Fast Dating Using Least-Squares Criteria and Algorithms

Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Systematic biology Ročník 65; číslo 1; s. 82 - 97
Hlavní autori: To, Thu-Hien, Jung, Matthieu, Lycett, Samantha, Gascuel, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 01.01.2016
Predmet:
ISSN:1063-5157, 1076-836X, 1076-836X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/ , along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3 .
AbstractList Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3.
Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/ , along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3 .
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3.Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming increasingly common, notably with viruses (e.g., human immunodeficiency virus (HIV)). Dating ancestral events is one of the first, essential goals with such data. However, current sophisticated probabilistic approaches struggle to handle data sets of this size. Here, we present very fast dating algorithms, based on a Gaussian model closely related to the Langley-Fitch molecular-clock model. We show that this model is robust to uncorrelated violations of the molecular clock. Our algorithms apply to serial data, where the tips of the tree have been sampled through times. They estimate the substitution rate and the dates of all ancestral nodes. When the input tree is unrooted, they can provide an estimate for the root position, thus representing a new, practical alternative to the standard rooting methods (e.g., midpoint). Our algorithms exploit the tree (recursive) structure of the problem at hand, and the close relationships between least-squares and linear algebra. We distinguish between an unconstrained setting and the case where the temporal precedence constraint (i.e., an ancestral node must be older that its daughter nodes) is accounted for. With rooted trees, the former is solved using linear algebra in linear computing time (i.e., proportional to the number of taxa), while the resolution of the latter, constrained setting, is based on an active-set method that runs in nearly linear time. With unrooted trees the computing time becomes (nearly) quadratic (i.e., proportional to the square of the number of taxa). In all cases, very large input trees (>10,000 taxa) can easily be processed and transformed into time-scaled trees. We compare these algorithms to standard methods (root-to-tip, r8s version of Langley-Fitch method, and BEAST). Using simulated data, we show that their estimation accuracy is similar to that of the most sophisticated methods, while their computing time is much faster. We apply these algorithms on a large data set comprising 1194 strains of Influenza virus from the pdm09 H1N1 Human pandemic. Again the results show that these algorithms provide a very fast alternative with results similar to those of other computer programs. These algorithms are implemented in the LSD software (least-squares dating), which can be downloaded from http://www.atgc-montpellier.fr/LSD/, along with all our data sets and detailed results. An Online Appendix, providing additional algorithm descriptions, tables, and figures can be found in the Supplementary Material available on Dryad at http://dx.doi.org/10.5061/dryad.968t3.
Author To, Thu-Hien
Lycett, Samantha
Jung, Matthieu
Gascuel, Olivier
Author_xml – sequence: 1
  givenname: Thu-Hien
  surname: To
  fullname: To, Thu-Hien
  organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France
– sequence: 2
  givenname: Matthieu
  surname: Jung
  fullname: Jung, Matthieu
  organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France
– sequence: 3
  givenname: Samantha
  surname: Lycett
  fullname: Lycett, Samantha
  organization: 3 Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK
– sequence: 4
  givenname: Olivier
  surname: Gascuel
  fullname: Gascuel, Olivier
  email: gascuel@lirmm.fr
  organization: 1 Institut de Biologie Computationnelle, LIRMM, UMR 5506 CNRS - Université de Montpellier, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26424727$$D View this record in MEDLINE/PubMed
BookMark eNpFkEtLw0AUhQep2Icu3UqWbqLznsyyVKtCwYUW3A0zmZsayauZROi_NyVVN_fcx-HA_eZoUtUVIHRN8B3Bmt2HQ3B5Pcg3lskZmhGsZJww-TE59pLFggg1RfMQvjAmRApygaZUcsoVVTOk1jZ00YPt8moXbcOxbmBYxW_73rYQolWbd9DmNrKVj5bFrh7mzzJcovPMFgGuTrpA2_Xj--o53rw-vayWmzgVinaxd4p5sNjj1AtOXeapUF5qyXSmlcMi0dwpKhzOhBUEsox7wMBSq20iCGcLdDvmNm297yF0psxDCkVhK6j7YIjiWmuRcDVYb07W3pXgTdPmpW0P5vfZ_6y6b_6uBJsjRzNyNCNH9gNb32bG
CitedBy_id crossref_primary_10_1111_nph_20076
crossref_primary_10_1080_22221751_2023_2253340
crossref_primary_10_1093_molbev_msae109
crossref_primary_10_3201_eid2907_230165
crossref_primary_10_1093_ve_vex032
crossref_primary_10_1038_s41564_019_0501_y
crossref_primary_10_3390_pathogens11080856
crossref_primary_10_1073_pnas_2204336119
crossref_primary_10_1111_ppa_13824
crossref_primary_10_1016_j_ympev_2025_108347
crossref_primary_10_1038_s44259_024_00027_6
crossref_primary_10_1016_j_micinf_2024_105405
crossref_primary_10_3390_v12121438
crossref_primary_10_1093_ve_veaf037
crossref_primary_10_3897_evolsyst_7_102360
crossref_primary_10_1093_sysbio_syab064
crossref_primary_10_1093_infdis_jiy044
crossref_primary_10_1111_jbi_13214
crossref_primary_10_1093_ve_vex042
crossref_primary_10_1186_s13100_024_00332_x
crossref_primary_10_1002_tax_13341
crossref_primary_10_1371_journal_ppat_1011538
crossref_primary_10_1093_ve_vey016
crossref_primary_10_1126_science_aad5901
crossref_primary_10_1128_JCM_00480_18
crossref_primary_10_1038_s41477_024_01729_5
crossref_primary_10_1093_ve_vex044
crossref_primary_10_1038_s41426_017_0009_6
crossref_primary_10_1038_s41576_019_0119_1
crossref_primary_10_1093_molbev_msad156
crossref_primary_10_1128_JCM_01581_21
crossref_primary_10_3390_v13040644
crossref_primary_10_1038_s41467_024_54255_5
crossref_primary_10_1099_jmm_0_001827
crossref_primary_10_1093_emph_eoac026
crossref_primary_10_3201_eid2612_202969
crossref_primary_10_1186_s12862_020_01609_4
crossref_primary_10_12688_f1000research_28318_1
crossref_primary_10_1093_jtm_taab149
crossref_primary_10_12688_f1000research_28318_2
crossref_primary_10_1016_j_cub_2022_11_014
crossref_primary_10_1038_s41588_018_0150_8
crossref_primary_10_1016_j_xgen_2025_100977
crossref_primary_10_1134_S2079086422050024
crossref_primary_10_1038_ng_3847
crossref_primary_10_1111_evo_14546
crossref_primary_10_1038_s41467_024_53817_x
crossref_primary_10_3390_microorganisms13040912
crossref_primary_10_1128_JVI_01267_21
crossref_primary_10_1093_molbev_msae232
crossref_primary_10_1371_journal_ppat_1008357
crossref_primary_10_1038_s41467_024_52811_7
crossref_primary_10_1128_spectrum_03829_23
crossref_primary_10_1038_nrg_2015_8
crossref_primary_10_1371_journal_pone_0197433
crossref_primary_10_1002_jmv_27441
crossref_primary_10_1002_ajpa_70082
crossref_primary_10_1038_s41467_021_21749_5
crossref_primary_10_1071_IS25029
crossref_primary_10_1016_j_ygeno_2021_11_001
crossref_primary_10_1016_j_ympev_2022_107652
crossref_primary_10_7554_eLife_82538
crossref_primary_10_1016_j_coviro_2018_08_009
crossref_primary_10_3390_v13112161
crossref_primary_10_1093_ve_vew029
crossref_primary_10_1093_molbev_msaa222
crossref_primary_10_1089_aid_2020_0031
crossref_primary_10_1093_sysbio_syae021
crossref_primary_10_1093_sysbio_syad059
crossref_primary_10_1371_journal_pone_0279597
crossref_primary_10_1038_s41467_024_52343_0
crossref_primary_10_1093_sysbio_syae020
crossref_primary_10_1093_molbev_msaf001
crossref_primary_10_24072_pcjournal_556
crossref_primary_10_3390_v15030684
crossref_primary_10_1097_QAD_0000000000003110
crossref_primary_10_3390_v14050889
crossref_primary_10_1186_s12915_024_01837_w
crossref_primary_10_1038_s41467_022_31511_0
crossref_primary_10_1099_jgv_0_001308
crossref_primary_10_1093_molbev_msaf107
crossref_primary_10_1371_journal_ppat_1009786
crossref_primary_10_1371_journal_ppat_1010893
crossref_primary_10_1093_molbev_msw026
crossref_primary_10_1111_ecog_07786
crossref_primary_10_1093_sysbio_syad040
crossref_primary_10_1002_ajb2_16370
crossref_primary_10_1016_j_meegid_2016_07_008
crossref_primary_10_1038_s41467_018_05114_7
crossref_primary_10_1073_pnas_2502814122
crossref_primary_10_3389_fmicb_2021_655567
crossref_primary_10_1093_molbev_msaf111
crossref_primary_10_1016_j_lana_2022_100369
crossref_primary_10_1186_s12864_022_08572_y
crossref_primary_10_3390_v12020132
crossref_primary_10_1038_s41467_020_20235_8
crossref_primary_10_1016_j_meegid_2018_11_004
crossref_primary_10_1093_ve_vex002
crossref_primary_10_1007_s00705_019_04430_7
crossref_primary_10_1073_pnas_1713314115
crossref_primary_10_1038_s41598_022_05085_2
crossref_primary_10_1093_sysbio_syaa009
crossref_primary_10_1073_pnas_2121335119
crossref_primary_10_1099_mgen_0_000433
crossref_primary_10_3389_fvets_2020_00176
crossref_primary_10_3390_v11080720
crossref_primary_10_3897_evolsyst_9_135431
crossref_primary_10_1186_s13756_023_01360_7
crossref_primary_10_1016_j_gloplacha_2022_103757
crossref_primary_10_1126_sciadv_adt0973
crossref_primary_10_1101_gr_277966_123
crossref_primary_10_1016_j_meegid_2019_03_016
crossref_primary_10_1093_sysbio_syae034
crossref_primary_10_1093_sysbio_syaf003
crossref_primary_10_3201_eid2612_2969
crossref_primary_10_1093_sysbio_syae038
crossref_primary_10_3390_v15091933
crossref_primary_10_1093_molbev_msw124
crossref_primary_10_3389_fmicb_2022_715637
crossref_primary_10_1093_molbev_msw247
crossref_primary_10_1038_s41467_022_29402_5
crossref_primary_10_1186_s12862_018_1192_3
crossref_primary_10_1038_s41597_025_05317_w
crossref_primary_10_1111_nph_19488
crossref_primary_10_1073_pnas_2204993119
crossref_primary_10_3390_v17070965
crossref_primary_10_1094_PHYTO_09_20_0412_RVW
crossref_primary_10_1089_aid_2018_0236
crossref_primary_10_1093_ofid_ofaf334
crossref_primary_10_1038_s41467_023_39847_x
crossref_primary_10_1126_science_adn7179
crossref_primary_10_1093_molbev_msw217
crossref_primary_10_1186_s12879_018_3247_x
crossref_primary_10_3390_v15020293
crossref_primary_10_1016_j_onehlt_2025_101036
crossref_primary_10_1089_aid_2017_0061
crossref_primary_10_1038_s41598_017_03820_8
crossref_primary_10_1094_PDIS_09_17_1414_RE
crossref_primary_10_1038_s41588_025_02183_5
crossref_primary_10_3390_v15010108
crossref_primary_10_3389_fmicb_2021_748611
crossref_primary_10_1080_24750263_2023_2283517
crossref_primary_10_1093_ve_veab073
crossref_primary_10_3390_v14071411
crossref_primary_10_1111_syen_12588
crossref_primary_10_1128_JVI_01212_16
crossref_primary_10_3389_fmicb_2017_02501
crossref_primary_10_3389_fpubh_2022_994949
crossref_primary_10_1038_s41467_019_13443_4
crossref_primary_10_7554_eLife_91745_3
crossref_primary_10_1016_j_coviro_2021_09_009
crossref_primary_10_1038_s41467_020_19198_7
crossref_primary_10_1371_journal_pcbi_1012461
crossref_primary_10_1093_emph_eoaa005
crossref_primary_10_1016_j_cub_2018_05_058
crossref_primary_10_1099_mgen_0_001050
crossref_primary_10_1111_2041_210X_13977
crossref_primary_10_1099_mgen_0_001170
crossref_primary_10_1126_science_aao2136
crossref_primary_10_1038_s41579_025_01202_w
crossref_primary_10_3390_v10090476
crossref_primary_10_1093_ve_vez037
crossref_primary_10_1038_ismej_2016_198
crossref_primary_10_1128_jvi_00684_25
crossref_primary_10_1093_jeb_voae091
crossref_primary_10_1111_1755_0998_13350
crossref_primary_10_1093_evlett_qrad026
crossref_primary_10_1093_sysbio_syaf047
crossref_primary_10_3390_v13020306
crossref_primary_10_1093_ve_veab093
crossref_primary_10_1016_j_lanwpc_2021_100163
crossref_primary_10_3390_genes12010116
crossref_primary_10_7554_eLife_91745
crossref_primary_10_3390_v14061165
crossref_primary_10_1002_ajpa_24666
crossref_primary_10_1016_j_ympev_2025_108286
crossref_primary_10_7554_eLife_73896
crossref_primary_10_1016_j_ympev_2024_108022
crossref_primary_10_1093_molbev_msaa282
crossref_primary_10_1128_JVI_02241_16
crossref_primary_10_1016_j_scitotenv_2024_173027
crossref_primary_10_1093_sysbio_syac008
crossref_primary_10_1371_journal_ppat_1008067
crossref_primary_10_1016_j_micpath_2024_106895
crossref_primary_10_1038_s41467_018_07370_z
crossref_primary_10_3389_fmicb_2020_00468
crossref_primary_10_1016_j_fm_2021_103915
crossref_primary_10_3897_zse_100_116350
crossref_primary_10_1371_journal_pcbi_1012995
crossref_primary_10_3390_v13050836
crossref_primary_10_1093_g3journal_jkad232
crossref_primary_10_1093_molbev_msaa193
crossref_primary_10_1038_s41598_025_95893_z
crossref_primary_10_1016_j_lanwpc_2023_100780
crossref_primary_10_1016_j_ympev_2021_107297
crossref_primary_10_1371_journal_ppat_1008179
crossref_primary_10_3389_fmicb_2020_601839
crossref_primary_10_1534_genetics_118_301556
crossref_primary_10_3390_v15061338
crossref_primary_10_1111_mec_17205
crossref_primary_10_1093_ve_vez022
crossref_primary_10_1128_spectrum_02134_22
crossref_primary_10_1186_s13567_019_0692_5
crossref_primary_10_1038_s41467_024_50484_w
crossref_primary_10_1017_S0950268824000761
crossref_primary_10_3389_fmicb_2021_651124
crossref_primary_10_1093_botlinnean_boae092
crossref_primary_10_1126_scitranslmed_abn7979
crossref_primary_10_1128_msystems_00427_25
crossref_primary_10_1093_molbev_msz131
crossref_primary_10_5802_crbiol_29
crossref_primary_10_1016_j_ympev_2023_107735
crossref_primary_10_1016_j_ympev_2023_107855
crossref_primary_10_1038_s44298_024_00019_3
crossref_primary_10_1038_s42003_022_03527_1
crossref_primary_10_3390_pathogens14080797
crossref_primary_10_1093_ve_veac033
crossref_primary_10_1038_s41467_025_60222_5
crossref_primary_10_3390_v15061244
crossref_primary_10_3390_v13091790
crossref_primary_10_1093_gbe_evaf119
crossref_primary_10_1093_ve_veac029
crossref_primary_10_1111_jbi_13126
crossref_primary_10_1126_science_abn8153
crossref_primary_10_1093_ve_veaa089
crossref_primary_10_1128_spectrum_02240_21
crossref_primary_10_1093_gigascience_giae053
crossref_primary_10_1093_nar_gky783
crossref_primary_10_1038_s42003_018_0025_7
crossref_primary_10_1093_molbev_msy133
crossref_primary_10_1111_imb_12818
crossref_primary_10_2196_19170
crossref_primary_10_1038_s41467_022_28420_7
crossref_primary_10_1128_AAC_00243_19
crossref_primary_10_1017_S0950268822000437
crossref_primary_10_1016_j_ijid_2024_107077
crossref_primary_10_1042_BST20180186
crossref_primary_10_1038_s41467_020_19185_y
crossref_primary_10_1111_tbed_13728
crossref_primary_10_7554_eLife_45562
crossref_primary_10_1186_s13073_022_01045_7
crossref_primary_10_1002_ajp_70043
crossref_primary_10_1093_ve_veab055
crossref_primary_10_3390_v13091689
crossref_primary_10_1186_s12862_018_1210_5
crossref_primary_10_1080_01621459_2020_1799812
crossref_primary_10_1093_gbe_evaf129
crossref_primary_10_1093_ofid_ofab665
crossref_primary_10_3390_v15010243
crossref_primary_10_7554_eLife_47509
crossref_primary_10_1038_s41467_024_47929_7
crossref_primary_10_1101_gr_216606_116
crossref_primary_10_1111_jvh_13525
crossref_primary_10_1111_mec_17540
crossref_primary_10_1016_j_ympev_2023_107759
crossref_primary_10_1111_jbi_15097
crossref_primary_10_1093_ve_vey039
ContentType Journal Article
Copyright The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2015
The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Copyright_xml – notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. 2015
– notice: The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
DBID TOX
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/sysbio/syv068
DatabaseName Oxford Journals Open Access Collection
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
Ecology
EISSN 1076-836X
EndPage 97
ExternalDocumentID 26424727
10.1093/sysbio/syv068
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.2P
.I3
0R~
123
18M
1TH
29Q
2FS
36B
4.4
48X
5VS
5WD
70D
AAHBH
AAHKG
AAIMJ
AAISJ
AAJKP
AAJQQ
AAKGQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABMNT
ABNKS
ABPLY
ABPPZ
ABPQP
ABPTD
ABQLI
ABSQW
ABTLG
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACCCW
ACGEJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIPB
ACNCT
ACPRK
ACSTJ
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADXPE
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFAZZ
AFFZL
AFGWE
AFIYH
AFKVX
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AGUYK
AHMBA
AHXOZ
AHXPO
AIAGR
AIJHB
AILXY
AJEEA
AJNCP
AJWEG
AKHUL
AKWXX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BENPR
BEYMZ
BHONS
BQDIO
BSWAC
C45
CBGCD
CDBKE
COF
CS3
CUYZI
CZ4
DAKXR
DEVKO
DILTD
DU5
D~K
EAD
EAP
EAS
EBC
EBD
EBS
EE~
EHN
EJD
EMB
EMK
EMOBN
EPL
EPT
EST
ESX
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HCIFZ
HF~
HW0
HZ~
I-F
IOX
IPSME
J21
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OVD
OWPYF
P2P
PAFKI
PEELM
Q1.
Q5Y
QBD
Q~Q
RD5
ROX
ROZ
RUSNO
RW1
RWL
RXO
RXW
SA0
SV3
TAE
TEORI
TLC
TN5
TOX
TUS
WH7
X7H
XSW
YAYTL
YKOAZ
YXANX
~02
~91
.-4
53G
7X7
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8G5
AAWDT
ABIME
ABNGD
ABPIB
ABSMQ
ABTAH
ABUWG
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
AEKPW
AEUYN
AFKRA
AFSHK
AGKRT
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
AZQEC
BBNVY
BES
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
CGR
CUY
CVF
CXTWN
D1J
DFGAJ
DWQXO
ECM
EIF
ELUNK
FEDTE
FYUFA
GNUQQ
GTFYD
GUQSH
HGD
HMCUK
HQ2
HTVGU
HVGLF
JEFFH
LK8
M1P
M2O
M2P
M2Q
M7P
MBTAY
MVM
NEJ
NPM
O0~
O~Y
PADUT
PB-
PCBAR
PHGZT
PQQKQ
PROAC
PSQYO
S0X
TCN
UBC
UKHRP
WHG
XOL
YXE
ZCG
ZY4
7X8
AJBYB
ID FETCH-LOGICAL-c572t-db73dea0d0cd542bfd257d69639f97b05894b725b0f5a51eff4de0e3ca9a85143
IEDL.DBID TOX
ISICitedReferencesCount 287
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000369955500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5157
1076-836X
IngestDate Thu Oct 02 11:27:57 EDT 2025
Thu Apr 03 06:55:28 EDT 2025
Wed Apr 02 07:03:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords algorithms
serial data
viruses
molecular clock
substitution rate estimation
temporal precedence constraints
Active-set method
dating
least-squares
computer simulations
influenza (H1N1)
linear algebra
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-db73dea0d0cd542bfd257d69639f97b05894b725b0f5a51eff4de0e3ca9a85143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/sysbio/syv068
PMID 26424727
PQID 1749995847
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_1749995847
pubmed_primary_26424727
oup_primary_10_1093_sysbio_syv068
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Systematic biology
PublicationTitleAlternate Syst Biol
PublicationYear 2016
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
SSID ssj0011651
Score 2.618182
Snippet Abstract Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming...
Phylogenies provide a useful way to understand the evolutionary history of genetic samples, and data sets with more than a thousand taxa are becoming...
SourceID proquest
pubmed
oup
SourceType Aggregation Database
Index Database
Publisher
StartPage 82
SubjectTerms Algorithms
Computer Simulation
Evolution, Molecular
Influenza A Virus, H1N1 Subtype - classification
Influenza A Virus, H1N1 Subtype - genetics
Least-Squares Analysis
Models, Genetic
Phylogeny
Software
Title Fast Dating Using Least-Squares Criteria and Algorithms
URI https://www.ncbi.nlm.nih.gov/pubmed/26424727
https://www.proquest.com/docview/1749995847
Volume 65
WOSCitedRecordID wos000369955500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86FLz4_TE_RgSvgbZJlvY4dMODzoETipeSNIkOtNW1G_jf-9J2OzgPu7QvkH7w8sL7vby8_BC68W2qwFIoUWHECFPMEKkFJ5JaA_CI2YDaimxCDIdhHEejZr2j-CeFH1FXtK0mOdzmXtdV9fo8dFQF46d4mS7wuxXPIoQ3lICDFs1hmitP_6liWwGTlVMZ7K3_O_totwGOuFeP9AHaMNkh2q6pJH9A6qcL6TWvpCMkBrIo8Z10O5txtTcAPziqHvL8PXNlR9jxHDgLxDLTuPfxlkP7_bM4Ri-D_vj2njRECSTlIiiJVoJqIz3tpZqzQFkNE1F3YW5FNhLKMQcyJQKuPMsl9421TBvP0FRGMnSI6QS1sjwzZwgziDeUZq4mQYF_M5GvDESxnMnADZxto2vQYPJVH4WR1ClsmtRKSWqlQJ-FfhMwVpeBkJnJZ0UC4Q8AUpeZbaPTWvHLVwEyCxigqfM1vnCBdgC4NEshl6hVTmfmCm2l83JSTDtoU8QhXIejx05lJ78YY7l4
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Dating+Using+Least-Squares+Criteria+and+Algorithms&rft.jtitle=Systematic+biology&rft.au=To%2C+Thu-Hien&rft.au=Jung%2C+Matthieu&rft.au=Lycett%2C+Samantha&rft.au=Gascuel%2C+Olivier&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=1063-5157&rft.eissn=1076-836X&rft.volume=65&rft.issue=1&rft.spage=82&rft.epage=97&rft_id=info:doi/10.1093%2Fsysbio%2Fsyv068&rft.externalDocID=10.1093%2Fsysbio%2Fsyv068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5157&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5157&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5157&client=summon