Reinforcement learning assisted recursive QAOA

In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constrai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ quantum technology Jg. 11; H. 1; S. 6
Hauptverfasser: Patel, Yash J., Jerbi, Sofiene, Bäck, Thomas, Dunjko, Vedran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
Schlagworte:
ISSN:2662-4400, 2196-0763, 2196-0763
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.
AbstractList In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.
In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling -hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.
In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope of using NISQ devices to tackle hard combinatorial optimization problems. It is, however, known that at low depth, certain locality constraints of QAOA limit its performance. To go beyond these limitations, a non-local variant of QAOA, namely recursive QAOA (RQAOA), was proposed to improve the quality of approximate solutions. The RQAOA has been studied comparatively less than QAOA, and it is less understood, for instance, for what family of instances it may fail to provide high-quality solutions. However, as we are tackling NP-hard problems (specifically, the Ising spin model), it is expected that RQAOA does fail, raising the question of designing even better quantum algorithms for combinatorial optimization. In this spirit, we identify and analyze cases where (depth-1) RQAOA fails and, based on this, propose a reinforcement learning enhanced RQAOA variant (RL-RQAOA) that improves upon RQAOA. We show that the performance of RL-RQAOA improves over RQAOA: RL-RQAOA is strictly better on these identified instances where RQAOA underperforms and is similarly performing on instances where RQAOA is near-optimal. Our work exemplifies the potentially beneficial synergy between reinforcement learning and quantum (inspired) optimization in the design of new, even better heuristics for complex problems.
ArticleNumber 6
Author Jerbi, Sofiene
Dunjko, Vedran
Patel, Yash J.
Bäck, Thomas
Author_xml – sequence: 1
  givenname: Yash J.
  surname: Patel
  fullname: Patel, Yash J.
  email: y.j.patel@liacs.leidenuniv.nl
  organization: LIACS, Leiden University, Applied Quantum Algorithms, Leiden University
– sequence: 2
  givenname: Sofiene
  surname: Jerbi
  fullname: Jerbi, Sofiene
  email: sofiene.jerbi@uibk.ac.at
  organization: Institute for Theoretical Physics, University of Innsbruck
– sequence: 3
  givenname: Thomas
  surname: Bäck
  fullname: Bäck, Thomas
  organization: LIACS, Leiden University
– sequence: 4
  givenname: Vedran
  surname: Dunjko
  fullname: Dunjko, Vedran
  organization: LIACS, Leiden University, Applied Quantum Algorithms, Leiden University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38261853$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_0L6BIbNik9bUdPzagUUULUqWKqqwtj3MzeJRxpnbSin9fp1MKdAMrW_J3ju-555DsxSEiIRXQEwBBT3G7vh1Ps6ANVTVlvKaUgajvX5EDBkbWVEm-V-5SsloISvfJcc5rSikAazSoN2SfayZBN_yAnFxjiN2QPG4wjlWPLsUQV5XLOeQR2yqhn1IOd1h9W1wt3pLXneszHj-dR-T7-eebsy_15dXF17PFZe0bxca6hY5paZAywRsD3HVy2WnBfAuNRm6k452hSiy1WSK00siCAqBUvjHKtfyIfNr5bqflBltfZkuut9sUNi79tIML9u-XGH7Y1XBngSojuIbi8OHJIQ23E-bRbkL22Pcu4jBlywxoMFrIGX3_Al0PU4ol30zNK6OqKdS7P0d6nuXXLgugd4BPQ84Ju2cEqJ2bs4_N2V1ztjRnH5uz90X68YXUh9GNYZjDhf5_DMzOIJc_4wrT7wj_1D4A7Dmzpg
CitedBy_id crossref_primary_10_1140_epjqt_s40507_024_00289_z
crossref_primary_10_1103_PhysRevA_110_052435
crossref_primary_10_1016_j_eswa_2024_124849
crossref_primary_10_1088_2632_2153_ade361
crossref_primary_10_1109_TWC_2024_3523135
crossref_primary_10_1016_j_cma_2024_117380
crossref_primary_10_1088_1674_1056_ad18ab
Cites_doi 10.1126/science.abb9811
10.1088/2058-9565/aab822
10.1609/aaai.v34i03.5616
10.1088/2058-9565/abe519
10.1088/2058-9565/abb6d9
10.1038/s41586-021-03582-4
10.1145/502090.502098
10.22331/q-2021-04-20-437
10.22331/q-2022-03-30-678
10.1007/bf00992696
10.1126/science.abg7812
10.1088/2058-9565/ab4eb5
10.1007/s11128-021-03342-3
10.1137/S0097539705447372
10.1126/sciadv.adi0487
10.1103/physrevlett.127.120502
10.1103/physrevresearch.2.033446
10.1103/PRXQuantum.5.020327
10.1103/physrevx.11.031070
10.1103/prxquantum.2.030312
10.1103/physreva.104.052419
10.1088/2058-9565/ac9013
10.1140/epjqt/s40507-022-00131-4
10.26421/QIC19.13-14-3
10.1103/physrevlett.125.260505
10.1145/3584706
10.4230/LIPICS.ITCS.2022.14
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1140/epjqt/s40507-023-00214-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-0763
ExternalDocumentID PMC10794381
38261853
10_1140_epjqt_s40507_023_00214_w
Genre Journal Article
GrantInformation_xml – fundername: Google
  funderid: http://dx.doi.org/10.13039/100006785
– fundername: European Commission
  grantid: 951821
  funderid: http://dx.doi.org/10.13039/501100000780
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 024.003.037
  funderid: http://dx.doi.org/10.13039/501100003246
– fundername: Total
  funderid: http://dx.doi.org/10.13039/501100007185
– fundername: Austrian Science Fund
  grantid: DK-ALM:W1259-N27
  funderid: http://dx.doi.org/10.13039/501100002428
– fundername: SFB BeyondC
  grantid: F7102
– fundername: Austrian Science Fund FWF
  grantid: W 1259
GroupedDBID -A0
0R~
5VS
8FE
8FG
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFS
ACULB
ADINQ
ADMLS
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
ASPBG
BAPOH
BENPR
BGLVJ
C24
C6C
CCPQU
EBLON
GROUPED_DOAJ
HCIFZ
IAO
ISR
ITC
KQ8
M~E
OK1
P62
PIMPY
PROAC
RSV
SOJ
TUS
AASML
AAYXX
ADBBV
AFFHD
BCNDV
CITATION
EBS
EJD
PHGZM
PHGZT
PQGLB
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c572t-d1f2869e02435913af6bf842cd158e396a3f9074b89be1d696e0211e67c597ad3
IEDL.DBID C24
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001143489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-4400
2196-0763
IngestDate Tue Nov 04 02:05:56 EST 2025
Sun Sep 28 10:19:07 EDT 2025
Sat Oct 11 05:50:46 EDT 2025
Mon Jul 21 05:52:41 EDT 2025
Sat Nov 29 03:41:36 EST 2025
Tue Nov 18 20:50:22 EST 2025
Fri Feb 21 02:41:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Quantum computing
Quantum approximate optimization algorithm
Combinatorial optimization
Reinforcement learning
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-d1f2869e02435913af6bf842cd158e396a3f9074b89be1d696e0211e67c597ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1140/epjqt/s40507-023-00214-w
PMID 38261853
PQID 2915817075
PQPubID 2034768
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10794381
proquest_miscellaneous_2918198461
proquest_journals_2915817075
pubmed_primary_38261853
crossref_primary_10_1140_epjqt_s40507_023_00214_w
crossref_citationtrail_10_1140_epjqt_s40507_023_00214_w
springer_journals_10_1140_epjqt_s40507_023_00214_w
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle EPJ quantum technology
PublicationTitleAbbrev EPJ Quantum Technol
PublicationTitleAlternate EPJ Quantum Technol
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References CR18
CR17
CR39
Sung, Yao, Harrigan, Rubin, Jiang, Lin, Babbush, McClean (CR21) 2020; 5
CR38
CR15
CR37
CR14
Håstad (CR31) 2001; 48
CR13
CR35
CR12
CR34
CR11
CR33
Jurcevic, Javadi-Abhari, Bishop, Lauer, Bogorin, Brink, Capelluto, Günlük, Itoko, Kanazawa, Kandala, Keefe, Krsulich, Landers, Lewandowski, McClure, Nannicini, Narasgond, Nayfeh, Pritchett, Rothwell, Srinivasan, Sundaresan, Wang, Wei, Wood, Yau, Zhang, Dial, Chow, Gambetta (CR2) 2021; 6
CR10
Khot, Kindler, Mossel, O’Donnell (CR32) 2007; 37
Yao, Bukov, Lin (CR20) 2020
Yao, Kottering, Gundlach, Lin, Bukov (CR24) 2022
Lotshaw, Humble, Herrman, Ostrowski, Siopsis (CR40) 2021; 20
Arute, Arya, Babbush, Bacon, Bardin, Barends, Boixo, Broughton, Buckley (CR1) 2020; 369
Ebadi, Wang, Levine, Keesling, Semeghini, Omran, Bluvstein, Samajdar, Pichler, Ho, Choi, Sachdev, Greiner, Vuletić, Lukin (CR3) 2021; 595
Gong, Wang, Zha, Chen, Huang, Wu, Zhu, Zhao, Li, Guo, Qian, Ye, Chen, Ying, Yu, Fan, Wu, Su, Deng, Rong, Zhang, Cao, Lin, Xu, Sun, Guo, Li, Liang, Bastidas, Nemoto, Munro, Huo, Lu, Peng, Zhu, Pan (CR4) 2021; 372
CR8
CR7
CR29
Moll, Barkoutsos, Bishop, Chow, Cross, Egger, Filipp, Fuhrer, Gambetta, Ganzhorn, Kandala, Mezzacapo, Müller, Riess, Salis, Smolin, Tavernelli, Temme (CR5) 2018; 3
CR26
CR25
CR23
CR22
CR44
CR43
CR42
Bravyi, Kliesch, Koenig, Tang (CR16) 2022; 6
CR41
Williams (CR36) 1992; 8
Dupont, Evert, Hodson, Sundar, Jeffrey, Yamaguchi, Feng, Maciejewski, Hadfield, Alam (CR30) 2023; 9
Benedetti, Lloyd, Sack, Fiorentini (CR6) 2019; 4
Marwaha (CR9) 2021; 5
Sutton, Barto (CR19) 2018
Brady, Hadfield (CR28) 2023
Khairy, Shaydulin, Cincio, Alexeev, Balaprakash (CR27) 2020; 34
214_CR29
J Yao (214_CR24) 2022
M Dupont (214_CR30) 2023; 9
KJ Sung (214_CR21) 2020; 5
PC Lotshaw (214_CR40) 2021; 20
S Ebadi (214_CR3) 2021; 595
RS Sutton (214_CR19) 2018
RJ Williams (214_CR36) 1992; 8
M Gong (214_CR4) 2021; 372
K Marwaha (214_CR9) 2021; 5
214_CR12
214_CR34
214_CR13
214_CR35
214_CR10
214_CR11
214_CR33
214_CR38
214_CR17
214_CR39
214_CR14
214_CR15
LT Brady (214_CR28) 2023
214_CR37
214_CR7
F Arute (214_CR1) 2020; 369
214_CR8
214_CR18
J Håstad (214_CR31) 2001; 48
M Benedetti (214_CR6) 2019; 4
214_CR41
214_CR42
J Yao (214_CR20) 2020
S Khot (214_CR32) 2007; 37
214_CR23
S Bravyi (214_CR16) 2022; 6
214_CR43
214_CR22
214_CR44
S Khairy (214_CR27) 2020; 34
N Moll (214_CR5) 2018; 3
214_CR25
P Jurcevic (214_CR2) 2021; 6
214_CR26
References_xml – ident: CR22
– volume: 369
  start-page: 1084
  issue: 6507
  year: 2020
  end-page: 1089
  ident: CR1
  article-title: Hartree-Fock on a superconducting qubit quantum computer
  publication-title: Science
  doi: 10.1126/science.abb9811
– ident: CR18
– year: 2018
  ident: CR19
  publication-title: Reinforcement learning: an introduction
– ident: CR43
– volume: 3
  issue: 3
  year: 2018
  ident: CR5
  article-title: Quantum optimization using variational algorithms on near-term quantum devices
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/aab822
– start-page: 1044
  year: 2022
  end-page: 1081
  ident: CR24
  article-title: Noise-robust end-to-end quantum control using deep autoregressive policy networks
  publication-title: Mathematical and scientific machine learning
– volume: 34
  start-page: 2367
  issue: 03
  year: 2020
  end-page: 2375
  ident: CR27
  article-title: Learning to optimize variational quantum circuits to solve combinatorial problems
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v34i03.5616
– ident: CR14
– ident: CR39
– ident: CR37
– volume: 6
  issue: 2
  year: 2021
  ident: CR2
  article-title: Demonstration of quantum volume 64 on a superconducting quantum computing system
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abe519
– ident: CR12
– volume: 5
  issue: 4
  year: 2020
  ident: CR21
  article-title: Using models to improve optimizers for variational quantum algorithms
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abb6d9
– ident: CR10
– ident: CR33
– ident: CR35
– ident: CR29
– volume: 595
  start-page: 227
  issue: 7866
  year: 2021
  end-page: 232
  ident: CR3
  article-title: Quantum phases of matter on a 256-atom programmable quantum simulator
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– ident: CR8
– volume: 48
  start-page: 798
  issue: 4
  year: 2001
  end-page: 859
  ident: CR31
  article-title: Some optimal inapproximability results
  publication-title: J ACM
  doi: 10.1145/502090.502098
– volume: 5
  year: 2021
  ident: CR9
  article-title: Local classical max-cut algorithm outperforms qaoa on high-girth regular graphs
  publication-title: Quantum
  doi: 10.22331/q-2021-04-20-437
– ident: CR25
– year: 2023
  ident: CR28
  publication-title: Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms
– ident: CR42
– ident: CR23
– volume: 6
  year: 2022
  ident: CR16
  article-title: Hybrid quantum-classical algorithms for approximate graph colouring
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-678
– ident: CR44
– volume: 8
  start-page: 229
  issue: 3–4
  year: 1992
  end-page: 256
  ident: CR36
  article-title: Simple statistical gradient-following algorithms for connectionist reinforcement learning
  publication-title: Mach Learn
  doi: 10.1007/bf00992696
– ident: CR15
– ident: CR38
– ident: CR17
– ident: CR13
– ident: CR11
– start-page: 605
  year: 2020
  end-page: 634
  ident: CR20
  article-title: Policy gradient based quantum approximate optimization algorithm
  publication-title: Mathematical and scientific machine learning
– ident: CR34
– ident: CR7
– volume: 372
  start-page: 948
  issue: 6545
  year: 2021
  end-page: 952
  ident: CR4
  article-title: Quantum walks on a programmable two-dimensional 62-qubit superconducting processor
  publication-title: Science
  doi: 10.1126/science.abg7812
– volume: 4
  issue: 4
  year: 2019
  ident: CR6
  article-title: Parameterized quantum circuits as machine learning models
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/ab4eb5
– volume: 20
  issue: 12
  year: 2021
  ident: CR40
  article-title: Empirical performance bounds for quantum approximate optimization
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-021-03342-3
– ident: CR41
– ident: CR26
– volume: 37
  start-page: 319
  issue: 1
  year: 2007
  end-page: 357
  ident: CR32
  article-title: Optimal inapproximability results for max-cut and other 2-variable csps?
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539705447372
– volume: 9
  issue: 45
  year: 2023
  ident: CR30
  article-title: Quantum-enhanced greedy combinatorial optimization solver
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adi0487
– ident: 214_CR12
– ident: 214_CR37
– ident: 214_CR7
– ident: 214_CR14
– ident: 214_CR35
– volume-title: Reinforcement learning: an introduction
  year: 2018
  ident: 214_CR19
– ident: 214_CR38
  doi: 10.1103/physrevlett.127.120502
– volume: 595
  start-page: 227
  issue: 7866
  year: 2021
  ident: 214_CR3
  publication-title: Nature
  doi: 10.1038/s41586-021-03582-4
– volume: 372
  start-page: 948
  issue: 6545
  year: 2021
  ident: 214_CR4
  publication-title: Science
  doi: 10.1126/science.abg7812
– volume-title: Iterative quantum algorithms for maximum independent set: a tale of low-depth quantum algorithms
  year: 2023
  ident: 214_CR28
– volume: 34
  start-page: 2367
  issue: 03
  year: 2020
  ident: 214_CR27
  publication-title: Proc AAAI Conf Artif Intell
  doi: 10.1609/aaai.v34i03.5616
– volume: 6
  issue: 2
  year: 2021
  ident: 214_CR2
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abe519
– volume: 5
  year: 2021
  ident: 214_CR9
  publication-title: Quantum
  doi: 10.22331/q-2021-04-20-437
– ident: 214_CR23
– ident: 214_CR25
– ident: 214_CR26
  doi: 10.1103/physrevresearch.2.033446
– volume: 369
  start-page: 1084
  issue: 6507
  year: 2020
  ident: 214_CR1
  publication-title: Science
  doi: 10.1126/science.abb9811
– volume: 3
  issue: 3
  year: 2018
  ident: 214_CR5
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/aab822
– volume: 4
  issue: 4
  year: 2019
  ident: 214_CR6
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/ab4eb5
– start-page: 1044
  volume-title: Mathematical and scientific machine learning
  year: 2022
  ident: 214_CR24
– volume: 8
  start-page: 229
  issue: 3–4
  year: 1992
  ident: 214_CR36
  publication-title: Mach Learn
  doi: 10.1007/bf00992696
– ident: 214_CR39
– ident: 214_CR29
  doi: 10.1103/PRXQuantum.5.020327
– ident: 214_CR13
– start-page: 605
  volume-title: Mathematical and scientific machine learning
  year: 2020
  ident: 214_CR20
– ident: 214_CR15
– ident: 214_CR22
  doi: 10.1103/physrevx.11.031070
– ident: 214_CR18
  doi: 10.1103/prxquantum.2.030312
– ident: 214_CR41
  doi: 10.1103/physreva.104.052419
– ident: 214_CR44
– volume: 9
  issue: 45
  year: 2023
  ident: 214_CR30
  publication-title: Sci Adv
  doi: 10.1126/sciadv.adi0487
– ident: 214_CR33
  doi: 10.1088/2058-9565/ac9013
– volume: 48
  start-page: 798
  issue: 4
  year: 2001
  ident: 214_CR31
  publication-title: J ACM
  doi: 10.1145/502090.502098
– volume: 5
  issue: 4
  year: 2020
  ident: 214_CR21
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/abb6d9
– ident: 214_CR43
  doi: 10.1140/epjqt/s40507-022-00131-4
– ident: 214_CR8
  doi: 10.26421/QIC19.13-14-3
– volume: 20
  issue: 12
  year: 2021
  ident: 214_CR40
  publication-title: Quantum Inf Process
  doi: 10.1007/s11128-021-03342-3
– ident: 214_CR11
  doi: 10.1103/physrevlett.125.260505
– ident: 214_CR42
  doi: 10.1145/3584706
– ident: 214_CR17
– ident: 214_CR34
– volume: 37
  start-page: 319
  issue: 1
  year: 2007
  ident: 214_CR32
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539705447372
– ident: 214_CR10
  doi: 10.4230/LIPICS.ITCS.2022.14
– volume: 6
  year: 2022
  ident: 214_CR16
  publication-title: Quantum
  doi: 10.22331/q-2022-03-30-678
SSID ssj0001125817
ssib035840856
Score 2.4274404
Snippet In recent years, variational quantum algorithms such as the Quantum Approximation Optimization Algorithm (QAOA) have gained popularity as they provide the hope...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6
SubjectTerms Algorithms
Combinatorial analysis
Design optimization
Ising model
Nanotechnology and Microengineering
Optimization
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Spintronics
SummonAdditionalLinks – databaseName: ProQuest Publicly Available Content
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFqReKO-GFhQkrmZjZ_PwCa1QK5CgLAikcrL8ChSh7HazpX-fGcfZ1bYScOBsW7Hz-fHNePwNwAuX-cJL2bCGS8cmSN9YXUrNauEMl01hTBOQflednNSnp3IWn0d3Maxy2BPDRt2rPVPcNm7CYze35DEfC8kLkparileLc0Y5pOiuNSbUuAk7JLyVjWBn9vb97OvG54KnObYaAnom2dgvfpyvxh2yFvLYiZwFDTF2uX1KXaOe1yMor1yjhtPpeO__jusu3IksNZ320-oe3PDtfbgdokVt9wBefvJBcNUG32IaM098S5GI06xx6ZK8-BQYn36cfpg-hC_HR59fv2Ex8QKzRSVWzPFGIGKe1AoLyXPdlKapJ8I67J3PZanzhoxqU0vjuStliVU592Vl0T7RLn8Eo3be-n1ItRDcajSKROEmudGmdMY4Kyupa6Mzk0A1_Ghloyo5Jcf4qfoX05kKEKkeIoUQqQCRukyAr1suemWOf2hzOICg4lrt1OafJ_B8XYyrjK5OdOvnF6EOUifkajyBxz3064_maKER60mg3poU6wqk4L1d0p59D0reaHtL0lhLQAzzZ9Ovvw3myZ8HcwC7AgHsQ28OYbRaXvincMv-Wp11y2dxafwG0h8e-w
  priority: 102
  providerName: ProQuest
Title Reinforcement learning assisted recursive QAOA
URI https://link.springer.com/article/10.1140/epjqt/s40507-023-00214-w
https://www.ncbi.nlm.nih.gov/pubmed/38261853
https://www.proquest.com/docview/2915817075
https://www.proquest.com/docview/2918198461
https://pubmed.ncbi.nlm.nih.gov/PMC10794381
Volume 11
WOSCitedRecordID wos001143489600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: P5Z
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: PIMPY
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerOpen
  customDbUrl:
  eissn: 2196-0763
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125817
  issn: 2662-4400
  databaseCode: C24
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xaKVeSp80QFep1KvL2tkk9nFBi6gE2xS10rYXy68UEAp0s8CN387YSXa1RWqr9pKL7SSeGWe-GU8-A7y3fZc6IUpSUmHJAOEb4ZlQhDOrqShTrcug6aN8POaTiSjaqsq6q3bvtiTDl7rhs-3vuqvzn7PdGgGGT66xhAS6L3K7CuueVMyXc-0vmMcTdKyIJrJFvgU9OQ8H8KJLYmSAttsV9vzm5sve6gEEfVhJ-ct2avBSBxv_M79n8LTFpvGwMabnsOKqF_A41Iia-iV8OHGBZtWEjGLcnjfxI0b47W3FxlOfu_fl8PHn4afhK_h6MPqyf0ja4xaISXM2I5aWDPXkPEdhKmiiykyXfMCMpSl3ichUUvpQWnOhHbWZyLArpS7LDUYlyiavYa26rNwbiBVj1CgMhVhqB4lWOrNaWyNyobhWfR1B3olVmpaL3B-JcSGb_6T7MkhDNtKQKA0ZpCFvI6DzkVcNH8dfjNnpNCfbFVpLJqi3B0RMEbybN-Pa8hsmqnKX16EPAiZEaDSCzUbR84cmGJd5rBMBXzKBeQfP273cUp2dBv5ujLiFZ1aLgHWWsHivP01m618GbcMThmptynB2YG02vXZv4ZG5mZ3V0x6s5hPeg_W90bg46YVlhNfjuxFei_Q7thQfj4tv91lfGxI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXRBceD8CCwQJjqax8_QBoQpYbbXdUtAiLSfjV2ARSrtNl4o_xW9k7CStykrAZQ-c4zhO5rPzzXj8DcBTE9nUcl6SknJDEqRvpMi4JAUzivIyVar0lh7l43FxdMQnW_CzOwvj0iq7NdEv1GaqXYy8zzhNnZhcnr6cnRBXNcrtrnYlNBpY7NsfS3TZ6hfD12jfZ4ztvjl8tUfaqgJEpzlbEENLhsOxToov5TSWZabKImHa4ANszDMZl85jVAVXlpqMZ9iUUpvlGsm3NDH2ewG2EwR71IPtyfBg8nEd1UG-gKPsUoaSqG9nX08W_Rp5kYsJsph4lTKy3PwPniG3Z3M0f9uo9f-_3Wv_25e7Dldbph0OmqlxA7ZsdRMu-YxXXd-C5--tF43VPj4attUzPofoTDjkm3DudiJccn_4bvB2cBs-nMtg70Cvmlb2HoSSMaolOnYsNUmspMqMUkbznMtCyUgFkHemFLpVVncFPr6J5tR3JDwIRAMCgSAQHgRiGQBd3Tlr1EX-4Z6dzsyiXW9qsbZxAE9Wl3GlcNs_srLTU98G6R_yTRrA3QZcq4fG6GU65hZAsQG7VQOnQr55pTr-4tXIaeQ0BgvslHUIXY_rby9z_88v8xgu7x0ejMRoON5_AFcYGrNJJdqB3mJ-ah_CRf19cVzPH7UTMYRP543gXx1wbsQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHaC9cIcFBgQJHk1jp7n4AaHCVjFtKmUCaW-eb9mGprRrulX8NX4dx07SqkwCXvbAc5zEzvlsf-f45DsAr01kE8t5QQrKDekhfSN5yiXJmVGUF4lShbf0fjYc5oeHfLQGP9t_YVxaZbsm-oXajLWLkXcZp4kTk8uSbtGkRYy2B-8n58RVkHInrW05jRoie_bHHN236t3uNtr6DWODna8fP5GmwgDRScZmxNCCYdesk-VLOI1lkaoi7zFt8GU25qmMC-c9qpwrS03KU2xKqU0zjURcmhifewPWsxidng6sf9gZjg6WER7kDtjjNn2oF3Xt5Pv5rFshR3LxQRYTr1hG5qt74hWiezVf87dDW78XDu7-z1_xHtxpGHjYr6fMfViz5QO45TNhdfUQ3h5YLyarfdw0bKpqHIfoZLgZYcKpO6FwSf_hl_7n_iP4di2dfQydclzaTQglY1RLdPhYYnqxkio1ShnNMy5zJSMVQNaaVehGcd0V_jgT9d_gkfCAEDUgBAJCeECIeQB0ceekVh35h3u2WpOLZh2qxNLeAbxaXMYVxB0LydKOL3wbpIXIQ2kAT2qgLV4ao_fpGF0A-QoEFw2cOvnqlfL0xKuU08hpD-b4UNaiddmvvw3m6Z8H8xJuI2zF_u5w7xlsMLRlnWG0BZ3Z9MI-h5v6cnZaTV80czKEo-sG8C_rdnde
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+assisted+recursive+QAOA&rft.jtitle=EPJ+quantum+technology&rft.au=Patel%2C+Yash+J.&rft.au=Jerbi%2C+Sofiene&rft.au=B%C3%A4ck%2C+Thomas&rft.au=Dunjko%2C+Vedran&rft.date=2024-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2662-4400&rft.eissn=2196-0763&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1140%2Fepjqt%2Fs40507-023-00214-w&rft.externalDocID=10_1140_epjqt_s40507_023_00214_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4400&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4400&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4400&client=summon