Modular neuromuscular control of human locomotion by central pattern generator

The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscle...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of biomechanics Ročník 53; s. 154 - 162
Hlavní autori: Haghpanah, Seyyed Arash, Farahmand, Farzam, Zohoor, Hassan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Elsevier Ltd 28.02.2017
Elsevier Limited
Predmet:
ISSN:0021-9290, 1873-2380, 1873-2380
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.
AbstractList The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka's four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model's performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.
Abstract The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.
Author Farahmand, Farzam
Zohoor, Hassan
Haghpanah, Seyyed Arash
Author_xml – sequence: 1
  givenname: Seyyed Arash
  surname: Haghpanah
  fullname: Haghpanah, Seyyed Arash
  email: haghpanah@mech.sharif.ir
  organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran
– sequence: 2
  givenname: Farzam
  surname: Farahmand
  fullname: Farahmand, Farzam
  email: farahmand@sharif.edu
  organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran
– sequence: 3
  givenname: Hassan
  surname: Zohoor
  fullname: Zohoor, Hassan
  email: zohoor@sharif.edu
  organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28126336$$D View this record in MEDLINE/PubMed
BookMark eNqNkl-P1CAUxYlZ486ufoVNE198ab1Ap9DEGM3Gf8mqD-ozoXDrMrYwQmsy317q7MRkXmaegNzfPcA594pc-OCRkBsKFQXavNxUm86FEc19xYCKCmgFDB6RFZWCl4xLuCArAEbLlrVwSa5S2gCAqEX7hFwySVnDebMiXz4HOw86Fh7nGMY5mX8nE_wUw1CEvrifR-2LIZgwhskFX3S7wmAu66HY6mnC6Iuf6DHqKcSn5HGvh4TPHtZr8uP9u--3H8u7rx8-3b69K81asKk0Qti6q3u0VghqRUspWJCS9Z2mjalriUzXUjPTGQt1i2sOuWCN7lrsJPJr8mKvu43h94xpUqNLBodBewxzUlS2vIV1I-gZqBCyltnFM9CGiaZe8wV9foRuwhx9_vMi2DLe5AwydfNAzd2IVm2jG3XcqYP_GXi1B0wMKUXslXGTXmzO_rpBUVBL3GqjDnGrJW4FVOW4c3tz1H644WTjm30j5pD-OIwqGYfeoHURzaRscKclXh9JmMF5Z_TwC3eY_tuhElOgvi3DuMwiFXzZnhA45wV_Ab8B8b8
CitedBy_id crossref_primary_10_3389_fnhum_2022_936090
crossref_primary_10_1007_s40997_022_00566_1
crossref_primary_10_1097_MD_0000000000027154
crossref_primary_10_1155_2022_9228838
crossref_primary_10_3390_app15158267
crossref_primary_10_4103_BNM_BNM_5_25
crossref_primary_10_3389_fbioe_2025_1471582
crossref_primary_10_1016_j_jneumeth_2018_05_015
crossref_primary_10_3390_e24050707
crossref_primary_10_1109_TNSRE_2025_3557777
crossref_primary_10_3390_s24103225
crossref_primary_10_1016_j_bspc_2022_104455
crossref_primary_10_3390_ijms22136835
crossref_primary_10_1016_j_clinbiomech_2019_05_006
crossref_primary_10_1080_09638288_2019_1674389
crossref_primary_10_3389_fnins_2018_00537
crossref_primary_10_1371_journal_pcbi_1008594
crossref_primary_10_3389_fnhum_2017_00586
crossref_primary_10_1177_09544119211052365
crossref_primary_10_1007_s11517_022_02734_6
crossref_primary_10_1155_2018_2913636
crossref_primary_10_1016_j_humov_2018_10_002
crossref_primary_10_1016_j_jbiomech_2022_110997
Cites_doi 10.1038/nn1010
10.1152/jn.00865.2011
10.1007/s00422-014-0592-8
10.1007/s00422-010-0373-y
10.1016/j.jbiomech.2012.05.037
10.1523/JNEUROSCI.1327-05.2005
10.1016/j.brainresrev.2007.08.006
10.1016/S0966-6362(99)00052-1
10.1163/156855308X3689785
10.1016/j.jbiomech.2009.03.009
10.1007/3-540-46084-5_17
10.3389/fncom.2013.00048
10.1152/jn.00222.2005
10.1016/S0966-6362(97)00042-8
10.1007/BF00204048
10.1152/jn.00825.2009
10.1111/j.1469-7793.2000.00389.x
10.1152/jn.00241.2006
10.1007/s004220050408
10.1152/jn.00081.2006
10.1111/j.1749-6632.2010.05435.x
10.1038/44565
10.1007/s00422-013-0546-6
10.1016/j.neuron.2006.10.034
10.1007/BF00319514
10.1017/S0140525X00051268
10.1093/brain/awf273
10.1007/BF00235671
10.1038/5721
10.1007/BF00449593
10.1038/nn.3616
10.1007/PL00007977
10.1073/pnas.91.16.7534
10.1007/s11517-012-0944-2
10.1016/j.jbiomech.2009.10.009
10.1093/oso/9780198505143.003.0023
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright Elsevier Limited 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
– notice: Copyright Elsevier Limited 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
P64
DOI 10.1016/j.jbiomech.2017.01.020
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Technology Research Database

MEDLINE - Academic
MEDLINE
Engineering Research Database

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 162
ExternalDocumentID 4321025183
28126336
10_1016_j_jbiomech_2017_01_020
S0021929017300210
1_s2_0_S0021929017300210
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
.GJ
29J
3V.
53G
AACTN
AAQQT
AAQXK
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFCTW
AFFDN
AFJKZ
AFKWA
AGHFR
AI.
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
PKN
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
YCJ
ZGI
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
9DU
AAYXX
AFFHD
AGQPQ
AIGII
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7QO
P64
ID FETCH-LOGICAL-c572t-c77d4b4fedd771d79110d0882fba16c448e2a48a2cbcd049e530a16dcab9eb8e3
IEDL.DBID M2O
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396970100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
1873-2380
IngestDate Thu Oct 02 06:42:09 EDT 2025
Tue Oct 07 09:32:51 EDT 2025
Thu Oct 02 04:01:56 EDT 2025
Sat Nov 29 14:51:32 EST 2025
Wed Feb 19 02:43:29 EST 2025
Sat Nov 29 01:49:34 EST 2025
Tue Nov 18 20:53:18 EST 2025
Fri Feb 23 02:20:31 EST 2024
Tue Feb 25 20:12:59 EST 2025
Tue Oct 14 19:30:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Rhythmic activity
Motor pattern
Muscle redundancy
Muscle synergies
Motor program
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-c77d4b4fedd771d79110d0882fba16c448e2a48a2cbcd049e530a16dcab9eb8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 28126336
PQID 1879236238
PQPubID 1226346
PageCount 9
ParticipantIDs proquest_miscellaneous_1893905671
proquest_miscellaneous_1877848201
proquest_miscellaneous_1862764531
proquest_journals_1879236238
pubmed_primary_28126336
crossref_citationtrail_10_1016_j_jbiomech_2017_01_020
crossref_primary_10_1016_j_jbiomech_2017_01_020
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_01_020
elsevier_clinicalkeyesjournals_1_s2_0_S0021929017300210
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_01_020
PublicationCentury 2000
PublicationDate 2017-02-28
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Duysens, Van de Crommert (bib15) 1998; 7
McGowan, Neptune, Clark, Kautz (bib26) 2010; 43
Taga (bib34) 1995; 73
Allen, Neptune (bib1) 2012; 45
d׳Avella, Saltiel, Bizzi (bib12) 2003; 6
Taga (bib35) 1998; 78
Grillner, Zangger (bib16) 1979; 34
Pang, Yang (bib31) 2000; 528
Markin, Klishko, Shevtsova, Lemay, Prilutsky, Rybak (bib20) 2010; 1198
Berkinblit, Feldman, Fukson (bib5) 1986; 9
Cappellini, Ivanenko, Poppele, Lacquaniti (bib7) 2006; 95
Ivanenko, Cappellini, Dominici, Poppele, Lacquaniti (bib17) 2005; 25
Chvatal, Ting (bib10) 2013; 7
Markin, Klishko, Shevtsova, Lemay, Prilutsky, Rybak (bib22) 2016
Ogihara, Yamazaki (bib30) 2001; 84
Ussa-Ivaldi, Giszter, Bizzi (bib27) 1994; 91
Rybak, I.A., Ivashko, D.G., Prilutsky, B.I., Lewis, M.A., Chapin, J.K., 2002. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of International Conference on Artificial Neural Networks, Springer Berlin, Heidelberg.
Lee, Seung (bib19) 1999; 401
Aoi, Kondo, Hayashi, Yanagihara, Aoki, Yamaura, Ogihara, Funato, Tomita, Senda, Tsuchiya (bib4) 2013; 52
Neptune, Clark, Kautz (bib29) 2009; 42
Wu, Miyamoto, Castro, Ölveczky, Smith (bib38) 2014; 17
Dietz, Duysens (bib13) 2000; 11
Yuan, Y.X., 2000. A review of trust region algorithms for optimization. In: ICM99: Proceedings 4th International Congress on Industrial and Applied Mathematics. Oxford University Press. Oxford.
Tresch, Cheung, d׳Avella (bib37) 2006; 95
Krouchev, Kalaska, Drew (bib18) 2006; 96
Tresch, Saltiel, Bizzi (bib36) 1999; 2
Chong, Wagner, Wulf (bib8) 2012; 50
Matsuoka (bib23) 1985; 52
Nassour, Hénaff, Benouezdou, Cheng (bib28) 2014; 108
McCrea, Rybak (bib25) 2008; 57
Churchland, Afshar, Shenoy (bib9) 2006; 52
Matsuoka (bib24) 1987; 56
Markin, Lemay, Prilutsky, Rybak (bib21) 2012; 107
Aoi, Ogihara, Funato, Sugimoto, Tsuchiya (bib3) 2010; 102
Rossignol, Lund, Drew (bib32) 1988
Dietz, Mueller, Colombo (bib14) 2002; 125
Aoi, Ogihara, Sugimoto, Tsuchiya (bib2) 2008; 22
Bernshteĭn (bib6) 1967
Clark, Ting, Zajac, Neptune, Kautz (bib11) 2010; 103
Bernshteĭn (10.1016/j.jbiomech.2017.01.020_bib6) 1967
Wu (10.1016/j.jbiomech.2017.01.020_bib38) 2014; 17
Nassour (10.1016/j.jbiomech.2017.01.020_bib28) 2014; 108
Clark (10.1016/j.jbiomech.2017.01.020_bib11) 2010; 103
Taga (10.1016/j.jbiomech.2017.01.020_bib35) 1998; 78
Matsuoka (10.1016/j.jbiomech.2017.01.020_bib24) 1987; 56
Allen (10.1016/j.jbiomech.2017.01.020_bib1) 2012; 45
Markin (10.1016/j.jbiomech.2017.01.020_bib20) 2010; 1198
Ogihara (10.1016/j.jbiomech.2017.01.020_bib30) 2001; 84
Neptune (10.1016/j.jbiomech.2017.01.020_bib29) 2009; 42
Dietz (10.1016/j.jbiomech.2017.01.020_bib13) 2000; 11
Grillner (10.1016/j.jbiomech.2017.01.020_bib16) 1979; 34
10.1016/j.jbiomech.2017.01.020_bib33
Tresch (10.1016/j.jbiomech.2017.01.020_bib37) 2006; 95
McGowan (10.1016/j.jbiomech.2017.01.020_bib26) 2010; 43
Duysens (10.1016/j.jbiomech.2017.01.020_bib15) 1998; 7
Aoi (10.1016/j.jbiomech.2017.01.020_bib2) 2008; 22
Ivanenko (10.1016/j.jbiomech.2017.01.020_bib17) 2005; 25
10.1016/j.jbiomech.2017.01.020_bib39
Churchland (10.1016/j.jbiomech.2017.01.020_bib9) 2006; 52
Chong (10.1016/j.jbiomech.2017.01.020_bib8) 2012; 50
Markin (10.1016/j.jbiomech.2017.01.020_bib22) 2016
Pang (10.1016/j.jbiomech.2017.01.020_bib31) 2000; 528
Chvatal (10.1016/j.jbiomech.2017.01.020_bib10) 2013; 7
Berkinblit (10.1016/j.jbiomech.2017.01.020_bib5) 1986; 9
Lee (10.1016/j.jbiomech.2017.01.020_bib19) 1999; 401
Dietz (10.1016/j.jbiomech.2017.01.020_bib14) 2002; 125
Rossignol (10.1016/j.jbiomech.2017.01.020_bib32) 1988
McCrea (10.1016/j.jbiomech.2017.01.020_bib25) 2008; 57
Aoi (10.1016/j.jbiomech.2017.01.020_bib4) 2013; 52
Markin (10.1016/j.jbiomech.2017.01.020_bib21) 2012; 107
d׳Avella (10.1016/j.jbiomech.2017.01.020_bib12) 2003; 6
Ussa-Ivaldi (10.1016/j.jbiomech.2017.01.020_bib27) 1994; 91
Cappellini (10.1016/j.jbiomech.2017.01.020_bib7) 2006; 95
Krouchev (10.1016/j.jbiomech.2017.01.020_bib18) 2006; 96
Aoi (10.1016/j.jbiomech.2017.01.020_bib3) 2010; 102
Matsuoka (10.1016/j.jbiomech.2017.01.020_bib23) 1985; 52
Taga (10.1016/j.jbiomech.2017.01.020_bib34) 1995; 73
Tresch (10.1016/j.jbiomech.2017.01.020_bib36) 1999; 2
References_xml – volume: 50
  start-page: 917
  year: 2012
  end-page: 923
  ident: bib8
  article-title: Neural oscillators triggered by loading and hip orientation can generate activation patterns at the ankle during walking in humans
  publication-title: Med. Biol. Eng. Comput.
– volume: 103
  start-page: 844
  year: 2010
  end-page: 857
  ident: bib11
  article-title: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke
  publication-title: J. Neurophysiol.
– volume: 95
  start-page: 3426
  year: 2006
  end-page: 3437
  ident: bib7
  article-title: Motor patterns in human walking and runnng
  publication-title: J. Neurophysiol.
– volume: 56
  start-page: 345
  year: 1987
  end-page: 353
  ident: bib24
  article-title: Mechanisms of frequency and pattern control in the neural rhythm generators
  publication-title: Biol. Cybern.
– start-page: 201
  year: 1988
  end-page: 283
  ident: bib32
  article-title: The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates
  publication-title: Neural Control Rhythm. Mov. Vertebr.
– volume: 95
  start-page: 2199
  year: 2006
  end-page: 2212
  ident: bib37
  article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets
  publication-title: J. Neurophysiol.
– volume: 17
  start-page: 312
  year: 2014
  end-page: 321
  ident: bib38
  article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
  publication-title: Nat. Neurosci.
– volume: 528
  start-page: 389
  year: 2000
  end-page: 404
  ident: bib31
  article-title: The initiation of the swing phase in human infant stepping: importance of hip position and leg loading
  publication-title: J. Physiol.
– volume: 73
  start-page: 97
  year: 1995
  end-page: 111
  ident: bib34
  article-title: A model of the neuro-musculo-skeletal system for human locomotion
  publication-title: Biol. Cybern.
– volume: 57
  start-page: 134
  year: 2008
  end-page: 146
  ident: bib25
  article-title: Organization of mammalian locomotor rhythm and pattern generation
  publication-title: Brain Res. Rev.
– volume: 22
  start-page: 1697
  year: 2008
  end-page: 1713
  ident: bib2
  article-title: Simulating adaptive human bipedal locomotion based on phase resetting using foot-contact information
  publication-title: Adv. Robot.
– volume: 52
  start-page: 1085
  year: 2006
  end-page: 1096
  ident: bib9
  article-title: A central source of movement variability
  publication-title: Neuron
– volume: 7
  start-page: 48
  year: 2013
  ident: bib10
  article-title: Common muscle synergies for balance and walking
  publication-title: Front. Comput. Neurosci.
– volume: 52
  start-page: 367
  year: 1985
  end-page: 376
  ident: bib23
  article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation
  publication-title: Biol. Cybern.
– volume: 107
  start-page: 2057
  year: 2012
  end-page: 2071
  ident: bib21
  article-title: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: 300
  year: 2003
  end-page: 308
  ident: bib12
  article-title: Combinations of muscle synergies in the construction of a natural motor behavior
  publication-title: Nat. Neurosci.
– volume: 42
  start-page: 1282
  year: 2009
  end-page: 1287
  ident: bib29
  article-title: Modular control of human walking: a simulation study
  publication-title: J. Biomech.
– volume: 102
  start-page: 373
  year: 2010
  end-page: 387
  ident: bib3
  article-title: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator
  publication-title: Biol. Cybern.
– volume: 96
  start-page: 1991
  year: 2006
  end-page: 2010
  ident: bib18
  article-title: Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition
  publication-title: J. Neurophysiol.
– volume: 45
  start-page: 2157
  year: 2012
  end-page: 2163
  ident: bib1
  article-title: Three-dimensional modular control of human walking
  publication-title: J. Biomech.
– reference: Rybak, I.A., Ivashko, D.G., Prilutsky, B.I., Lewis, M.A., Chapin, J.K., 2002. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of International Conference on Artificial Neural Networks, Springer Berlin, Heidelberg.
– volume: 34
  start-page: 241
  year: 1979
  end-page: 261
  ident: bib16
  article-title: On the central generation of locomotion in the low spinal cat
  publication-title: Exp. Brain Res.
– volume: 9
  start-page: 585
  year: 1986
  end-page: 599
  ident: bib5
  article-title: Adaptability of innate motor patterns and motor control mechanisms
  publication-title: Behav. Brain Sci.
– volume: 43
  start-page: 412
  year: 2010
  end-page: 419
  ident: bib26
  article-title: Modular control of human walking: adaptations to altered mechanical demands
  publication-title: J. Biomech.
– start-page: 21
  year: 2016
  end-page: 30
  ident: bib22
  article-title: A neuromechanical model of spinal control of locomotion
  publication-title: Neuromechanical Modeling of Posture and Locomotion
– reference: Yuan, Y.X., 2000. A review of trust region algorithms for optimization. In: ICM99: Proceedings 4th International Congress on Industrial and Applied Mathematics. Oxford University Press. Oxford.
– volume: 78
  start-page: 9
  year: 1998
  end-page: 17
  ident: bib35
  article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance
  publication-title: Biol. Cybern.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib19
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 108
  start-page: 291
  year: 2014
  end-page: 303
  ident: bib28
  article-title: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots
  publication-title: Biol. Cybern.
– year: 1967
  ident: bib6
  article-title: Co-ordination and Regulation of Movements
– volume: 7
  start-page: 131
  year: 1998
  end-page: 141
  ident: bib15
  article-title: Neural control of locomotion; Part 1: the central pattern generator from cats to humans
  publication-title: Gait Posture
– volume: 84
  start-page: 1
  year: 2001
  end-page: 11
  ident: bib30
  article-title: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model
  publication-title: Biol. Cybern.
– volume: 52
  start-page: 201
  year: 2013
  end-page: 216
  ident: bib4
  article-title: Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study
  publication-title: Biol. Cybern.
– volume: 1198
  start-page: 21
  year: 2010
  end-page: 34
  ident: bib20
  article-title: Afferent control of locomotor CPG: insights from a simple neuromechanical model
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 91
  start-page: 7534
  year: 1994
  end-page: 7538
  ident: bib27
  article-title: Linear combinations of primitives in vertebrate motor control
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 25
  start-page: 7238
  year: 2005
  end-page: 7253
  ident: bib17
  article-title: Coordination of locomotion with voluntary movements in humans
  publication-title: J. Neurosci.
– volume: 2
  start-page: 162
  year: 1999
  end-page: 167
  ident: bib36
  article-title: The construction of movement by the spinal cord
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 102
  year: 2000
  end-page: 110
  ident: bib13
  article-title: Significance of load receptor input during locomotion: a review
  publication-title: Gait Posture
– volume: 125
  start-page: 2626
  year: 2002
  end-page: 2634
  ident: bib14
  article-title: Locomotor activity in spinal man: significance of afferent input from joint and load receptors
  publication-title: Brain
– volume: 6
  start-page: 300
  issue: 3
  year: 2003
  ident: 10.1016/j.jbiomech.2017.01.020_bib12
  article-title: Combinations of muscle synergies in the construction of a natural motor behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1010
– volume: 107
  start-page: 2057
  year: 2012
  ident: 10.1016/j.jbiomech.2017.01.020_bib21
  article-title: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00865.2011
– volume: 108
  start-page: 291
  issue: 3
  year: 2014
  ident: 10.1016/j.jbiomech.2017.01.020_bib28
  article-title: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-014-0592-8
– volume: 102
  start-page: 373
  issue: 5
  year: 2010
  ident: 10.1016/j.jbiomech.2017.01.020_bib3
  article-title: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-010-0373-y
– volume: 45
  start-page: 2157
  issue: 12
  year: 2012
  ident: 10.1016/j.jbiomech.2017.01.020_bib1
  article-title: Three-dimensional modular control of human walking
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.037
– volume: 25
  start-page: 7238
  issue: 31
  year: 2005
  ident: 10.1016/j.jbiomech.2017.01.020_bib17
  article-title: Coordination of locomotion with voluntary movements in humans
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1327-05.2005
– year: 1967
  ident: 10.1016/j.jbiomech.2017.01.020_bib6
– volume: 57
  start-page: 134
  issue: 1
  year: 2008
  ident: 10.1016/j.jbiomech.2017.01.020_bib25
  article-title: Organization of mammalian locomotor rhythm and pattern generation
  publication-title: Brain Res. Rev.
  doi: 10.1016/j.brainresrev.2007.08.006
– volume: 11
  start-page: 102
  issue: 2
  year: 2000
  ident: 10.1016/j.jbiomech.2017.01.020_bib13
  article-title: Significance of load receptor input during locomotion: a review
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(99)00052-1
– start-page: 21
  year: 2016
  ident: 10.1016/j.jbiomech.2017.01.020_bib22
  article-title: A neuromechanical model of spinal control of locomotion
– volume: 22
  start-page: 1697
  issue: 15
  year: 2008
  ident: 10.1016/j.jbiomech.2017.01.020_bib2
  article-title: Simulating adaptive human bipedal locomotion based on phase resetting using foot-contact information
  publication-title: Adv. Robot.
  doi: 10.1163/156855308X3689785
– volume: 42
  start-page: 1282
  issue: 9
  year: 2009
  ident: 10.1016/j.jbiomech.2017.01.020_bib29
  article-title: Modular control of human walking: a simulation study
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.009
– ident: 10.1016/j.jbiomech.2017.01.020_bib33
  doi: 10.1007/3-540-46084-5_17
– volume: 7
  start-page: 48
  year: 2013
  ident: 10.1016/j.jbiomech.2017.01.020_bib10
  article-title: Common muscle synergies for balance and walking
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2013.00048
– volume: 95
  start-page: 2199
  issue: 4
  year: 2006
  ident: 10.1016/j.jbiomech.2017.01.020_bib37
  article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00222.2005
– volume: 7
  start-page: 131
  issue: 2
  year: 1998
  ident: 10.1016/j.jbiomech.2017.01.020_bib15
  article-title: Neural control of locomotion; Part 1: the central pattern generator from cats to humans
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(97)00042-8
– volume: 73
  start-page: 97
  issue: 2
  year: 1995
  ident: 10.1016/j.jbiomech.2017.01.020_bib34
  article-title: A model of the neuro-musculo-skeletal system for human locomotion
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00204048
– volume: 103
  start-page: 844
  issue: 2
  year: 2010
  ident: 10.1016/j.jbiomech.2017.01.020_bib11
  article-title: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00825.2009
– volume: 528
  start-page: 389
  issue: 2
  year: 2000
  ident: 10.1016/j.jbiomech.2017.01.020_bib31
  article-title: The initiation of the swing phase in human infant stepping: importance of hip position and leg loading
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.2000.00389.x
– volume: 96
  start-page: 1991
  year: 2006
  ident: 10.1016/j.jbiomech.2017.01.020_bib18
  article-title: Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00241.2006
– volume: 78
  start-page: 9
  issue: 1
  year: 1998
  ident: 10.1016/j.jbiomech.2017.01.020_bib35
  article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance
  publication-title: Biol. Cybern.
  doi: 10.1007/s004220050408
– volume: 95
  start-page: 3426
  issue: 6
  year: 2006
  ident: 10.1016/j.jbiomech.2017.01.020_bib7
  article-title: Motor patterns in human walking and runnng
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00081.2006
– volume: 1198
  start-page: 21
  year: 2010
  ident: 10.1016/j.jbiomech.2017.01.020_bib20
  article-title: Afferent control of locomotor CPG: insights from a simple neuromechanical model
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05435.x
– start-page: 201
  year: 1988
  ident: 10.1016/j.jbiomech.2017.01.020_bib32
  article-title: The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates
  publication-title: Neural Control Rhythm. Mov. Vertebr.
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.jbiomech.2017.01.020_bib19
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 52
  start-page: 201
  issue: 2
  year: 2013
  ident: 10.1016/j.jbiomech.2017.01.020_bib4
  article-title: Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-013-0546-6
– volume: 52
  start-page: 1085
  issue: 6
  year: 2006
  ident: 10.1016/j.jbiomech.2017.01.020_bib9
  article-title: A central source of movement variability
  publication-title: Neuron
  doi: 10.1016/j.neuron.2006.10.034
– volume: 56
  start-page: 345
  issue: 5-6
  year: 1987
  ident: 10.1016/j.jbiomech.2017.01.020_bib24
  article-title: Mechanisms of frequency and pattern control in the neural rhythm generators
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00319514
– volume: 9
  start-page: 585
  issue: 4
  year: 1986
  ident: 10.1016/j.jbiomech.2017.01.020_bib5
  article-title: Adaptability of innate motor patterns and motor control mechanisms
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X00051268
– volume: 125
  start-page: 2626
  issue: 12
  year: 2002
  ident: 10.1016/j.jbiomech.2017.01.020_bib14
  article-title: Locomotor activity in spinal man: significance of afferent input from joint and load receptors
  publication-title: Brain
  doi: 10.1093/brain/awf273
– volume: 34
  start-page: 241
  issue: 2
  year: 1979
  ident: 10.1016/j.jbiomech.2017.01.020_bib16
  article-title: On the central generation of locomotion in the low spinal cat
  publication-title: Exp. Brain Res.
  doi: 10.1007/BF00235671
– volume: 2
  start-page: 162
  issue: 2
  year: 1999
  ident: 10.1016/j.jbiomech.2017.01.020_bib36
  article-title: The construction of movement by the spinal cord
  publication-title: Nat. Neurosci.
  doi: 10.1038/5721
– volume: 52
  start-page: 367
  issue: 6
  year: 1985
  ident: 10.1016/j.jbiomech.2017.01.020_bib23
  article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00449593
– volume: 17
  start-page: 312
  issue: 2
  year: 2014
  ident: 10.1016/j.jbiomech.2017.01.020_bib38
  article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3616
– volume: 84
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.jbiomech.2017.01.020_bib30
  article-title: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model
  publication-title: Biol. Cybern.
  doi: 10.1007/PL00007977
– volume: 91
  start-page: 7534
  issue: 16
  year: 1994
  ident: 10.1016/j.jbiomech.2017.01.020_bib27
  article-title: Linear combinations of primitives in vertebrate motor control
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.91.16.7534
– volume: 50
  start-page: 917
  issue: 9
  year: 2012
  ident: 10.1016/j.jbiomech.2017.01.020_bib8
  article-title: Neural oscillators triggered by loading and hip orientation can generate activation patterns at the ankle during walking in humans
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-012-0944-2
– volume: 43
  start-page: 412
  issue: 3
  year: 2010
  ident: 10.1016/j.jbiomech.2017.01.020_bib26
  article-title: Modular control of human walking: adaptations to altered mechanical demands
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.10.009
– ident: 10.1016/j.jbiomech.2017.01.020_bib39
  doi: 10.1093/oso/9780198505143.003.0023
SSID ssj0007479
Score 2.3627357
Snippet The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For...
Abstract The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 154
SubjectTerms Activation
Adult
Algorithms
Central Pattern Generators - physiology
Electromyography
Experiments
Gait
Generators
Humans
Knee
Leg - physiology
Legs
Locomotion
Locomotion - physiology
Male
Mathematical models
Motor pattern
Motor program
Muscle redundancy
Muscle synergies
Muscle, Skeletal - physiology
Muscles
Musculoskeletal system
Nervous system
Periodicity
Physical Medicine and Rehabilitation
Reproduction
Rhythmic activity
Spinal cord
Spinal Cord - physiology
Studies
Walking
Young Adult
Title Modular neuromuscular control of human locomotion by central pattern generator
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017300210
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929017300210
https://dx.doi.org/10.1016/j.jbiomech.2017.01.020
https://www.ncbi.nlm.nih.gov/pubmed/28126336
https://www.proquest.com/docview/1879236238
https://www.proquest.com/docview/1862764531
https://www.proquest.com/docview/1877848201
https://www.proquest.com/docview/1893905671
Volume 53
WOSCitedRecordID wos000396970100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiE48NjyWCgrIyFuoXHitZ0TKqgVB3ZZIZD2Zjm2g1jRZGl2kfrvGTtO6KULgksuseXEY8984xl_A_BSFplF91gnWhdZgiagSkopWUIlZzqXnrEt8Mx-EPO5XC6LRTxwa2NaZa8Tg6K2jfFn5Me-KnaG2jaXb9Y_El81ykdXYwmNPThAQ819BYNZ9nHQxAiVY4oHTRAGpFduCK9er8L99hCQoKKj7kyvM07Xgc9ghM7u_e_n34e7EX6Sk269PIAbrh7B4UmNrvf5JXlFQkJoOGkfwZ0rXIUjuDWLUfhDmM8a67NXSSDDPN92uawkZr2TpiKh8h9BO9l0VYJIeUliGihZB0bPmnwNhNfo8j-EL2enn9-9T2JdhsRMRbZJjBCWlaxy1gpBrUB9mVoP1atSU27Q4XOZZlJnpjQWPRA3zVN8YY0uC1dKlz-C_bqp3RMgKdfMWW41LwzTutI8RxVMS84qkVNajGHaC0SZSFrua2d8V3122kr1glRekCqlCgU5huOh37qj7fhjD9HLW_WXUlGNKrQs_9bTtVEbtIqqNlOp8oFx6tch9UUC0NceQzH0jICnAzJ_NepRv9DU74GGVTaGF8NrVBg-CqRr12x9G54JznCWd7URQjIPDne1KfIC4bPANo-7TTFMdYawkec5f7r7I5_Bbf9HHUPAEexvLrbuOdw0Pzff2osJ7ImlCE85gYO3p_PFp0nY3_4pFr8ATw5WEg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC-Jx4NHlUVjASMAtbOy4dnJAaAWsdrVtxWGRejNO7CAqNilNCuqf4jcydh7sZQtC2gPnePJw5_FNZ_wNwPM4YQbTYx1onbAAQ0AepHHMAxoLrqPYMbZ5ntmxnE7j2Sz5sAU_u7Mwrq2y84neUZsyc_-R77mp2Ay9bRS_WXwL3NQoV13tRmg0anFs1z8wZateH73D3_cFYwfvT94eBu1UgSAbSVYHmZSGpzy3xkhJjURrD40DmnmqqcgwXbFM81izLM0M4mc7ikK8YDKdJjaNbYT3vQSX0Y9LZ1Fy1id4jou-bSmhAcKO8MyJ5PmruT9P7wsgVDZUoeF5wfA8sOuD3sGt_227bsPNFl6T_cYe7sCWLQaws1_oujxdk5fEN7z6SsIAbpzhYhzA1UnbZbAD00lpXHcu8WSfp6umV5e0Xf2kzImfbEgQB5TNFCSSrknb5koWnrG0IJ89oXddLu_Cxwv55HuwXZSFfQAkFJpbI4wWSca1zrWIMMTQVPBcRpQmQxh1CqCylpTdzQb5qrruu7nqFEc5xVEhVag4Q9jr5RYNLckfJWSnX6o7dIthQmHk_DdJW7XerlJUVUyFyhX-qdN76oYgMIqSSS_ZAroGqP3VU3c7xVa_H9Rr9RCe9ZfRIboqly5suXJrBJOC4y5vWiNlzB343bQmiRJMDySuud8YYb_VDGGxiCLxcPNLPoVrhyeTsRofTY8fwXX3dQ0bwi5s18uVfQxXsu_1l2r5xPsRAp8u2hJ_AW_3sQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBVVwYElZAgWMBNyGjD2O7TkgVFEiqrZRDiD1ZjxjDyKiMyELKH-NX8ezZ6GXBoTUA-fxm8V5y-f48_cAnquUWVwem8iYlEVYAoooU4pHVAluEuUV24LO7LEcj9XpaTrZgp_tWRhPq2xzYkjUtsr9f-QD3xWbYbZN1KBoaBGTg9Gb2bfId5DyO61tO43aRY7c-gcu3xavDw_wt37B2Ojdh7fvo6bDQJQPJVtGuZSWZ7xw1kpJrcTIj60HnUVmqMhx6eKY4cqwPMstYmk3TGK8YHOTpS5TLsH7XoGrkotYBdrgpKsCCNMbegmNEILE504nT19Nw9n6sBlCZS0bGl9UGC8CvqEAjm79z1N3G242sJvs13FyB7Zc2YPd_dIsq7M1eUkCETbsMPTgxjmNxh7snDTsg10Yn1TWs3ZJEAE9W9UcXtKw_UlVkNDxkCA-qOruSCRbk4b-SmZBybQkn4PQ97Ka34WPl_LJ92C7rEr3AEgsDHdWWCPSnBtTGJFg6aGZ4IVMKE37MGydQeeNWLvvGfJVt6y8qW6dSHsn0jHV6ER9GHR2s1qu5I8WsvU13R7GxfKhsaL-m6VbNFlwoaleMB1rTwigPgaob47AKFqmnWUD9GoA91dP3WudXP9-UOfhfXjWXcZE6Xe_TOmqlR8jmBQcZ3nTGCkV96B405g0SXHZIHHM_Togu6lmCJdFkoiHm1_yKexgAOrjw_HRI7juP64WSdiD7eV85R7Dtfz78sti_iSkFAKfLjsQfwEPy7nb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+neuromuscular+control+of+human+locomotion+by+central+pattern+generator&rft.jtitle=Journal+of+biomechanics&rft.au=Haghpanah%2C+Seyyed+Arash&rft.au=Farahmand%2C+Farzam&rft.au=Zohoor%2C+Hassan&rft.date=2017-02-28&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=53&rft.spage=154&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.01.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00031%2Fcov150h.gif