Reinforcement learning assisted recursive QAOA
In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constrai...
Gespeichert in:
| Veröffentlicht in: | EPJ quantum technology Jg. 11; H. 1; S. 6 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 2662-4400, 2196-0763, 2196-0763 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems. |
|---|---|
| AbstractList | In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems. In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling -hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems. In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems. |
| ArticleNumber | 6 |
| Author | Jerbi, Sofiene Dunjko, Vedran Patel, Yash J. Bäck, Thomas |
| Author_xml | – sequence: 1 givenname: Yash J. surname: Patel fullname: Patel, Yash J. email: y.j.patel@liacs.leidenuniv.nl organization: LIACS, Leiden University, Applied Quantum Algorithms, Leiden University – sequence: 2 givenname: Sofiene surname: Jerbi fullname: Jerbi, Sofiene email: sofiene.jerbi@uibk.ac.at organization: Institute for Theoretical Physics, University of Innsbruck – sequence: 3 givenname: Thomas surname: Bäck fullname: Bäck, Thomas organization: LIACS, Leiden University – sequence: 4 givenname: Vedran surname: Dunjko fullname: Dunjko, Vedran organization: LIACS, Leiden University, Applied Quantum Algorithms, Leiden University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38261853$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1URB_0L6BIbNik9bUdPzagUUULUqWKqqwtj3MzeJRxpnbSin9fp1MKdAMrW_J3ju-555DsxSEiIRXQEwBBT3G7vh1Ps6ANVTVlvKaUgajvX5EDBkbWVEm-V-5SsloISvfJcc5rSikAazSoN2SfayZBN_yAnFxjiN2QPG4wjlWPLsUQV5XLOeQR2yqhn1IOd1h9W1wt3pLXneszHj-dR-T7-eebsy_15dXF17PFZe0bxca6hY5paZAywRsD3HVy2WnBfAuNRm6k452hSiy1WSK00siCAqBUvjHKtfyIfNr5bqflBltfZkuut9sUNi79tIML9u-XGH7Y1XBngSojuIbi8OHJIQ23E-bRbkL22Pcu4jBlywxoMFrIGX3_Al0PU4ol30zNK6OqKdS7P0d6nuXXLgugd4BPQ84Ju2cEqJ2bs4_N2V1ztjRnH5uz90X68YXUh9GNYZjDhf5_DMzOIJc_4wrT7wj_1D4A7Dmzpg |
| CitedBy_id | crossref_primary_10_1140_epjqt_s40507_024_00289_z crossref_primary_10_1103_PhysRevA_110_052435 crossref_primary_10_1016_j_eswa_2024_124849 crossref_primary_10_1088_2632_2153_ade361 crossref_primary_10_1109_TWC_2024_3523135 crossref_primary_10_1016_j_cma_2024_117380 crossref_primary_10_1088_1674_1056_ad18ab |
| Cites_doi | 10.1126/science.abb9811 10.1088/2058-9565/aab822 10.1609/aaai.v34i03.5616 10.1088/2058-9565/abe519 10.1088/2058-9565/abb6d9 10.1038/s41586-021-03582-4 10.1145/502090.502098 10.22331/q-2021-04-20-437 10.22331/q-2022-03-30-678 10.1007/bf00992696 10.1126/science.abg7812 10.1088/2058-9565/ab4eb5 10.1007/s11128-021-03342-3 10.1137/S0097539705447372 10.1126/sciadv.adi0487 10.1103/physrevlett.127.120502 10.1103/physrevresearch.2.033446 10.1103/PRXQuantum.5.020327 10.1103/physrevx.11.031070 10.1103/prxquantum.2.030312 10.1103/physreva.104.052419 10.1088/2058-9565/ac9013 10.1140/epjqt/s40507-022-00131-4 10.26421/QIC19.13-14-3 10.1103/physrevlett.125.260505 10.1145/3584706 10.4230/LIPICS.ITCS.2022.14 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.1140/epjqt/s40507-023-00214-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2196-0763 |
