Fast Dating Using Least-Squares Criteria and Algorithms
Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential...
Uložené v:
| Vydané v: | Systematic biology Ročník 65; číslo 1; s. 82 - 97 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Oxford University Press
01.01.2016
|
| Predmet: | |
| ISSN: | 1063-5157, 1076-836X, 1076-836X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from
http://www.atgc-montpellier.fr/LSD/
, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.968t3
. |
|---|---|
| AbstractList | Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/ , along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3 . Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3.Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3. |
| Author | To, Thu-Hien Lycett, Samantha Jung, Matthieu Gascuel, Olivier |
| Author_xml | – sequence: 1 givenname: Thu-Hien surname: To fullname: To, Thu-Hien organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France – sequence: 2 givenname: Matthieu surname: Jung fullname: Jung, Matthieu organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France – sequence: 3 givenname: Samantha surname: Lycett fullname: Lycett, Samantha organization: 3 Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK – sequence: 4 givenname: Olivier surname: Gascuel fullname: Gascuel, Olivier email: gascuel@lirmm.fr organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26424727$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkEtLw0AUhQep2Icu3UqWbqLznsyyVKtCwYUW3A0zmZsayauZROi_NyVVN_fcx-HA_eZoUtUVIHRN8B3Bmt2HQ3B5Pcg3lskZmhGsZJww-TE59pLFggg1RfMQvjAmRApygaZUcsoVVTOk1jZ00YPt8moXbcOxbmBYxW_73rYQolWbd9DmNrKVj5bFrh7mzzJcovPMFgGuTrpA2_Xj--o53rw-vayWmzgVinaxd4p5sNjj1AtOXeapUF5qyXSmlcMi0dwpKhzOhBUEsox7wMBSq20iCGcLdDvmNm297yF0psxDCkVhK6j7YIjiWmuRcDVYb07W3pXgTdPmpW0P5vfZ_6y6b_6uBJsjRzNyNCNH9gNb32bG |
| CitedBy_id | crossref_primary_10_1111_nph_20076 crossref_primary_10_1080_22221751_2023_2253340 crossref_primary_10_1093_molbev_msae109 crossref_primary_10_3201_eid2907_230165 crossref_primary_10_1093_ve_vex032 crossref_primary_10_1038_s41564_019_0501_y crossref_primary_10_3390_pathogens11080856 crossref_primary_10_1073_pnas_2204336119 crossref_primary_10_1111_ppa_13824 crossref_primary_10_1016_j_ympev_2025_108347 crossref_primary_10_1038_s44259_024_00027_6 crossref_primary_10_1016_j_micinf_2024_105405 crossref_primary_10_3390_v12121438 crossref_primary_10_1093_ve_veaf037 crossref_primary_10_3897_evolsyst_7_102360 crossref_primary_10_1093_sysbio_syab064 crossref_primary_10_1093_infdis_jiy044 crossref_primary_10_1111_jbi_13214 crossref_primary_10_1093_ve_vex042 crossref_primary_10_1186_s13100_024_00332_x crossref_primary_10_1002_tax_13341 crossref_primary_10_1371_journal_ppat_1011538 crossref_primary_10_1093_ve_vey016 crossref_primary_10_1126_science_aad5901 crossref_primary_10_1128_JCM_00480_18 crossref_primary_10_1038_s41477_024_01729_5 crossref_primary_10_1093_ve_vex044 crossref_primary_10_1038_s41426_017_0009_6 crossref_primary_10_1038_s41576_019_0119_1 crossref_primary_10_1093_molbev_msad156 crossref_primary_10_1128_JCM_01581_21 crossref_primary_10_3390_v13040644 crossref_primary_10_1038_s41467_024_54255_5 crossref_primary_10_1099_jmm_0_001827 crossref_primary_10_1093_emph_eoac026 crossref_primary_10_3201_eid2612_202969 crossref_primary_10_1186_s12862_020_01609_4 crossref_primary_10_12688_f1000research_28318_1 crossref_primary_10_1093_jtm_taab149 crossref_primary_10_12688_f1000research_28318_2 crossref_primary_10_1016_j_cub_2022_11_014 crossref_primary_10_1038_s41588_018_0150_8 crossref_primary_10_1016_j_xgen_2025_100977 crossref_primary_10_1134_S2079086422050024 crossref_primary_10_1038_ng_3847 crossref_primary_10_1111_evo_14546 crossref_primary_10_1038_s41467_024_53817_x crossref_primary_10_3390_microorganisms13040912 crossref_primary_10_1128_JVI_01267_21 crossref_primary_10_1093_molbev_msae232 crossref_primary_10_1371_journal_ppat_1008357 crossref_primary_10_1038_s41467_024_52811_7 crossref_primary_10_1128_spectrum_03829_23 crossref_primary_10_1038_nrg_2015_8 crossref_primary_10_1371_journal_pone_0197433 crossref_primary_10_1002_jmv_27441 crossref_primary_10_1002_ajpa_70082 crossref_primary_10_1038_s41467_021_21749_5 crossref_primary_10_1071_IS25029 crossref_primary_10_1016_j_ygeno_2021_11_001 crossref_primary_10_1016_j_ympev_2022_107652 crossref_primary_10_7554_eLife_82538 crossref_primary_10_1016_j_coviro_2018_08_009 crossref_primary_10_3390_v13112161 crossref_primary_10_1093_ve_vew029 crossref_primary_10_1093_molbev_msaa222 crossref_primary_10_1089_aid_2020_0031 crossref_primary_10_1093_sysbio_syae021 crossref_primary_10_1093_sysbio_syad059 crossref_primary_10_1371_journal_pone_0279597 crossref_primary_10_1038_s41467_024_52343_0 crossref_primary_10_1093_sysbio_syae020 crossref_primary_10_1093_molbev_msaf001 crossref_primary_10_24072_pcjournal_556 crossref_primary_10_3390_v15030684 crossref_primary_10_1097_QAD_0000000000003110 crossref_primary_10_3390_v14050889 crossref_primary_10_1186_s12915_024_01837_w crossref_primary_10_1038_s41467_022_31511_0 crossref_primary_10_1099_jgv_0_001308 crossref_primary_10_1093_molbev_msaf107 crossref_primary_10_1371_journal_ppat_1009786 crossref_primary_10_1371_journal_ppat_1010893 crossref_primary_10_1093_molbev_msw026 crossref_primary_10_1111_ecog_07786 crossref_primary_10_1093_sysbio_syad040 crossref_primary_10_1002_ajb2_16370 crossref_primary_10_1016_j_meegid_2016_07_008 crossref_primary_10_1038_s41467_018_05114_7 crossref_primary_10_1073_pnas_2502814122 crossref_primary_10_3389_fmicb_2021_655567 crossref_primary_10_1093_molbev_msaf111 crossref_primary_10_1016_j_lana_2022_100369 crossref_primary_10_1186_s12864_022_08572_y crossref_primary_10_3390_v12020132 crossref_primary_10_1038_s41467_020_20235_8 crossref_primary_10_1016_j_meegid_2018_11_004 crossref_primary_10_1093_ve_vex002 crossref_primary_10_1007_s00705_019_04430_7 crossref_primary_10_1073_pnas_1713314115 crossref_primary_10_1038_s41598_022_05085_2 crossref_primary_10_1093_sysbio_syaa009 crossref_primary_10_1073_pnas_2121335119 crossref_primary_10_1099_mgen_0_000433 crossref_primary_10_3389_fvets_2020_00176 crossref_primary_10_3390_v11080720 crossref_primary_10_3897_evolsyst_9_135431 crossref_primary_10_1186_s13756_023_01360_7 crossref_primary_10_1016_j_gloplacha_2022_103757 crossref_primary_10_1126_sciadv_adt0973 crossref_primary_10_1101_gr_277966_123 crossref_primary_10_1016_j_meegid_2019_03_016 crossref_primary_10_1093_sysbio_syae034 crossref_primary_10_1093_sysbio_syaf003 crossref_primary_10_3201_eid2612_2969 crossref_primary_10_1093_sysbio_syae038 crossref_primary_10_3390_v15091933 crossref_primary_10_1093_molbev_msw124 crossref_primary_10_3389_fmicb_2022_715637 crossref_primary_10_1093_molbev_msw247 crossref_primary_10_1038_s41467_022_29402_5 crossref_primary_10_1186_s12862_018_1192_3 crossref_primary_10_1038_s41597_025_05317_w crossref_primary_10_1111_nph_19488 crossref_primary_10_1073_pnas_2204993119 crossref_primary_10_3390_v17070965 crossref_primary_10_1094_PHYTO_09_20_0412_RVW crossref_primary_10_1089_aid_2018_0236 crossref_primary_10_1093_ofid_ofaf334 crossref_primary_10_1038_s41467_023_39847_x crossref_primary_10_1126_science_adn7179 crossref_primary_10_1093_molbev_msw217 crossref_primary_10_1186_s12879_018_3247_x crossref_primary_10_3390_v15020293 crossref_primary_10_1016_j_onehlt_2025_101036 crossref_primary_10_1089_aid_2017_0061 crossref_primary_10_1038_s41598_017_03820_8 crossref_primary_10_1094_PDIS_09_17_1414_RE crossref_primary_10_1038_s41588_025_02183_5 crossref_primary_10_3390_v15010108 crossref_primary_10_3389_fmicb_2021_748611 crossref_primary_10_1080_24750263_2023_2283517 crossref_primary_10_1093_ve_veab073 crossref_primary_10_3390_v14071411 crossref_primary_10_1111_syen_12588 crossref_primary_10_1128_JVI_01212_16 crossref_primary_10_3389_fmicb_2017_02501 crossref_primary_10_3389_fpubh_2022_994949 crossref_primary_10_1038_s41467_019_13443_4 crossref_primary_10_7554_eLife_91745_3 crossref_primary_10_1016_j_coviro_2021_09_009 crossref_primary_10_1038_s41467_020_19198_7 crossref_primary_10_1371_journal_pcbi_1012461 crossref_primary_10_1093_emph_eoaa005 crossref_primary_10_1016_j_cub_2018_05_058 crossref_primary_10_1099_mgen_0_001050 crossref_primary_10_1111_2041_210X_13977 crossref_primary_10_1099_mgen_0_001170 crossref_primary_10_1126_science_aao2136 crossref_primary_10_1038_s41579_025_01202_w crossref_primary_10_3390_v10090476 crossref_primary_10_1093_ve_vez037 crossref_primary_10_1038_ismej_2016_198 crossref_primary_10_1128_jvi_00684_25 crossref_primary_10_1093_jeb_voae091 crossref_primary_10_1111_1755_0998_13350 crossref_primary_10_1093_evlett_qrad026 crossref_primary_10_1093_sysbio_syaf047 crossref_primary_10_3390_v13020306 crossref_primary_10_1093_ve_veab093 crossref_primary_10_1016_j_lanwpc_2021_100163 crossref_primary_10_3390_genes12010116 crossref_primary_10_7554_eLife_91745 crossref_primary_10_3390_v14061165 crossref_primary_10_1002_ajpa_24666 crossref_primary_10_1016_j_ympev_2025_108286 crossref_primary_10_7554_eLife_73896 crossref_primary_10_1016_j_ympev_2024_108022 crossref_primary_10_1093_molbev_msaa282 crossref_primary_10_1128_JVI_02241_16 crossref_primary_10_1016_j_scitotenv_2024_173027 crossref_primary_10_1093_sysbio_syac008 crossref_primary_10_1371_journal_ppat_1008067 crossref_primary_10_1016_j_micpath_2024_106895 crossref_primary_10_1038_s41467_018_07370_z crossref_primary_10_3389_fmicb_2020_00468 crossref_primary_10_1016_j_fm_2021_103915 crossref_primary_10_3897_zse_100_116350 crossref_primary_10_1371_journal_pcbi_1012995 crossref_primary_10_3390_v13050836 crossref_primary_10_1093_g3journal_jkad232 crossref_primary_10_1093_molbev_msaa193 crossref_primary_10_1038_s41598_025_95893_z crossref_primary_10_1016_j_lanwpc_2023_100780 crossref_primary_10_1016_j_ympev_2021_107297 crossref_primary_10_1371_journal_ppat_1008179 crossref_primary_10_3389_fmicb_2020_601839 crossref_primary_10_1534_genetics_118_301556 crossref_primary_10_3390_v15061338 crossref_primary_10_1111_mec_17205 crossref_primary_10_1093_ve_vez022 crossref_primary_10_1128_spectrum_02134_22 crossref_primary_10_1186_s13567_019_0692_5 crossref_primary_10_1038_s41467_024_50484_w crossref_primary_10_1017_S0950268824000761 crossref_primary_10_3389_fmicb_2021_651124 crossref_primary_10_1093_botlinnean_boae092 crossref_primary_10_1126_scitranslmed_abn7979 crossref_primary_10_1128_msystems_00427_25 crossref_primary_10_1093_molbev_msz131 crossref_primary_10_5802_crbiol_29 crossref_primary_10_1016_j_ympev_2023_107735 crossref_primary_10_1016_j_ympev_2023_107855 crossref_primary_10_1038_s44298_024_00019_3 crossref_primary_10_1038_s42003_022_03527_1 crossref_primary_10_3390_pathogens14080797 crossref_primary_10_1093_ve_veac033 crossref_primary_10_1038_s41467_025_60222_5 crossref_primary_10_3390_v15061244 crossref_primary_10_3390_v13091790 crossref_primary_10_1093_gbe_evaf119 crossref_primary_10_1093_ve_veac029 crossref_primary_10_1111_jbi_13126 crossref_primary_10_1126_science_abn8153 crossref_primary_10_1093_ve_veaa089 crossref_primary_10_1128_spectrum_02240_21 crossref_primary_10_1093_gigascience_giae053 crossref_primary_10_1093_nar_gky783 crossref_primary_10_1038_s42003_018_0025_7 crossref_primary_10_1093_molbev_msy133 crossref_primary_10_1111_imb_12818 crossref_primary_10_2196_19170 crossref_primary_10_1038_s41467_022_28420_7 crossref_primary_10_1128_AAC_00243_19 crossref_primary_10_1017_S0950268822000437 crossref_primary_10_1016_j_ijid_2024_107077 crossref_primary_10_1042_BST20180186 crossref_primary_10_1038_s41467_020_19185_y crossref_primary_10_1111_tbed_13728 crossref_primary_10_7554_eLife_45562 crossref_primary_10_1186_s13073_022_01045_7 crossref_primary_10_1002_ajp_70043 crossref_primary_10_1093_ve_veab055 crossref_primary_10_3390_v13091689 crossref_primary_10_1186_s12862_018_1210_5 crossref_primary_10_1080_01621459_2020_1799812 crossref_primary_10_1093_gbe_evaf129 crossref_primary_10_1093_ofid_ofab665 crossref_primary_10_3390_v15010243 crossref_primary_10_7554_eLife_47509 crossref_primary_10_1038_s41467_024_47929_7 crossref_primary_10_1101_gr_216606_116 crossref_primary_10_1111_jvh_13525 crossref_primary_10_1111_mec_17540 crossref_primary_10_1016_j_ympev_2023_107759 crossref_primary_10_1111_jbi_15097 crossref_primary_10_1093_ve_vey039 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2015 The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. |
| Copyright_xml | – notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2015 – notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. |
| DBID | TOX CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1093/sysbio/syv068 |
| DatabaseName | Oxford Journals Open Access Collection Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Zoology Biology Ecology |
| EISSN | 1076-836X |
| EndPage | 97 |
| ExternalDocumentID | 26424727 10.1093/sysbio/syv068 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .2P .I3 0R~ 123 18M 1TH 29Q 2FS 36B 4.4 48X 5VS 5WD 70D AAHBH AAHKG AAIMJ AAISJ AAJKP AAJQQ AAKGQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABMNT ABNKS ABPLY ABPPZ ABPQP ABPTD ABQLI ABSQW ABTLG ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACCCW ACGEJ ACGFO ACGFS ACGOD ACHIC ACIPB ACNCT ACPRK ACSTJ ACUFI ACUHS ACUTJ ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADXPE ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFAZZ AFFZL AFGWE AFIYH AFKVX AFOFC AFYAG AGINJ AGKEF AGQXC AGSYK AGUYK AHMBA AHXOZ AHXPO AIAGR AIJHB AILXY AJEEA AJNCP AJWEG AKHUL AKWXX ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BENPR BEYMZ BHONS BQDIO BSWAC C45 CBGCD CDBKE COF CS3 CUYZI CZ4 DAKXR DEVKO DILTD DU5 D~K EAD EAP EAS EBC EBD EBS EE~ EHN EJD EMB EMK EMOBN EPL EPT EST ESX F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HCIFZ HF~ HW0 HZ~ I-F IOX IPSME J21 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NU- NVLIB O9- OAWHX OBOKY ODMLO OJQWA OJZSN OVD OWPYF P2P PAFKI PEELM Q1. Q5Y QBD Q~Q RD5 ROX ROZ RUSNO RW1 RWL RXO RXW SA0 SV3 TAE TEORI TLC TN5 TOX TUS WH7 X7H XSW YAYTL YKOAZ YXANX ~02 ~91 .-4 53G 7X7 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8G5 AAWDT ABIME ABNGD ABPIB ABSMQ ABTAH ABUWG ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC AEKPW AEUYN AFKRA AFSHK AGKRT AGMDO AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN AZQEC BBNVY BES BHPHI BKSAR BPHCQ BVXVI CAG CCPQU CGR CUY CVF CXTWN D1J DFGAJ DWQXO ECM EIF ELUNK FEDTE FYUFA GNUQQ GTFYD GUQSH HGD HMCUK HQ2 HTVGU HVGLF JEFFH LK8 M1P M2O M2P M2Q M7P MBTAY MVM NEJ NPM O0~ O~Y PADUT PB- PCBAR PHGZT PQQKQ PROAC PSQYO S0X TCN UBC UKHRP WHG XOL YXE ZCG ZY4 7X8 AJBYB |
| ID | FETCH-LOGICAL-c572t-db73dea0d0cd542bfd257d69639f97b05894b725b0f5a51eff4de0e3ca9a85143 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 287 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369955500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-5157 1076-836X |
| IngestDate | Thu Oct 02 11:27:57 EDT 2025 Thu Apr 03 06:55:28 EDT 2025 Wed Apr 02 07:03:18 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | algorithms serial data viruses molecular clock substitution rate estimation temporal precedence constraints Active-set method dating least-squares computer simulations influenza (H1N1) linear algebra |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-db73dea0d0cd542bfd257d69639f97b05894b725b0f5a51eff4de0e3ca9a85143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1093/sysbio/syv068 |
| PMID | 26424727 |
| PQID | 1749995847 |
| PQPubID | 23479 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1749995847 pubmed_primary_26424727 oup_primary_10_1093_sysbio_syv068 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-01-01 |
| PublicationDateYYYYMMDD | 2016-01-01 |
| PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Systematic biology |
| PublicationTitleAlternate | Syst Biol |
| PublicationYear | 2016 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| SSID | ssj0011651 |
| Score | 2.618182 |
| Snippet | Abstract
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming... Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming... |
| SourceID | proquest pubmed oup |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 82 |
| SubjectTerms | Algorithms Computer Simulation Evolution, Molecular Influenza A Virus, H1N1 Subtype - classification Influenza A Virus, H1N1 Subtype - genetics Least-Squares Analysis Models, Genetic Phylogeny Software |
| Title | Fast Dating Using Least-Squares Criteria and Algorithms |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26424727 https://www.proquest.com/docview/1749995847 |
| Volume | 65 |
| WOSCitedRecordID | wos000369955500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86FLz4_TE_RgSvgbZJlvY4dMODzoETipeSNIkOtNW1G_jf-9J2OzgPu7QvkH7w8sL7vby8_BC68W2qwFIoUWHECFPMEKkFJ5JaA_CI2YDaimxCDIdhHEejZr2j-CeFH1FXtK0mOdzmXtdV9fo8dFQF46d4mS7wuxXPIoQ3lICDFs1hmitP_6liWwGTlVMZ7K3_O_totwGOuFeP9AHaMNkh2q6pJH9A6qcL6TWvpCMkBrIo8Z10O5txtTcAPziqHvL8PXNlR9jxHDgLxDLTuPfxlkP7_bM4Ri-D_vj2njRECSTlIiiJVoJqIz3tpZqzQFkNE1F3YW5FNhLKMQcyJQKuPMsl9421TBvP0FRGMnSI6QS1sjwzZwgziDeUZq4mQYF_M5GvDESxnMnADZxto2vQYPJVH4WR1ClsmtRKSWqlQJ-FfhMwVpeBkJnJZ0UC4Q8AUpeZbaPTWvHLVwEyCxigqfM1vnCBdgC4NEshl6hVTmfmCm2l83JSTDtoU8QhXIejx05lJ78YY7l4 |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Dating+Using+Least-Squares+Criteria+and+Algorithms&rft.jtitle=Systematic+biology&rft.au=To%2C+Thu-Hien&rft.au=Jung%2C+Matthieu&rft.au=Lycett%2C+Samantha&rft.au=Gascuel%2C+Olivier&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=65&rft.issue=1&rft.spage=82&rft.epage=97&rft_id=info:doi/10.1093%2Fsysbio%2Fsyv068&rft.externalDocID=10.1093%2Fsysbio%2Fsyv068 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon |