Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution

Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:PeerJ (San Francisco, CA) Ročník 10; s. e12752
Hlavní autoři: Alcantara, Ryan S., Edwards, W. Brent, Millet, Guillaume Y., Grabowski, Alena M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States PeerJ. Ltd 04.01.2022
PeerJ, Inc
PeerJ Inc
Témata:
ISSN:2167-8359, 2167-8359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
AbstractList Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°,±5°,±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average±SD RMSE of 0.16±0.04 BW and relative RMSE of 6.4±1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Nineteen subjects ran on a force-measuring treadmill at five slopes (0°,±5°,±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average±SD RMSE of 0.16±0.04 BW and relative RMSE of 6.4±1.5% across all conditions and subjects. The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
View Twitter Abstract Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment. Purpose We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data. Methods Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects. Results The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.BACKGROUNDGround reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous studies have used neural networks to predict GRF waveforms during running from wearable device data, but these predictions are limited to the stance phase of level-ground running. A method of predicting the normal (perpendicular to running surface) GRF waveform using wearable devices across a range of running speeds and slopes could allow researchers and clinicians to predict kinetic and kinematic variables outside the laboratory environment.We sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.PURPOSEWe sought to develop a recurrent neural network capable of predicting continuous normal (perpendicular to surface) GRFs across a range of running speeds and slopes from accelerometer data.Nineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects.METHODSNineteen subjects ran on a force-measuring treadmill at five slopes (0°, ±5°, ±10°) and three speeds (2.5, 3.33, 4.17 m/s) per slope with sacral- and shoe-mounted accelerometers. We then trained a recurrent neural network to predict normal GRF waveforms frame-by-frame. The predicted versus measured GRF waveforms had an average ± SD RMSE of 0.16 ± 0.04 BW and relative RMSE of 6.4 ± 1.5% across all conditions and subjects.The recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.RESULTSThe recurrent neural network predicted continuous normal GRF waveforms across a range of running speeds and slopes with greater accuracy than neural networks implemented in previous studies. This approach may facilitate predictions of biomechanical variables outside the laboratory in near real-time and improves the accuracy of quantifying and monitoring external forces experienced by the body when running.
ArticleNumber e12752
Audience Academic
Author Alcantara, Ryan S.
Grabowski, Alena M.
Millet, Guillaume Y.
Edwards, W. Brent
Author_xml – sequence: 1
  givenname: Ryan S.
  surname: Alcantara
  fullname: Alcantara, Ryan S.
  organization: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America, Department of Bioengineering, Stanford University, Stanford, CA, United States of America
– sequence: 2
  givenname: W. Brent
  surname: Edwards
  fullname: Edwards, W. Brent
  organization: Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
– sequence: 3
  givenname: Guillaume Y.
  surname: Millet
  fullname: Millet, Guillaume Y.
  organization: Laboratoire Interuniversitaire de Biologie de la Motricité, Université Lyon, UJM-Saint-Etienne, Saint-Etienne, France
– sequence: 4
  givenname: Alena M.
  surname: Grabowski
  fullname: Grabowski, Alena M.
  organization: Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35036107$$D View this record in MEDLINE/PubMed