| ExternalDocumentID | PMC10794381 38261853 10_1140_epjqt_s40507_023_00214_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Google funderid: http://dx.doi.org/10.13039/100006785 – fundername: European Commission grantid: 951821 funderid: http://dx.doi.org/10.13039/501100000780 – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 024.003.037 funderid: http://dx.doi.org/10.13039/501100003246 – fundername: Total funderid: http://dx.doi.org/10.13039/501100007185 – fundername: Austrian Science Fund grantid: DK-ALM:W1259-N27 funderid: http://dx.doi.org/10.13039/501100002428 – fundername: SFB BeyondC grantid: F7102 – fundername: Austrian Science Fund FWF grantid: W 1259 |
| GroupedDBID | -A0 0R~ 5VS 8FE 8FG AAFWJ AAJSJ AAKKN ABEEZ ACACY ACGFS ACULB ADINQ ADMLS AFGXO AFKRA AFPKN AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS ASPBG BAPOH BENPR BGLVJ C24 C6C CCPQU EBLON GROUPED_DOAJ HCIFZ IAO ISR ITC KQ8 M~E OK1 P62 PIMPY PROAC RSV SOJ TUS AASML AAYXX ADBBV AFFHD BCNDV CITATION EBS EJD PHGZM PHGZT PQGLB NPM ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c572t-d1f2869e02435913af6bf842cd158e396a3f9074b89be1d696e0211e67c597ad3 |
| IEDL.DBID | C24 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001143489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2662-4400 2196-0763 |
| IngestDate | Tue Nov 04 02:05:56 EST 2025 Sun Sep 28 10:19:07 EDT 2025 Sat Oct 11 05:50:46 EDT 2025 Mon Jul 21 05:52:41 EDT 2025 Sat Nov 29 03:41:36 EST 2025 Tue Nov 18 20:50:22 EST 2025 Fri Feb 21 02:41:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Quantum computing Quantum approximate optimization algorithm Combinatorial optimization Reinforcement learning |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-d1f2869e02435913af6bf842cd158e396a3f9074b89be1d696e0211e67c597ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/10.1140/epjqt/s40507-023-00214-w |
| PMID | 38261853 |
| PQID | 2915817075 |
| PQPubID | 2034768 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10794381 proquest_miscellaneous_2918198461 proquest_journals_2915817075 pubmed_primary_38261853 crossref_primary_10_1140_epjqt_s40507_023_00214_w crossref_citationtrail_10_1140_epjqt_s40507_023_00214_w springer_journals_10_1140_epjqt_s40507_023_00214_w |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | EPJ quantum technology |
| PublicationTitleAbbrev | EPJ Quantum Technol |
| PublicationTitleAlternate | EPJ Quantum Technol |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | CR18 CR17 CR39 Sung, Yao, Harrigan, Rubin, Jiang, Lin, Babbush, McClean (CR21) 2020; 5 CR38 CR15 CR37 CR14 Håstad (CR31) 2001; 48 CR13 CR35 CR12 CR34 CR11 CR33 Jurcevic, Javadi-Abhari, Bishop, Lauer, Bogorin, Brink, Capelluto, Günlük, Itoko, Kanazawa, Kandala, Keefe, Krsulich, Landers, Lewandowski, McClure, Nannicini, Narasgond, Nayfeh, Pritchett, Rothwell, Srinivasan, Sundaresan, Wang, Wei, Wood, Yau, Zhang, Dial, Chow, Gambetta (CR2) 2021; 6 CR10 Khot, Kindler, Mossel, O’Donnell (CR32) 2007; 37 Yao, Bukov, Lin (CR20) 2020 Yao, Kottering, Gundlach, Lin, Bukov (CR24) 2022 Lotshaw, Humble, Herrman, Ostrowski, Siopsis (CR40) 2021; 20 Arute, Arya, Babbush, Bacon, Bardin, Barends, Boixo, Broughton, Buckley (CR1) 2020; 369 Ebadi, Wang, Levine, Keesling, Semeghini, Omran, Bluvstein, Samajdar, Pichler, Ho, Choi, Sachdev, Greiner, Vuletić, Lukin (CR3) 2021; 595 Gong, Wang, Zha, Chen, Huang, Wu, Zhu, Zhao, Li, Guo, Qian, Ye, Chen, Ying, Yu, Fan, Wu, Su, Deng, Rong, Zhang, Cao, Lin, Xu, Sun, Guo, Li, Liang, Bastidas, Nemoto, Munro, Huo, Lu, Peng, Zhu, Pan (CR4) 2021; 372 CR8 CR7 CR29 Moll, Barkoutsos, Bishop, Chow, Cross, Egger, Filipp, Fuhrer, Gambetta, Ganzhorn, Kandala, Mezzacapo, Müller, Riess, Salis, Smolin, Tavernelli, Temme (CR5) 2018; 3 CR26 CR25 CR23 CR22 CR44 CR43 CR42 Bravyi, Kliesch, Koenig, Tang (CR16) 2022; 6 CR41 Williams (CR36) 1992; 8 Dupont, Evert, Hodson, Sundar, Jeffrey, Yamaguchi, Feng, Maciejewski, Hadfield, Alam (CR30) 2023; 9 Benedetti, Lloyd, Sack, Fiorentini (CR6) 2019; 4 Marwaha (CR9) 2021; 5 Sutton, Barto (CR19) 2018 Brady, Hadfield (CR28) 2023 Khairy, Shaydulin, Cincio, Alexeev, Balaprakash (CR27) 2020; 34 214_CR29 J Yao (214_CR24) 2022 M Dupont (214_CR30) 2023; 9 KJ Sung (214_CR21) 2020; 5 PC Lotshaw (214_CR40) 2021; 20 S Ebadi (214_CR3) 2021; 595 RS Sutton (214_CR19) 2018 RJ Williams (214_CR36) 1992; 8 M Gong (214_CR4) 2021; 372 K Marwaha (214_CR9) 2021; 5 214_CR12 214_CR34 214_CR13 214_CR35 214_CR10 214_CR11 214_CR33 214_CR38 214_CR17 214_CR39 214_CR14 214_CR15 LT Brady (214_CR28) 2023 214_CR37 214_CR7 F Arute (214_CR1) 2020; 369 214_CR8 214_CR18 J Håstad (214_CR31) 2001; 48 M Benedetti (214_CR6) 2019; 4 214_CR41 214_CR42 J Yao (214_CR20) 2020 S Khot (214_CR32) 2007; 37 214_CR23 S Bravyi (214_CR16) 2022; 6 214_CR43 214_CR22 214_CR44 S Khairy (214_CR27) 2020; 34 N Moll (214_CR5) 2018; 3 214_CR25 P Jurcevic (214_CR2) 2021; 6 214_CR26 |
| References_xml | – ident: CR22 – volume: 369 start-page: 1084 issue: 6507 year: 2020 end-page: 1089 ident: CR1 article-title: Hartree-Fock on a superconducting qubit quantum computer publication-title: Science doi: 10.1126/science.abb9811 – ident: CR18 – year: 2018 ident: CR19 publication-title: Reinforcement learning: an introduction – ident: CR43 – volume: 3 issue: 3 year: 2018 ident: CR5 article-title: Quantum optimization using variational algorithms on near-term quantum devices publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/aab822 – start-page: 1044 year: 2022 end-page: 1081 ident: CR24 article-title: Noise-robust end-to-end quantum control using deep autoregressive policy networks publication-title: Mathematical and scientific machine learning – volume: 34 start-page: 2367 issue: 03 year: 2020 end-page: 2375 ident: CR27 article-title: Learning to optimize variational quantum circuits to solve combinatorial problems publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v34i03.5616 – ident: CR14 – ident: CR39 – ident: CR37 – volume: 6 issue: 2 year: 2021 ident: CR2 article-title: Demonstration of quantum volume 64 on a superconducting quantum computing system publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/abe519 – ident: CR12 – volume: 5 issue: 4 year: 2020 ident: CR21 article-title: Using models to improve optimizers for variational quantum algorithms publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/abb6d9 – ident: CR10 – ident: CR33 – ident: CR35 – ident: CR29 – volume: 595 start-page: 227 issue: 7866 year: 2021 end-page: 232 ident: CR3 article-title: Quantum phases of matter on a 256-atom programmable quantum simulator publication-title: Nature doi: 10.1038/s41586-021-03582-4 – ident: CR8 – volume: 48 start-page: 798 issue: 4 year: 2001 end-page: 859 ident: CR31 article-title: Some optimal inapproximability results publication-title: J ACM doi: 10.1145/502090.502098 – volume: 5 year: 2021 ident: CR9 article-title: Local classical max-cut algorithm outperforms qaoa on high-girth regular graphs publication-title: Quantum doi: 10.22331/q-2021-04-20-437 – ident: CR25 – year: 2023 ident: CR28 publication-title: Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms – ident: CR42 – ident: CR23 – volume: 6 year: 2022 ident: CR16 article-title: Hybrid quantum-classical algorithms for approximate graph colouring publication-title: Quantum doi: 10.22331/q-2022-03-30-678 – ident: CR44 – volume: 8 start-page: 229 issue: 3–4 year: 1992 end-page: 256 ident: CR36 article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning publication-title: Mach Learn doi: 10.1007/bf00992696 – ident: CR15 – ident: CR38 – ident: CR17 – ident: CR13 – ident: CR11 – start-page: 605 year: 2020 end-page: 634 ident: CR20 article-title: Policy gradient based quantum approximate optimization algorithm publication-title: Mathematical and scientific machine learning – ident: CR34 – ident: CR7 – volume: 372 start-page: 948 issue: 6545 year: 2021 end-page: 952 ident: CR4 article-title: Quantum walks on a programmable two-dimensional 62-qubit superconducting processor publication-title: Science doi: 10.1126/science.abg7812 – volume: 4 issue: 4 year: 2019 ident: CR6 article-title: Parameterized quantum circuits as machine learning models publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ab4eb5 – volume: 20 issue: 12 year: 2021 ident: CR40 article-title: Empirical performance bounds for quantum approximate optimization publication-title: Quantum Inf Process doi: 10.1007/s11128-021-03342-3 – ident: CR41 – ident: CR26 – volume: 37 start-page: 319 issue: 1 year: 2007 end-page: 357 ident: CR32 article-title: Optimal inapproximability results for max-cut and other 2-variable csps? publication-title: SIAM J Comput doi: 10.1137/S0097539705447372 – volume: 9 issue: 45 year: 2023 ident: CR30 article-title: Quantum-enhanced greedy combinatorial optimization solver publication-title: Sci Adv doi: 10.1126/sciadv.adi0487 – ident: 214_CR12 – ident: 214_CR37 – ident: 214_CR7 – ident: 214_CR14 – ident: 214_CR35 – volume-title: Reinforcement learning: an introduction year: 2018 ident: 214_CR19 – ident: 214_CR38 doi: 10.1103/physrevlett.127.120502 – volume: 595 start-page: 227 issue: 7866 year: 2021 ident: 214_CR3 publication-title: Nature doi: 10.1038/s41586-021-03582-4 – volume: 372 start-page: 948 issue: 6545 year: 2021 ident: 214_CR4 publication-title: Science doi: 10.1126/science.abg7812 – volume-title: Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms year: 2023 ident: 214_CR28 – volume: 34 start-page: 2367 issue: 03 year: 2020 ident: 214_CR27 publication-title: Proc AAAI Conf Artif Intell doi: 10.1609/aaai.v34i03.5616 – volume: 6 issue: 2 year: 2021 ident: 214_CR2 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/abe519 – volume: 5 year: 2021 ident: 214_CR9 publication-title: Quantum doi: 10.22331/q-2021-04-20-437 – ident: 214_CR23 – ident: 214_CR25 – ident: 214_CR26 doi: 10.1103/physrevresearch.2.033446 – volume: 369 start-page: 1084 issue: 6507 year: 2020 ident: 214_CR1 publication-title: Science doi: 10.1126/science.abb9811 – volume: 3 issue: 3 year: 2018 ident: 214_CR5 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/aab822 – volume: 4 issue: 4 year: 2019 ident: 214_CR6 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/ab4eb5 – start-page: 1044 volume-title: Mathematical and scientific machine learning year: 2022 ident: 214_CR24 – volume: 8 start-page: 229 issue: 3–4 year: 1992 ident: 214_CR36 publication-title: Mach Learn doi: 10.1007/bf00992696 – ident: 214_CR39 – ident: 214_CR29 doi: 10.1103/PRXQuantum.5.020327 – ident: 214_CR13 – start-page: 605 volume-title: Mathematical and scientific machine learning year: 2020 ident: 214_CR20 – ident: 214_CR15 – ident: 214_CR22 doi: 10.1103/physrevx.11.031070 – ident: 214_CR18 doi: 10.1103/prxquantum.2.030312 – ident: 214_CR41 doi: 10.1103/physreva.104.052419 – ident: 214_CR44 – volume: 9 issue: 45 year: 2023 ident: 214_CR30 publication-title: Sci Adv doi: 10.1126/sciadv.adi0487 – ident: 214_CR33 doi: 10.1088/2058-9565/ac9013 – volume: 48 start-page: 798 issue: 4 year: 2001 ident: 214_CR31 publication-title: J ACM doi: 10.1145/502090.502098 – volume: 5 issue: 4 year: 2020 ident: 214_CR21 publication-title: Quantum Sci Technol doi: 10.1088/2058-9565/abb6d9 – ident: 214_CR43 doi: 10.1140/epjqt/s40507-022-00131-4 – ident: 214_CR8 doi: 10.26421/QIC19.13-14-3 – volume: 20 issue: 12 year: 2021 ident: 214_CR40 publication-title: Quantum Inf Process doi: 10.1007/s11128-021-03342-3 – ident: 214_CR11 doi: 10.1103/physrevlett.125.260505 – ident: 214_CR42 doi: 10.1145/3584706 – ident: 214_CR17 – ident: 214_CR34 – volume: 37 start-page: 319 issue: 1 year: 2007 ident: 214_CR32 publication-title: SIAM J Comput doi: 10.1137/S0097539705447372 – ident: 214_CR10 doi: 10.4230/LIPICS.ITCS.2022.14 – volume: 6 year: 2022 ident: 214_CR16 publication-title: Quantum doi: 10.22331/q-2022-03-30-678 |
| SSID | ssj0001125817 ssib035840856 |
| Score | 2.4274404 |
| Snippet | In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6 |
| SubjectTerms | Algorithms Combinatorial analysis Design optimization Ising model Nanotechnology and Microengineering Optimization Physics Physics and Astronomy Quantum Information Technology Quantum Physics Spintronics |
| SummonAdditionalLinks | – databaseName: ProQuest Publicly Available Content dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFqReKO-GFhQkrmZjZ_PwCa1QK5CgLAikcrL8ChSh7HazpX-fGcfZ1bYScOBsW7Hz-fHNePwNwAuX-cJL2bCGS8cmSN9YXUrNauEMl01hTBOQflednNSnp3IWn0d3Maxy2BPDRt2rPVPcNm7CYze35DEfC8kLkparileLc0Y5pOiuNSbUuAk7JLyVjWBn9vb97OvG54KnObYaAnom2dgvfpyvxh2yFvLYiZwFDTF2uX1KXaOe1yMor1yjhtPpeO__jusu3IksNZ320-oe3PDtfbgdokVt9wBefvJBcNUG32IaM098S5GI06xx6ZK8-BQYn36cfpg-hC_HR59fv2Ex8QKzRSVWzPFGIGKe1AoLyXPdlKapJ8I67J3PZanzhoxqU0vjuStliVU592Vl0T7RLn8Eo3be-n1ItRDcajSKROEmudGmdMY4Kyupa6Mzk0A1_Ghloyo5Jcf4qfoX05kKEKkeIoUQqQCRukyAr1suemWOf2hzOICg4lrt1OafJ_B8XYyrjK5OdOvnF6EOUifkajyBxz3064_maKER60mg3poU6wqk4L1d0p59D0reaHtL0lhLQAzzZ9Ovvw3myZ8HcwC7AgHsQ28OYbRaXvincMv-Wp11y2dxafwG0h8e-w priority: 102 providerName: ProQuest |
| Title | Reinforcement learning assisted recursive QAOA |
| URI | https://link.springer.com/article/10.1140/epjqt/s40507-023-00214-w https://www.ncbi.nlm.nih.gov/pubmed/38261853 https://www.proquest.com/docview/2915817075 https://www.proquest.com/docview/2918198461 https://pubmed.ncbi.nlm.nih.gov/PMC10794381 |
| Volume | 11 |
| WOSCitedRecordID | wos001143489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: PIMPY dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerOpen customDbUrl: eissn: 2196-0763 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001125817 issn: 2662-4400 databaseCode: C24 dateStart: 20141201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xaKVeSp80QFep1KvL2tkk9nFBi6gE2xS10rYXy68UEAp0s8CN387YSXa1RWqr9pKL7SSeGWe-GU8-A7y3fZc6IUpSUmHJAOEb4ZlQhDOrqShTrcug6aN8POaTiSjaqsq6q3bvtiTDl7rhs-3vuqvzn7PdGgGGT66xhAS6L3K7CuueVMyXc-0vmMcTdKyIJrJFvgU9OQ8H8KJLYmSAttsV9vzm5sve6gEEfVhJ-ct2avBSBxv_M79n8LTFpvGwMabnsOKqF_A41Iia-iV8OHGBZtWEjGLcnjfxI0b47W3FxlOfu_fl8PHn4afhK_h6MPqyf0ja4xaISXM2I5aWDPXkPEdhKmiiykyXfMCMpSl3ichUUvpQWnOhHbWZyLArpS7LDUYlyiavYa26rNwbiBVj1CgMhVhqB4lWOrNaWyNyobhWfR1B3olVmpaL3B-JcSGb_6T7MkhDNtKQKA0ZpCFvI6DzkVcNH8dfjNnpNCfbFVpLJqi3B0RMEbybN-Pa8hsmqnKX16EPAiZEaDSCzUbR84cmGJd5rBMBXzKBeQfP273cUp2dBv5ujLiFZ1aLgHWWsHivP01m618GbcMThmptynB2YG02vXZv4ZG5mZ3V0x6s5hPeg_W90bg46YVlhNfjuxFei_Q7thQfj4tv91lfGxI |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXRBceD8CCwQJjqax8_QBoQpYbbXdUtAiLSfjV2ARSrtNl4o_xW9k7CStykrAZQ-c4zhO5rPzzXj8DcBTE9nUcl6SknJDEqRvpMi4JAUzivIyVar0lh7l43FxdMQnW_CzOwvj0iq7NdEv1GaqXYy8zzhNnZhcnr6cnRBXNcrtrnYlNBpY7NsfS3TZ6hfD12jfZ4ztvjl8tUfaqgJEpzlbEENLhsOxToov5TSWZabKImHa4ANszDMZl85jVAVXlpqMZ9iUUpvlGsm3NDH2ewG2EwR71IPtyfBg8nEd1UG-gKPsUoaSqG9nX08W_Rp5kYsJsph4lTKy3PwPniG3Z3M0f9uo9f-_3Wv_25e7Dldbph0OmqlxA7ZsdRMu-YxXXd-C5--tF43VPj4attUzPofoTDjkm3DudiJccn_4bvB2cBs-nMtg70Cvmlb2HoSSMaolOnYsNUmspMqMUkbznMtCyUgFkHemFLpVVncFPr6J5tR3JDwIRAMCgSAQHgRiGQBd3Tlr1EX-4Z6dzsyiXW9qsbZxAE9Wl3GlcNs_srLTU98G6R_yTRrA3QZcq4fG6GU65hZAsQG7VQOnQr55pTr-4tXIaeQ0BgvslHUIXY_rby9z_88v8xgu7x0ejMRoON5_AFcYGrNJJdqB3mJ-ah_CRf19cVzPH7UTMYRP543gXx1wbsQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHaC9cIcFBgQJHk1jp7n4AaHCVjFtKmUCaW-eb9mGprRrulX8NX4dx07SqkwCXvbAc5zEzvlsf-f45DsAr01kE8t5QQrKDekhfSN5yiXJmVGUF4lShbf0fjYc5oeHfLQGP9t_YVxaZbsm-oXajLWLkXcZp4kTk8uSbtGkRYy2B-8n58RVkHInrW05jRoie_bHHN236t3uNtr6DWODna8fP5GmwgDRScZmxNCCYdesk-VLOI1lkaoi7zFt8GU25qmMC-c9qpwrS03KU2xKqU0zjURcmhifewPWsxidng6sf9gZjg6WER7kDtjjNn2oF3Xt5Pv5rFshR3LxQRYTr1hG5qt74hWiezVf87dDW78XDu7-z1_xHtxpGHjYr6fMfViz5QO45TNhdfUQ3h5YLyarfdw0bKpqHIfoZLgZYcKpO6FwSf_hl_7n_iP4di2dfQydclzaTQglY1RLdPhYYnqxkio1ShnNMy5zJSMVQNaaVehGcd0V_jgT9d_gkfCAEDUgBAJCeECIeQB0ceekVh35h3u2WpOLZh2qxNLeAbxaXMYVxB0LydKOL3wbpIXIQ2kAT2qgLV4ao_fpGF0A-QoEFw2cOvnqlfL0xKuU08hpD-b4UNaiddmvvw3m6Z8H8xJuI2zF_u5w7xlsMLRlnWG0BZ3Z9MI-h5v6cnZaTV80czKEo-sG8C_rdnde |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+assisted+recursive+QAOA&rft.jtitle=EPJ+quantum+technology&rft.au=Patel%2C+Yash+J.&rft.au=Jerbi%2C+Sofiene&rft.au=B%C3%A4ck%2C+Thomas&rft.au=Dunjko%2C+Vedran&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2662-4400&rft.eissn=2196-0763&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-023-00214-w&rft.externalDocID=10_1140_epjqt_s40507_023_00214_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon |