj.12752/ref-34 article-title: Accelerometer-based prediction of running injury in National Collegiate Athletic Association track athletes publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2018.04.001 – volume: 19 start-page: 1480 year: 2019 ident: 10.7717/peerj.12752/ref-13 article-title: Continuous analysis of running mechanics by means of an integrated INS/GPS device publication-title: Sensors doi: 10.3390/s19061480 – volume: 31 start-page: 1 year: 2010 ident: 10.7717/peerj.12752/ref-44 article-title: Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review publication-title: Gait & Posture doi: 10.1016/j.gaitpost.2009.09.004 – volume: 47 start-page: 1588 year: 2014 ident: 10.7717/peerj.12752/ref-21 article-title: A simple field method to identify foot strike pattern during running publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2014.03.002 – volume: 35 start-page: 401 year: 2019 ident: 10.7717/peerj.12752/ref-12 article-title: New considerations for wearable technology data: changes in running biomechanics during a marathon publication-title: Journal of Applied Biomechanics doi: 10.1123/jab.2018-0453 – year: 2020 ident: 10.7717/peerj.12752/ref-29 article-title: 2020 Trail running infographics – year: 2016 ident: 10.7717/peerj.12752/ref-59 article-title: Learning natural language inference with LSTM doi: 10.18653/v1/N16-1170 – volume: 30 start-page: 1470 year: 2016 ident: 10.7717/peerj.12752/ref-52 article-title: The validity and reliability of global positioning systems in team sport: a brief review publication-title: The Journal of Strength & Conditioning Research doi: 10.1519/JSC.0000000000001221 – volume: 7 start-page: 303 year: 1991 ident: 10.7717/peerj.12752/ref-27 article-title: Relationships between ground reaction force and tibial bone acceleration parameters publication-title: International Journal of Sport Biomechanics doi: 10.1123/ijsb.7.3.303 – volume: 30 start-page: 1642 year: 2020 ident: 10.7717/peerj.12752/ref-33 article-title: Biomechanics of graded running: part II—Joint kinematics and kinetics publication-title: Scandinavian Journal of Medicine & Science in Sports doi: 10.1111/sms.13735 – volume: 12 start-page: 1106 year: 2020 ident: 10.7717/peerj.12752/ref-56 article-title: Impact of body mass index on biomechanics of recreational runners publication-title: PM & R doi: 10.1002/pmrj.12335 – volume: 49 start-page: 3362 year: 2016 ident: 10.7717/peerj.12752/ref-47 article-title: Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2016.08.032 – volume: 14 start-page: 645 year: 2010 ident: 10.7717/peerj.12752/ref-20 article-title: Preprocessing techniques for context recognition from accelerometer data publication-title: Personal and Ubiquitous Computing doi: 10.1007/s00779-010-0293-9 – volume: 51 start-page: 2073 year: 2019 ident: 10.7717/peerj.12752/ref-49 article-title: Relationship of foot strike pattern and landing impacts during a marathon publication-title: Medicine and Science in Sports and Exercise doi: 10.1249/MSS.0000000000002032 – volume: 22 start-page: 1217 year: 1989 ident: 10.7717/peerj.12752/ref-7 article-title: The spring-mass model for running and hopping publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(89)90224-8 – volume: 76 start-page: 1 year: 2018 ident: 10.7717/peerj.12752/ref-66 article-title: Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures publication-title: Journal of Biomechanics doi: 10.1016/j.jbiomech.2018.05.017 – year: 2019 ident: 10.7717/peerj.12752/ref-50 article-title: 2019 U.S Running Trends Report |
| SSID | ssj0000826083 |
| Score | 2.463457 |
| Snippet | Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous... Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory... View Twitter Abstract Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e12752 |
| SubjectTerms | Accelerometers Accelerometry Accuracy Biomechanics Computational linguistics Data Mining and Machine Learning Exercise Test Fitness equipment GRF Humans IMU Kinematics Laboratories Language processing LSTM Machine learning Movement Natural language interfaces Neural networks Neural Networks, Computer RNN Running Sacrum Somatotropin releasing hormone Variables Wearable computers |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yiPgi_nb11AgHglCubZqm9e0UD1887kHh3kI6SXFBektv17_BP9tvkm7ZouCLb7ub6a_MZPLNduYbIU7KDjjedEWmqrLLKnJt1uadz7rcOVVXPdVNH5tNmIuL5uqqvTxo9cU5YYkeOE3cKZW9LoIqSlcjlClyB0jgglPeVRRUCOx9c9MeBFPRBwM1A1ykgjyDkOV0E8IIv1AaXS62oMjU_6c_PtiQlsmSB7vP-X1xb4KN8izd7gNxKwwPxZ0v04vxR-LX5cifOYdZcvb5etghpJdcszF4CWAYyxckECr8guSaEumIsOUwWwETbMpUryh3G349IB2O8gjQ45dxF_savZcOZ6JE6CSZCBN3NKQ0crk34cfi2_mnrx8_Z1OThYy0UdusYAoiX_ddW0CZSiP8QpTifFCOFywBMuS9yknX1DRVQ0VfmI6o8Tk1LcbUE3E0XA_hmZDktQc6qnxf-opZbyg0XtU4u2r7XruVeLefd0sTAzk3wvhhEYmwkmxUko1KWomTWXiTiDf-LvaBFTiLMFt2_AE2ZCcbsv-yoZV4zeq3qfR0XvP2zOTYvLVucJm3UYJXPW6Z3FS8gAdn_qyF5PFCEquVlsN7E7OTt7ixiGLryigg05V4Mw_zkZwBNwQYjOXGAQbhZQGZp8ki54dWGjgEcfxKmIWtLmZlOTKsv0cuce7ICMz3_H9M4wtxt-TiEP6DqjoWR9txF16K2_Rzu74ZX8UF-hvcm0YG priority: 102 providerName: Directory of Open Access Journals |
| Title | Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35036107 https://www.proquest.com/docview/2616473441 https://www.proquest.com/docview/2620754811 https://pubmed.ncbi.nlm.nih.gov/PMC8740512 https://doaj.org/article/c2f51e312a654910a951aea3da4ce3ee |
| Volume | 10 |
| WOSCitedRecordID | wos000741712900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M7P dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: BENPR dateStart: 20130212 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: PIMPY dateStart: 20130212 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2167-8359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000826083 issn: 2167-8359 databaseCode: M2P dateStart: 20130212 