BookMark eNptkk1v1DAQhiNUREvpiTuKhISQ0BY7jmOHA1JV8VGpEhzgbHknk10vWXuxYyr-AT-byW5b7VZNDmN7nnnHM57nxZEPHoviJWfnSnH1foMYV-e8UrJ6UpxUvFEzLWR7tLc-Ls5SWjH6dNUwLZ4Vx0Iy0XCmTop_3yN2DkbnFyUETzaHnMpFDNl3ZURLruDLPkTAVPYxrEsLgAPSCkeMqexynILzZumGobQU1YUbv93E7D35PpSWlCDHiH4sPeZoBzLjTYi_yhSGPKV4UTzt7ZDw7NaeFj8_f_px-XV2_e3L1eXF9QykEuOMt0qzrunnLQewVF2rK65sh8IyJjkwzVkvGMgGtK418J6rOYDuGOiWfOK0uNrpdsGuzCa6tY1_TbDObA9CXBgbRwcDGqh6yVHwyjaybjmzreQWrehsDSgQSevjTmuT52vsgMqj0g5EDz3eLc0i_DFa1XTZigTe3grE8DtjGs3aJeruYD3SM5iqqZiSteac0NcP0FXI0VOriOJNrURd71ELSwU43wfKC5OouVBM10pKPaU9f4Siv8O1oynA3tH5QcCbvYAl2mFc3j1cOgRf7XfkvhV3A0fAux0AMaQUsb9HODPTRJvtRJvtRBPNH9DgRjtlpQu74dGY_5g1-uM
CitedBy_id crossref_primary_10_1038_s41598_023_27899_4
crossref_primary_10_3390_s23042246
crossref_primary_10_1007_s13735_022_00261_6
crossref_primary_10_1016_j_medengphy_2025_104338
crossref_primary_10_1080_10255842_2023_2224912
crossref_primary_10_3390_s23094229
crossref_primary_10_3389_fbioe_2024_1426677
crossref_primary_10_1123_jab_2024_0126
crossref_primary_10_3390_s22249640
crossref_primary_10_1080_10255842_2024_2400318
crossref_primary_10_3390_s25133870
crossref_primary_10_1016_j_jbiomech_2022_111301
crossref_primary_10_1038_s41598_023_29314_4
crossref_primary_10_3390_s24072163
crossref_primary_10_1016_j_bspc_2023_105372
crossref_primary_10_1109_TBME_2024_3465373
crossref_primary_10_1002_art_42744
crossref_primary_10_1186_s12938_025_01409_1
crossref_primary_10_3389_fspor_2022_1037438
crossref_primary_10_3390_s23218719
crossref_primary_10_1002_jor_26101
crossref_primary_10_1123_jab_2024_0113
crossref_primary_10_1016_j_compbiomed_2024_108016
crossref_primary_10_1038_s41746_025_01677_0
crossref_primary_10_1109_TBME_2024_3361888
crossref_primary_10_1186_s40537_024_01026_0
crossref_primary_10_3390_s24165318
crossref_primary_10_3390_vibration6030042
crossref_primary_10_3389_fspor_2023_974186
crossref_primary_10_1371_journal_pcbi_1011556
crossref_primary_10_1371_journal_pone_0287978
crossref_primary_10_1080_02640414_2024_2353405
crossref_primary_10_1186_s40798_025_00824_x
crossref_primary_10_3390_s25041249
crossref_primary_10_1371_journal_pdig_0000343
crossref_primary_10_3390_app13042136
crossref_primary_10_1371_journal_pone_0330042
crossref_primary_10_3390_s22093338
crossref_primary_10_1109_TNSRE_2023_3296280
crossref_primary_10_1016_j_jbiomech_2023_111712
crossref_primary_10_1016_j_jbiomech_2025_112888
Cites_doi 10.1097/00005768-199801000-00018
10.1152/jappl.1987.62.6.2326
10.1016/j.jbiomech.2020.110118
10.1016/j.biomech.2019.109416
10.1080/17461391.2019.1664639
10.1371/journal.pone.0048182
10.3390/ijerph17072276
10.1038/s41586-020-2649-2
10.1111/sms.12413
10.3390/s18082564
10.1016/j.medengphy.2020.02.002
10.1111/sms.13708
10.1242/jeb.053157
10.1007/s00421-020-04437-y
10.3389/fphys.2018.00218
10.1007/s40279-019-01110-z
10.1007/978-0-387-98141-3
10.1111/j.1748-1716.1989.tb08655.x
10.3390/s19235227
10.1016/j.jbiomech.2004.04.023
10.7717/peerj.11199
10.3390/s19132974
10.1097/00005768-200206000-00015
10.1038/s41746-019-0178-x
10.1242/jeb.106518
10.1162/neco.1997.9.8.1735
10.21105/joss.01910
10.1038/s41592-019-0686-2
10.1016/j.jbiomech.2018.09.009
10.3389/fbioe.2020.00033
10.3389/fbioe.2020.00604
10.1007/s004240050451
10.1093/gigascience/gix019
10.1016/j.jbiomech.2008.06.001
10.1016/j.medengphy.2020.10.001
10.1098/rspb.1998.0388
10.2519/jospt.2015.6019
10.1080/14763141.2016.1212917
10.1016/j.jbiomech.2021.110323
10.1152/japplphysiol.00546.2015
10.1109/TBME.2020.3006158
10.1016/j.jbiomech.2018.04.001
10.3390/s19061480
10.1016/j.gaitpost.2009.09.004
10.1016/j.jbiomech.2014.03.002
10.1123/jab.2018-0453
10.18653/v1/N16-1170
10.1519/JSC.0000000000001221
10.1123/ijsb.7.3.303
10.1111/sms.13735
10.1002/pmrj.12335
10.1016/j.jbiomech.2016.08.032
10.1007/s00779-010-0293-9
10.1249/MSS.0000000000002032
10.1016/0021-9290(89)90224-8
10.1016/j.jbiomech.2018.05.017
ContentType Journal Article
Copyright 2022 Alcantara et al.
COPYRIGHT 2022 PeerJ. Ltd.
2022 Alcantara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Alcantara et al. 2022 Alcantara et al.
Copyright_xml – notice: 2022 Alcantara et al.
– notice: COPYRIGHT 2022 PeerJ. Ltd.
– notice: 2022 Alcantara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Alcantara et al. 2022 Alcantara et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7717/peerj.12752
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database (ProQuest)
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE
Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2167-8359
ExternalDocumentID oai_doaj_org_article_c2f51e312a654910a951aea3da4ce3ee
PMC8740512
A708475582
35036107
10_7717_peerj_12752
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: The National Science Foundation
  grantid: ACI-1532235; ACI-1532236
GroupedDBID 53G
5VS
88I
8FE
8FH
AAFWJ
AAYXX
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
ECGQY
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IEA
IHR
IHW
ITC
KQ8
LK8
M2P
M48
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
W2D
YAO
CGR
CUY
CVF
ECM
EIF
H13
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c573t-19780d6fb91cca35998217ade3a0051c0810f30c56c8848c1f17bcc8d0c898103
IEDL.DBID M2P
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000741712900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2167-8359
IngestDate Fri Oct 03 12:43:27 EDT 2025
Tue Nov 04 01:58:23 EST 2025
Thu Oct 02 07:45:54 EDT 2025
Fri Jul 25 11:40:04 EDT 2025
Tue Nov 11 08:19:18 EST 2025
Tue Nov 04 17:27:48 EST 2025
Thu May 22 21:22:10 EDT 2025
Thu Apr 03 06:57:22 EDT 2025
Sat Nov 29 02:31:45 EST 2025
Tue Nov 18 21:12:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Biomechanics
IMU
LSTM
RNN
Machine learning
Biofeedback
GRF
Language English
License https://creativecommons.org/licenses/by/4.0
2022 Alcantara et al.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c573t-19780d6fb91cca35998217ade3a0051c0810f30c56c8848c1f17bcc8d0c898103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2616473441?pq-origsite=%requestingapplication%
PMID 35036107
PQID 2616473441
PQPubID 2045935
ParticipantIDs doaj_primary_oai_doaj_org_article_c2f51e312a654910a951aea3da4ce3ee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8740512
proquest_miscellaneous_2620754811
proquest_journals_2616473441
gale_infotracmisc_A708475582
gale_infotracacademiconefile_A708475582
gale_healthsolutions_A708475582
pubmed_primary_35036107
crossref_primary_10_7717_peerj_12752
crossref_citationtrail_10_7717_peerj_12752
PublicationCentury 2000
PublicationDate 2022-01-04
PublicationDateYYYYMMDD 2022-01-04
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Diego
– name: San Diego, USA
PublicationTitle PeerJ (San Francisco, CA)
PublicationTitleAlternate PeerJ
PublicationYear 2022
Publisher PeerJ. Ltd
PeerJ, Inc
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ, Inc
– name: PeerJ Inc
References Figo (10.7717/peerj.12752/ref-20) 2010; 14
Khassetarash (10.7717/peerj.12752/ref-33) 2020; 30
Harris (10.7717/peerj.12752/ref-26) 2020; 585
Kiernan (10.7717/peerj.12752/ref-34) 2018; 73
Ren (10.7717/peerj.12752/ref-48) 2008; 41
Gottschall (10.7717/peerj.12752/ref-23) 2005; 38
Cavagna (10.7717/peerj.12752/ref-8) 1997; 434
Gurchiek (10.7717/peerj.12752/ref-24) 2019; 19
McMahon (10.7717/peerj.12752/ref-38) 1987; 62
R Core Team (10.7717/peerj.12752/ref-46) 2020
Neugebauer (10.7717/peerj.12752/ref-41) 2012; 7
Alcantara (10.7717/peerj.12752/ref-3) 2021; 9
Giovanelli (10.7717/peerj.12752/ref-22) 2016; 120
Mundt (10.7717/peerj.12752/ref-40) 2020; 86
Yong (10.7717/peerj.12752/ref-66) 2018; 76
Ferris (10.7717/peerj.12752/ref-19) 1998; 265
Pogson (10.7717/peerj.12752/ref-45) 2020; 78
Ruder (10.7717/peerj.12752/ref-49) 2019; 51
Wickham (10.7717/peerj.12752/ref-61) 2009
Running USA (10.7717/peerj.12752/ref-50) 2019
Giandolini (10.7717/peerj.12752/ref-21) 2014; 47
Wickham (10.7717/peerj.12752/ref-62) 2019
Wickham (10.7717/peerj.12752/ref-63) 2020
Derie (10.7717/peerj.12752/ref-15) 2020; 8
Chaibub Neto (10.7717/peerj.12752/ref-10) 2019; 2
Clermont (10.7717/peerj.12752/ref-12) 2019; 35
Li (10.7717/peerj.12752/ref-37) 2018; 18
Blickhan (10.7717/peerj.12752/ref-7) 1989; 22
Davidson (10.7717/peerj.12752/ref-13) 2019; 19
Voloshina (10.7717/peerj.12752/ref-58) 2015; 218
Vernillo (10.7717/peerj.12752/ref-55) 2020; 30
Derrick (10.7717/peerj.12752/ref-17) 1998; 30
Molnar (10.7717/peerj.12752/ref-39) 2019
Alcantara (10.7717/peerj.12752/ref-2) 2019; 4
Reenalda (10.7717/peerj.12752/ref-47) 2016; 49
Hochreiter (10.7717/peerj.12752/ref-28) 1997; 9
Johnson (10.7717/peerj.12752/ref-31) 2020; 113
Whiting (10.7717/peerj.12752/ref-60) 2020; 120
Abadi (10.7717/peerj.12752/ref-1) 2016
Nilsson (10.7717/peerj.12752/ref-42) 1989; 136
Hennig (10.7717/peerj.12752/ref-27) 1991; 7
Day (10.7717/peerj.12752/ref-14) 2021; 1
Wouda (10.7717/peerj.12752/ref-65) 2018; 9
Derrick (10.7717/peerj.12752/ref-16) 2002; 34
Choi (10.7717/peerj.12752/ref-11) 2019; 19
Virtanen (10.7717/peerj.12752/ref-57) 2020; 17
Kingma (10.7717/peerj.12752/ref-35) 2017
Ancillao (10.7717/peerj.12752/ref-5) 2018; 18
Pandas Development Team (10.7717/peerj.12752/ref-43) 2020
Johnson (10.7717/peerj.12752/ref-32) 2021; 68
Vincent (10.7717/peerj.12752/ref-56) 2020; 12
Halilaj (10.7717/peerj.12752/ref-25) 2018; 81
Janssen (10.7717/peerj.12752/ref-30) 2020; 17
Peters (10.7717/peerj.12752/ref-44) 2010; 31
International Trail Running Association (10.7717/peerj.12752/ref-29) 2020
Dorschky (10.7717/peerj.12752/ref-18) 2020; 8
Kipp (10.7717/peerj.12752/ref-36) 2017; 16
Saeb (10.7717/peerj.12752/ref-51) 2017; 6
Willy (10.7717/peerj.12752/ref-64) 2016; 26
Baggaley (10.7717/peerj.12752/ref-6) 2019; 20
Snyder (10.7717/peerj.12752/ref-53) 2011; 214
Wang (10.7717/peerj.12752/ref-59) 2016
Ceyssens (10.7717/peerj.12752/ref-9) 2019; 49
Almeida (10.7717/peerj.12752/ref-4) 2015; 45
Scott (10.7717/peerj.12752/ref-52) 2016; 30
Tan (10.7717/peerj.12752/ref-54) 2019; 97
References_xml – volume: 30
  start-page: 128
  year: 1998
  ident: 10.7717/peerj.12752/ref-17
  article-title: Energy absorption of impacts during running at various stride lengths
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1097/00005768-199801000-00018
– volume: 62
  start-page: 2326
  year: 1987
  ident: 10.7717/peerj.12752/ref-38
  article-title: Groucho running
  publication-title: Journal of Applied Physiology
  doi: 10.1152/jappl.1987.62.6.2326
– volume: 113
  start-page: 110118
  year: 2020
  ident: 10.7717/peerj.12752/ref-31
  article-title: A comparison of attachment methods of skin mounted inertial measurement units on tibial accelerations
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2020.110118
– volume: 97
  start-page: 109416
  year: 2019
  ident: 10.7717/peerj.12752/ref-54
  article-title: Influence of IMU position and orientation placement errors on ground reaction force estimation
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.biomech.2019.109416
– volume: 20
  start-page: 756
  issue: 6
  year: 2019
  ident: 10.7717/peerj.12752/ref-6
  article-title: Step length and grade effects on energy absorption and impact attenuation in running
  publication-title: European Journal of Sport Science
  doi: 10.1080/17461391.2019.1664639
– volume: 7
  start-page: e48182
  year: 2012
  ident: 10.7717/peerj.12752/ref-41
  article-title: Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0048182
– volume: 17
  start-page: 2276
  year: 2020
  ident: 10.7717/peerj.12752/ref-30
  article-title: Understanding different types of recreational runners and how they use running-related technology
  publication-title: International Journal of Environmental Research and Public Health
  doi: 10.3390/ijerph17072276
– volume: 585
  start-page: 357
  year: 2020
  ident: 10.7717/peerj.12752/ref-26
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 26
  start-page: 197
  year: 2016
  ident: 10.7717/peerj.12752/ref-64
  article-title: In-field gait retraining and mobile monitoring to address running biomechanics associated with tibial stress fracture
  publication-title: Scandinavian Journal of Medicine & Science in Sports
  doi: 10.1111/sms.12413
– volume: 18
  start-page: 2564
  year: 2018
  ident: 10.7717/peerj.12752/ref-5
  article-title: Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review
  publication-title: Sensors
  doi: 10.3390/s18082564
– volume: 78
  start-page: 82
  year: 2020
  ident: 10.7717/peerj.12752/ref-45
  article-title: A neural network method to predict task- and step-specific ground reaction force magnitudes from trunk accelerations during running activities
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2020.02.002
– volume: 30
  start-page: 1632
  year: 2020
  ident: 10.7717/peerj.12752/ref-55
  article-title: Biomechanics of graded running: part I - Stride parameters, external forces, muscle activations
  publication-title: Scandinavian Journal of Medicine & Science in Sports
  doi: 10.1111/sms.13708
– volume: 214
  start-page: 2089
  year: 2011
  ident: 10.7717/peerj.12752/ref-53
  article-title: Energetically optimal stride frequency in running: the effects of incline and decline
  publication-title: The Journal of Experimental Biology
  doi: 10.1242/jeb.053157
– volume: 120
  start-page: 2147
  year: 2020
  ident: 10.7717/peerj.12752/ref-60
  article-title: Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations
  publication-title: European Journal of Applied Physiology
  doi: 10.1007/s00421-020-04437-y
– volume: 9
  start-page: 218
  year: 2018
  ident: 10.7717/peerj.12752/ref-65
  article-title: Estimation of vertical ground reaction forces and sagittal knee kinematics during running using three inertial sensors
  publication-title: Frontiers in Physiology
  doi: 10.3389/fphys.2018.00218
– volume: 49
  start-page: 1095
  year: 2019
  ident: 10.7717/peerj.12752/ref-9
  article-title: Biomechanical risk factors associated with running-related injuries: a systematic review
  publication-title: Sports Medicine
  doi: 10.1007/s40279-019-01110-z
– year: 2009
  ident: 10.7717/peerj.12752/ref-61
  article-title: ggplot2: elegant graphics for data analysis
  doi: 10.1007/978-0-387-98141-3
– volume: 136
  start-page: 217
  year: 1989
  ident: 10.7717/peerj.12752/ref-42
  article-title: Ground reaction forces at different speeds of human walking and running
  publication-title: Acta Physiological ScandInavica
  doi: 10.1111/j.1748-1716.1989.tb08655.x
– volume: 19
  start-page: 5227
  year: 2019
  ident: 10.7717/peerj.12752/ref-24
  article-title: Estimating biomechanical time-series with wearable sensors: a systematic review of machine learning techniques
  publication-title: Sensors
  doi: 10.3390/s19235227
– volume: 38
  start-page: 445
  year: 2005
  ident: 10.7717/peerj.12752/ref-23
  article-title: Ground reaction forces during downhill and uphill running
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2004.04.023
– volume: 9
  start-page: e11199
  year: 2021
  ident: 10.7717/peerj.12752/ref-3
  article-title: Sacral acceleration can predict whole-body kinetics and stride kinematics across running speeds
  publication-title: PeerJ
  doi: 10.7717/peerj.11199
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.7717/peerj.12752/ref-37
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: Journal of Machine Learning Research
– year: 2020
  ident: 10.7717/peerj.12752/ref-43
  article-title: pandas-dev/pandas: Pandas. Zenodo
– volume: 19
  start-page: 2974
  year: 2019
  ident: 10.7717/peerj.12752/ref-11
  article-title: Single inertial sensor-based neural networks to estimate COM-COP inclination angle during walking
  publication-title: Sensors
  doi: 10.3390/s19132974
– volume: 34
  start-page: 998
  issue: 6
  year: 2002
  ident: 10.7717/peerj.12752/ref-16
  article-title: Impacts and kinematic adjustments during an exhaustive run
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1097/00005768-200206000-00015
– volume: 2
  start-page: 1
  year: 2019
  ident: 10.7717/peerj.12752/ref-10
  article-title: Detecting the impact of subject characteristics on machine learning-based diagnostic applications
  publication-title: Npj Digital Medicine
  doi: 10.1038/s41746-019-0178-x
– volume: 218
  start-page: 711
  year: 2015
  ident: 10.7717/peerj.12752/ref-58
  article-title: Biomechanics and energetics of running on uneven terrain
  publication-title: Journal of Experimental Biology
  doi: 10.1242/jeb.106518
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.7717/peerj.12752/ref-28
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 4
  start-page: 1910
  year: 2019
  ident: 10.7717/peerj.12752/ref-2
  article-title: Dryft: a python and MATLAB package to correct drifting ground reaction force signals during treadmill running
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01910
– year: 2017
  ident: 10.7717/peerj.12752/ref-35
  article-title: Adam: a method for stochastic optimization
– volume-title: Interpretable machine learning: a guide for making black box models explainable
  year: 2019
  ident: 10.7717/peerj.12752/ref-39
  article-title: Permutation feature importance
– year: 2019
  ident: 10.7717/peerj.12752/ref-62
  article-title: stringr: simple, consistent wrappers for common string operations
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.7717/peerj.12752/ref-57
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 81
  start-page: 1
  year: 2018
  ident: 10.7717/peerj.12752/ref-25
  article-title: Machine learning in human movement biomechanics: best practices, common pitfalls, and new opportunities
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2018.09.009
– volume: 8
  start-page: 33
  year: 2020
  ident: 10.7717/peerj.12752/ref-15
  article-title: Tibial acceleration-based prediction of maximal vertical loading rate during overground running: a machine learning approach
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2020.00033
– volume: 8
  start-page: 604
  year: 2020
  ident: 10.7717/peerj.12752/ref-18
  article-title: CNN-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data
  publication-title: Frontiers in Bioengineering and Biotechnology
  doi: 10.3389/fbioe.2020.00604
– volume: 434
  start-page: 678
  year: 1997
  ident: 10.7717/peerj.12752/ref-8
  article-title: The resonant step frequency in human running
  publication-title: Pflügers Archiv
  doi: 10.1007/s004240050451
– volume: 6
  start-page: gix019
  issue: 5
  year: 2017
  ident: 10.7717/peerj.12752/ref-51
  article-title: The need to approximate the use-case in clinical machine learning
  publication-title: GigaScience
  doi: 10.1093/gigascience/gix019
– volume: 41
  start-page: 2750
  year: 2008
  ident: 10.7717/peerj.12752/ref-48
  article-title: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2008.06.001
– volume: 86
  start-page: 29
  year: 2020
  ident: 10.7717/peerj.12752/ref-40
  article-title: Prediction of ground reaction force and joint moments based on optical motion capture data during gait
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2020.10.001
– volume: 265
  start-page: 989
  year: 1998
  ident: 10.7717/peerj.12752/ref-19
  article-title: Running in the real world: adjusting leg stiffness for different surfaces
  publication-title: Proceedings of the Royal Society of London. Series B: Biological Sciences
  doi: 10.1098/rspb.1998.0388
– volume: 45
  start-page: 738
  year: 2015
  ident: 10.7717/peerj.12752/ref-4
  article-title: Biomechanical differences of foot-strike patterns during running: a systematic review with meta-analysis
  publication-title: Journal of Orthopaedic & Sports Physical Therapy
  doi: 10.2519/jospt.2015.6019
– volume: 16
  start-page: 152
  year: 2017
  ident: 10.7717/peerj.12752/ref-36
  article-title: Ground reaction forces during steeplechase hurdling and waterjumps
  publication-title: Sports Biomechanics
  doi: 10.1080/14763141.2016.1212917
– volume: 1
  start-page: 110323
  year: 2021
  ident: 10.7717/peerj.12752/ref-14
  article-title: Low-pass filter cutoff frequency affects sacral-mounted inertial measurement unit estimations of peak vertical ground reaction force and contact time during treadmill running
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2021.110323
– volume: 120
  start-page: 370
  year: 2016
  ident: 10.7717/peerj.12752/ref-22
  article-title: Energetics of vertical kilometer foot races; is steeper cheaper?
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00546.2015
– year: 2020
  ident: 10.7717/peerj.12752/ref-46
  article-title: R: a language and environment for statistical computing
– year: 2016
  ident: 10.7717/peerj.12752/ref-1
  article-title: TensorFlow: large-Scale machine learning on heterogeneous distributed systems
– volume: 68
  start-page: 289
  year: 2021
  ident: 10.7717/peerj.12752/ref-32
  article-title: Multidimensional ground reaction forces and moments from wearable sensor accelerations via deep learning
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2020.3006158
– year: 2020
  ident: 10.7717/peerj.12752/ref-63
  article-title: dplyr: a grammar of data manipulation
– volume: 73
  start-page: 201
  year: 2018
  ident: 10.7717/peerj.12752/ref-34
  article-title: Accelerometer-based prediction of running injury in National Collegiate Athletic Association track athletes
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2018.04.001
– volume: 19
  start-page: 1480
  year: 2019
  ident: 10.7717/peerj.12752/ref-13
  article-title: Continuous analysis of running mechanics by means of an integrated INS/GPS device
  publication-title: Sensors
  doi: 10.3390/s19061480
– volume: 31
  start-page: 1
  year: 2010
  ident: 10.7717/peerj.12752/ref-44
  article-title: Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review
  publication-title: Gait & Posture
  doi: 10.1016/j.gaitpost.2009.09.004
– volume: 47
  start-page: 1588
  year: 2014
  ident: 10.7717/peerj.12752/ref-21
  article-title: A simple field method to identify foot strike pattern during running
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2014.03.002
– volume: 35
  start-page: 401
  year: 2019
  ident: 10.7717/peerj.12752/ref-12
  article-title: New considerations for wearable technology data: changes in running biomechanics during a marathon
  publication-title: Journal of Applied Biomechanics
  doi: 10.1123/jab.2018-0453
– year: 2020
  ident: 10.7717/peerj.12752/ref-29
  article-title: 2020 Trail running infographics
– year: 2016
  ident: 10.7717/peerj.12752/ref-59
  article-title: Learning natural language inference with LSTM
  doi: 10.18653/v1/N16-1170
– volume: 30
  start-page: 1470
  year: 2016
  ident: 10.7717/peerj.12752/ref-52
  article-title: The validity and reliability of global positioning systems in team sport: a brief review
  publication-title: The Journal of Strength & Conditioning Research
  doi: 10.1519/JSC.0000000000001221
– volume: 7
  start-page: 303
  year: 1991
  ident: 10.7717/peerj.12752/ref-27
  article-title: Relationships between ground reaction force and tibial bone acceleration parameters
  publication-title: International Journal of Sport Biomechanics
  doi: 10.1123/ijsb.7.3.303
– volume: 30
  start-page: 1642
  year: 2020
  ident: 10.7717/peerj.12752/ref-33
  article-title: Biomechanics of graded running: part II—Joint kinematics and kinetics
  publication-title: Scandinavian Journal of Medicine & Science in Sports
  doi: 10.1111/sms.13735
– volume: 12
  start-page: 1106
  year: 2020
  ident: 10.7717/peerj.12752/ref-56
  article-title: Impact of body mass index on biomechanics of recreational runners
  publication-title: PM & R
  doi: 10.1002/pmrj.12335
– volume: 49
  start-page: 3362
  year: 2016
  ident: 10.7717/peerj.12752/ref-47
  article-title: Continuous three dimensional analysis of running mechanics during a marathon by means of inertial magnetic measurement units to objectify changes in running mechanics
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2016.08.032
– volume: 14
  start-page: 645
  year: 2010
  ident: 10.7717/peerj.12752/ref-20
  article-title: Preprocessing techniques for context recognition from accelerometer data
  publication-title: Personal and Ubiquitous Computing
  doi: 10.1007/s00779-010-0293-9
– volume: 51
  start-page: 2073
  year: 2019
  ident: 10.7717/peerj.12752/ref-49
  article-title: Relationship of foot strike pattern and landing impacts during a marathon
  publication-title: Medicine and Science in Sports and Exercise
  doi: 10.1249/MSS.0000000000002032
– volume: 22
  start-page: 1217
  year: 1989
  ident: 10.7717/peerj.12752/ref-7
  article-title: The spring-mass model for running and hopping
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(89)90224-8
– volume: 76
  start-page: 1
  year: 2018
  ident: 10.7717/peerj.12752/ref-66
  article-title: Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures
  publication-title: Journal of Biomechanics
  doi: 10.1016/j.jbiomech.2018.05.017
– year: 2019
  ident: 10.7717/peerj.12752/ref-50
  article-title: 2019 U.S Running Trends Report
SSID ssj0000826083
Score 2.463457
Snippet Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory environment. Previous...
Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a laboratory...
View Twitter Abstract Background Ground reaction forces (GRFs) are important for understanding human movement, but their measurement is generally limited to a...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e12752
SubjectTerms Accelerometers
Accelerometry
Accuracy
Biomechanics
Computational linguistics
Data Mining and Machine Learning
Exercise Test
Fitness equipment
GRF
Humans
IMU
Kinematics
Laboratories
Language processing
LSTM
Machine learning
Movement
Natural language interfaces
Neural networks
Neural Networks, Computer
RNN
Running
Sacrum
Somatotropin releasing hormone
Variables
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yiPgi_nb11AgHglCubZqm9e0UD1887kHh3kI6SXFBektv17_BP9tvkm7ZouCLb7ub6a_MZPLNduYbIU7KDjjedEWmqrLLKnJt1uadz7rcOVVXPdVNH5tNmIuL5uqqvTxo9cU5YYkeOE3cKZW9LoIqSlcjlClyB0jgglPeVRRUCOx9c9MeBFPRBwM1A1ykgjyDkOV0E8IIv1AaXS62oMjU_6c_PtiQlsmSB7vP-X1xb4KN8izd7gNxKwwPxZ0v04vxR-LX5cifOYdZcvb5etghpJdcszF4CWAYyxckECr8guSaEumIsOUwWwETbMpUryh3G349IB2O8gjQ45dxF_savZcOZ6JE6CSZCBN3NKQ0crk34cfi2_mnrx8_Z1OThYy0UdusYAoiX_ddW0CZSiP8QpTifFCOFywBMuS9yknX1DRVQ0VfmI6o8Tk1LcbUE3E0XA_hmZDktQc6qnxf-opZbyg0XtU4u2r7XruVeLefd0sTAzk3wvhhEYmwkmxUko1KWomTWXiTiDf-LvaBFTiLMFt2_AE2ZCcbsv-yoZV4zeq3qfR0XvP2zOTYvLVucJm3UYJXPW6Z3FS8gAdn_qyF5PFCEquVlsN7E7OTt7ixiGLryigg05V4Mw_zkZwBNwQYjOXGAQbhZQGZp8ki54dWGjgEcfxKmIWtLmZlOTKsv0cuce7ICMz3_H9M4wtxt-TiEP6DqjoWR9txF16K2_Rzu74ZX8UF-hvcm0YG
  priority: 102
  providerName: Directory of Open Access Journals
Title Predicting continuous ground reaction forces from accelerometers during uphill and downhill running: a recurrent neural network solution
URI https://www.ncbi.nlm.nih.gov/pubmed/35036107
https://www.proquest.com/docview/2616473441
https://www.proquest.com/docview/2620754811
https://pubmed.ncbi.nlm.nih.gov/PMC8740512
https://doaj.org/article/c2f51e312a654910a951aea3da4ce3ee
Volume 10
WOSCitedRecordID wos000741712900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M7P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: BENPR
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: PIMPY
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2167-8359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000826083
  issn: 2167-8359
  databaseCode: M2P
  dateStart: 20130212
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYitBe-M0ojGKkSUhI0eI4iRNe0IY2wUOrCIFUnizn7EAllJa04W_gz-bOScMiEC-8RG19SZz6fP7OufuOsdOoRByvShHIOCqDGEwe5GFpgzI0RqZxBWlW-WITarHIlsu86Dfctn1Y5d4mekNt10B75GeI9NNYSVy932y-B1Q1it6u9iU0DtgEkY2gkK55VAx7LLi8pQgxurQ8hY7L2ca5Bq1DpJJotBB5vv4_rfK1ZWkcMnltDbq687-9v8tu9-iTn3fqco_dcPV9dmvev19_wH4WDX2mUGhOQeyrul23W06pH7XliC99FgRHoIvmhVNqCjcAuHIR6QHxdPIu7ZG3G3rLwA2eZdHP91-a1pdHes0NXgk6XihOfJrYo7qLRuf7mfCQfbq6_Pj2XdDXagggUXIXCGIysmlV5gJ1QiboxaGzY6yThuY9IPIIKxlCkkKWxRmISqgSILMhZDm2yUfssF7X7jHjYBOLICu2VWRjIs8Bl1mZ4tVlXlWJmbJX-4HT0BOZUz2NbxodGhpl7UdZ-1GestNBeNPxd_xd7II0YBAh0m3_w7r5ovs5rCGqEuGkiEyKXrUIDaJT44y0JgYnnZuy56Q_ustgHUyHPlchYoAkyfA2L70EGQ_sMpg-BwIfnGi4RpInI0mc9DBu3uuZ7o3OVv9Wsil7MTTTmRRIVztUGE31BxR6qQJljjuVHh5aJghnRKimTI2UffSvjFvq1VdPSU6FHRE6Pvl3t56yo4iyR2gHKz5hh7umdc_YTfixW22bGTtQy2zGJheXi-LDzG-OzPx8pqPC46R4Py8-_wKZYllz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKQcCF92OhUCMVISFFTfyIEySEyqNq1Xa1hyL15jq2Ayuh7JLdpeIf8Gv4jcw4DxqBuPXAbXc9cRzveOazM_MNIVusAByviiTighWRsCaP8rhwUREbw1NR2jQrQ7EJNR5nJyf5ZI387HJhMKyys4nBULuZxTPybUD6qVAcvPeb-dcIq0bh29WuhEajFgf--xls2Rav99_D__ucsd0Px-_2oraqQGSl4ssoQc4dl5ZFnsDouYT9BsBy4zw3qKEWfGRc8tjK1GaZyGxSJqqwNnOxzXJo49DvJXJZILMYhgqySX-mA-40BUjTpAEq2Chtz72vwRoxJdnA8YX6AH96gXNucBiiec7n7d7832brFrnRomu60yyH22TNV3fI1aM2fuAu-TGp8TOGelMM0p9Wq9lqQTG1pXIU8HPI8qAA5MF8Uky9ocZa8MxI6oA8pLRJ66SrOb5FoQaucrOzKnypV6H80ytqoCfb8F5R5AuFEVVNtD3tVvo98vFC5uE-Wa9mlX9IqHXSAYgUrmROIDmQ9ZnjKfTO87KUZkRedoqibUvUjvVCvmjYsKFW6aBVOmjViGz1wvOGn-TvYm9R43oRJBUPP8zqT7q1UdqyUiaeJ8ykUgCMNIC-jTfcGWE9935ENlFfdZOh25tGvaNiwDhSZnCbF0ECjSMM2Zo2xwMeHGnGBpIbA0kwanbY3Om1bo3qQv9W6hF51jfjlRgoWHlQGI31FRTswhOQedAsof6huQS4lsRqRNRgcQ1mZdhSTT8HynUsXAnQ-NG_h7VJru0dHx3qw_3xwWNynWGmDJ7WiQ2yvqxX_gm5Yr8tp4v6abAblJxe9NL7BVRwrjw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGhyZeuF8KgxlpCAkpamI7cYKE0GBUVGNVH0AaT55jO1AJpSVtmfgH_CZ-Hec4FxaBeNsDb219ktju8Xc-O-dCyD7LgcfLPAq4YHkgjM6CLMxtkIda80QUJkkLX2xCTqfpyUk22yI_21gYdKtsMdEDtV0YPCMfAdNPhORgvUdF4xYxOxy_XH4NsIIUvmlty2nUKnLkvp_B9m31YnII__UTxsZv3r9-GzQVBgITS74OIsy_Y5MizyIYCY9h7wEUXVvHNWqrAXsZFjw0cWLSVKQmKiKZG5Pa0KQZtHG47yWyDZRcsAHZnk2OZx-7Ex4wrgkQnDooUMK2abR0rgJsYjJmPTPoqwX8aRPOGcW-w-Y5Czi-9j_P3XVyteHd9KBeKDfIlitvkp3jxrPgFvkxq_AzOoFTdN-fl5vFZkUx6KW0FJi1j_-gQPEBWCkG5VBtDNhsTPeAGUppHfBJN0t8v0I1XGUXZ6X_Um18YajnVMOdTJ0Ri2ImUehRWfvh0xYDbpMPFzIPd8igXJTuHqHGxhbopbAFswLTBhmXWp7A3XlWFLEekmet0ijTpHDHSiJfFGzlUMOU1zDlNWxI9jvhZZ255O9ir1D7OhFMN-5_WFSfVINeyrAijhyPmE5iAQRTAy_XTnOrhXHcuSHZQ91VdexuB5rqQIbAfuI4hcc89RIIm9Blo5voDxg4JiDrSe72JAHuTL-51XHVwO1K_VbwIXncNeOV6EJYOlAYhZUXJOzPI5C5Wy-nbtA8BiIXhXJIZG-h9Wal31LOP_tk7FjSEkjz_X93a4_swIpT7ybTowfkCsMQGjzGE7tksK427iG5bL6t56vqUQMilJxe9Nr7BQdouIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+continuous+ground+reaction+forces+from+accelerometers+during+uphill+and+downhill+running%3A+a+recurrent+neural+network+solution&rft.jtitle=PeerJ+%28San+Francisco%2C+CA%29&rft.au=Alcantara%2C+Ryan+S&rft.au=Edwards%2C+W+Brent&rft.au=Millet%2C+Guillaume+Y&rft.au=Grabowski%2C+Alena+M&rft.date=2022-01-04&rft.issn=2167-8359&rft.eissn=2167-8359&rft.volume=10&rft.spage=e12752&rft_id=info:doi/10.7717%2Fpeerj.12752&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2167-8359&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2167-8359&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2167-8359&client=summon