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYitBe-M0ojGKkSUhI0eI4iRNe0IY2wUOrCIFUnizn7EAllJa04W_gz-bOScMiEC-8RG19SZz6fP7OufuOsdOoRByvShHIOCqDGEwe5GFpgzI0RqZxBWlW-WITarHIlsu86Dfctn1Y5d4mekNt10B75GeI9NNYSVy932y-B1Q1it6u9iU0DtgEkY2gkK55VAx7LLi8pQgxurQ8hY7L2ca5Bq1DpJJotBB5vv4_rfK1ZWkcMnltDbq687-9v8tu9-iTn3fqco_dcPV9dmvev19_wH4WDX2mUGhOQeyrul23W06pH7XliC99FgRHoIvmhVNqCjcAuHIR6QHxdPIu7ZG3G3rLwA2eZdHP91-a1pdHes0NXgk6XihOfJrYo7qLRuf7mfCQfbq6_Pj2XdDXagggUXIXCGIysmlV5gJ1QiboxaGzY6yThuY9IPIIKxlCkkKWxRmISqgSILMhZDm2yUfssF7X7jHjYBOLICu2VWRjIs8Bl1mZ4tVlXlWJmbJX-4HT0BOZUz2NbxodGhpl7UdZ-1GestNBeNPxd_xd7II0YBAh0m3_w7r5ovs5rCGqEuGkiEyKXrUIDaJT44y0JgYnnZuy56Q_ustgHUyHPlchYoAkyfA2L70EGQ_sMpg-BwIfnGi4RpInI0mc9DBu3uuZ7o3OVv9Wsil7MTTTmRRIVztUGE31BxR6qQJljjuVHh5aJghnRKimTI2UffSvjFvq1VdPSU6FHRE6Pvl3t56yo4iyR2gHKz5hh7umdc_YTfixW22bGTtQy2zGJheXi-LDzG-OzPx8pqPC46R4Py8-_wKZYllz |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhUCMVISFFTfyIEySEyqNq1Xa1hyL15jq2Ayuh7JLdpeIf8Gv4jcw4DxqBuPXAbXc9cRzveOazM_MNIVusAByviiTighWRsCaP8rhwUREbw1NR2jQrQ7EJNR5nJyf5ZI387HJhMKyys4nBULuZxTPybUD6qVAcvPeb-dcIq0bh29WuhEajFgf--xls2Rav99_D__ucsd0Px-_2oraqQGSl4ssoQc4dl5ZFnsDouYT9BsBy4zw3qKEWfGRc8tjK1GaZyGxSJqqwNnOxzXJo49DvJXJZILMYhgqySX-mA-40BUjTpAEq2Chtz72vwRoxJdnA8YX6AH96gXNucBiiec7n7d7832brFrnRomu60yyH22TNV3fI1aM2fuAu-TGp8TOGelMM0p9Wq9lqQTG1pXIU8HPI8qAA5MF8Uky9ocZa8MxI6oA8pLRJ66SrOb5FoQaucrOzKnypV6H80ytqoCfb8F5R5AuFEVVNtD3tVvo98vFC5uE-Wa9mlX9IqHXSAYgUrmROIDmQ9ZnjKfTO87KUZkRedoqibUvUjvVCvmjYsKFW6aBVOmjViGz1wvOGn-TvYm9R43oRJBUPP8zqT7q1UdqyUiaeJ8ykUgCMNIC-jTfcGWE9935ENlFfdZOh25tGvaNiwDhSZnCbF0ECjSMM2Zo2xwMeHGnGBpIbA0kwanbY3Om1bo3qQv9W6hF51jfjlRgoWHlQGI31FRTswhOQedAsof6huQS4lsRqRNRgcQ1mZdhSTT8HynUsXAnQ-NG_h7VJru0dHx3qw_3xwWNynWGmDJ7WiQ2yvqxX_gm5Yr8tp4v6abAblJxe9NL7BVRwrjw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhyZeuF8KgxlpCAkpamI7cYKE0GBUVGNVH0AaT55jO1AJpSVtmfgH_CZ-Hec4FxaBeNsDb219ktju8Xc-O-dCyD7LgcfLPAq4YHkgjM6CLMxtkIda80QUJkkLX2xCTqfpyUk22yI_21gYdKtsMdEDtV0YPCMfAdNPhORgvUdF4xYxOxy_XH4NsIIUvmlty2nUKnLkvp_B9m31YnII__UTxsZv3r9-GzQVBgITS74OIsy_Y5MizyIYCY9h7wEUXVvHNWqrAXsZFjw0cWLSVKQmKiKZG5Pa0KQZtHG47yWyDZRcsAHZnk2OZx-7Ex4wrgkQnDooUMK2abR0rgJsYjJmPTPoqwX8aRPOGcW-w-Y5Czi-9j_P3XVyteHd9KBeKDfIlitvkp3jxrPgFvkxq_AzOoFTdN-fl5vFZkUx6KW0FJi1j_-gQPEBWCkG5VBtDNhsTPeAGUppHfBJN0t8v0I1XGUXZ6X_Um18YajnVMOdTJ0Ri2ImUehRWfvh0xYDbpMPFzIPd8igXJTuHqHGxhbopbAFswLTBhmXWp7A3XlWFLEekmet0ijTpHDHSiJfFGzlUMOU1zDlNWxI9jvhZZ255O9ir1D7OhFMN-5_WFSfVINeyrAijhyPmE5iAQRTAy_XTnOrhXHcuSHZQ91VdexuB5rqQIbAfuI4hcc89RIIm9Blo5voDxg4JiDrSe72JAHuTL-51XHVwO1K_VbwIXncNeOV6EJYOlAYhZUXJOzPI5C5Wy-nbtA8BiIXhXJIZG-h9Wal31LOP_tk7FjSEkjz_X93a4_swIpT7ybTowfkCsMQGjzGE7tksK427iG5bL6t56vqUQMilJxe9Nr7BQdouIU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+continuous+ground+reaction+forces+from+accelerometers+during+uphill+and+downhill+running%3A+a+recurrent+neural+network+solution&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Alcantara%2C+Ryan+S&rft.au=Edwards%2C+W+Brent&rft.au=Millet%2C+Guillaume+Y&rft.au=Grabowski%2C+Alena+M&rft.date=2022-01-04&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=10&rft.spage=e12752&rft_id=info:doi/10.7717%2Fpeerj.12752&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon |