Modular neuromuscular control of human locomotion by central pattern generator
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscle...
Uložené v:
| Vydané v: | Journal of biomechanics Ročník 53; s. 154 - 162 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Elsevier Ltd
28.02.2017
Elsevier Limited |
| Predmet: | |
| ISSN: | 0021-9290, 1873-2380, 1873-2380 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. |
|---|---|
| AbstractList | The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka's four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model's performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. Abstract The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals. |
| Author | Farahmand, Farzam Zohoor, Hassan Haghpanah, Seyyed Arash |
| Author_xml | – sequence: 1 givenname: Seyyed Arash surname: Haghpanah fullname: Haghpanah, Seyyed Arash email: haghpanah@mech.sharif.ir organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran – sequence: 2 givenname: Farzam surname: Farahmand fullname: Farahmand, Farzam email: farahmand@sharif.edu organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran – sequence: 3 givenname: Hassan surname: Zohoor fullname: Zohoor, Hassan email: zohoor@sharif.edu organization: Mechanical Engineering Department, Sharif University of Technology, Azadi Avenue, Tehran, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28126336$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl-P1CAUxYlZ486ufoVNE198ab1Ap9DEGM3Gf8mqD-ozoXDrMrYwQmsy317q7MRkXmaegNzfPcA594pc-OCRkBsKFQXavNxUm86FEc19xYCKCmgFDB6RFZWCl4xLuCArAEbLlrVwSa5S2gCAqEX7hFwySVnDebMiXz4HOw86Fh7nGMY5mX8nE_wUw1CEvrifR-2LIZgwhskFX3S7wmAu66HY6mnC6Iuf6DHqKcSn5HGvh4TPHtZr8uP9u--3H8u7rx8-3b69K81asKk0Qti6q3u0VghqRUspWJCS9Z2mjalriUzXUjPTGQt1i2sOuWCN7lrsJPJr8mKvu43h94xpUqNLBodBewxzUlS2vIV1I-gZqBCyltnFM9CGiaZe8wV9foRuwhx9_vMi2DLe5AwydfNAzd2IVm2jG3XcqYP_GXi1B0wMKUXslXGTXmzO_rpBUVBL3GqjDnGrJW4FVOW4c3tz1H644WTjm30j5pD-OIwqGYfeoHURzaRscKclXh9JmMF5Z_TwC3eY_tuhElOgvi3DuMwiFXzZnhA45wV_Ab8B8b8 |
| CitedBy_id | crossref_primary_10_3389_fnhum_2022_936090 crossref_primary_10_1007_s40997_022_00566_1 crossref_primary_10_1097_MD_0000000000027154 crossref_primary_10_1155_2022_9228838 crossref_primary_10_3390_app15158267 crossref_primary_10_4103_BNM_BNM_5_25 crossref_primary_10_3389_fbioe_2025_1471582 crossref_primary_10_1016_j_jneumeth_2018_05_015 crossref_primary_10_3390_e24050707 crossref_primary_10_1109_TNSRE_2025_3557777 crossref_primary_10_3390_s24103225 crossref_primary_10_1016_j_bspc_2022_104455 crossref_primary_10_3390_ijms22136835 crossref_primary_10_1016_j_clinbiomech_2019_05_006 crossref_primary_10_1080_09638288_2019_1674389 crossref_primary_10_3389_fnins_2018_00537 crossref_primary_10_1371_journal_pcbi_1008594 crossref_primary_10_3389_fnhum_2017_00586 crossref_primary_10_1177_09544119211052365 crossref_primary_10_1007_s11517_022_02734_6 crossref_primary_10_1155_2018_2913636 crossref_primary_10_1016_j_humov_2018_10_002 crossref_primary_10_1016_j_jbiomech_2022_110997 |
| Cites_doi | 10.1038/nn1010 10.1152/jn.00865.2011 10.1007/s00422-014-0592-8 10.1007/s00422-010-0373-y 10.1016/j.jbiomech.2012.05.037 10.1523/JNEUROSCI.1327-05.2005 10.1016/j.brainresrev.2007.08.006 10.1016/S0966-6362(99)00052-1 10.1163/156855308X3689785 10.1016/j.jbiomech.2009.03.009 10.1007/3-540-46084-5_17 10.3389/fncom.2013.00048 10.1152/jn.00222.2005 10.1016/S0966-6362(97)00042-8 10.1007/BF00204048 10.1152/jn.00825.2009 10.1111/j.1469-7793.2000.00389.x 10.1152/jn.00241.2006 10.1007/s004220050408 10.1152/jn.00081.2006 10.1111/j.1749-6632.2010.05435.x 10.1038/44565 10.1007/s00422-013-0546-6 10.1016/j.neuron.2006.10.034 10.1007/BF00319514 10.1017/S0140525X00051268 10.1093/brain/awf273 10.1007/BF00235671 10.1038/5721 10.1007/BF00449593 10.1038/nn.3616 10.1007/PL00007977 10.1073/pnas.91.16.7534 10.1007/s11517-012-0944-2 10.1016/j.jbiomech.2009.10.009 10.1093/oso/9780198505143.003.0023 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2017 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO P64 |
| DOI | 10.1016/j.jbiomech.2017.01.020 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE Engineering Research Database Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 162 |
| ExternalDocumentID | 4321025183 28126336 10_1016_j_jbiomech_2017_01_020 S0021929017300210 1_s2_0_S0021929017300210 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX AFFHD AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7QO P64 |
| ID | FETCH-LOGICAL-c572t-c77d4b4fedd771d79110d0882fba16c448e2a48a2cbcd049e530a16dcab9eb8e3 |
| IEDL.DBID | M2O |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000396970100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Thu Oct 02 06:42:09 EDT 2025 Tue Oct 07 09:32:51 EDT 2025 Thu Oct 02 04:01:56 EDT 2025 Sat Nov 29 14:51:32 EST 2025 Wed Feb 19 02:43:29 EST 2025 Sat Nov 29 01:49:34 EST 2025 Tue Nov 18 20:53:18 EST 2025 Fri Feb 23 02:20:31 EST 2024 Tue Feb 25 20:12:59 EST 2025 Tue Oct 14 19:30:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rhythmic activity Motor pattern Muscle redundancy Muscle synergies Motor program |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-c77d4b4fedd771d79110d0882fba16c448e2a48a2cbcd049e530a16dcab9eb8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 28126336 |
| PQID | 1879236238 |
| PQPubID | 1226346 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_1893905671 proquest_miscellaneous_1877848201 proquest_miscellaneous_1862764531 proquest_journals_1879236238 pubmed_primary_28126336 crossref_citationtrail_10_1016_j_jbiomech_2017_01_020 crossref_primary_10_1016_j_jbiomech_2017_01_020 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2017_01_020 elsevier_clinicalkeyesjournals_1_s2_0_S0021929017300210 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2017_01_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-02-28 |
| PublicationDateYYYYMMDD | 2017-02-28 |
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Duysens, Van de Crommert (bib15) 1998; 7 McGowan, Neptune, Clark, Kautz (bib26) 2010; 43 Taga (bib34) 1995; 73 Allen, Neptune (bib1) 2012; 45 d׳Avella, Saltiel, Bizzi (bib12) 2003; 6 Taga (bib35) 1998; 78 Grillner, Zangger (bib16) 1979; 34 Pang, Yang (bib31) 2000; 528 Markin, Klishko, Shevtsova, Lemay, Prilutsky, Rybak (bib20) 2010; 1198 Berkinblit, Feldman, Fukson (bib5) 1986; 9 Cappellini, Ivanenko, Poppele, Lacquaniti (bib7) 2006; 95 Ivanenko, Cappellini, Dominici, Poppele, Lacquaniti (bib17) 2005; 25 Chvatal, Ting (bib10) 2013; 7 Markin, Klishko, Shevtsova, Lemay, Prilutsky, Rybak (bib22) 2016 Ogihara, Yamazaki (bib30) 2001; 84 Ussa-Ivaldi, Giszter, Bizzi (bib27) 1994; 91 Rybak, I.A., Ivashko, D.G., Prilutsky, B.I., Lewis, M.A., Chapin, J.K., 2002. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of International Conference on Artificial Neural Networks, Springer Berlin, Heidelberg. Lee, Seung (bib19) 1999; 401 Aoi, Kondo, Hayashi, Yanagihara, Aoki, Yamaura, Ogihara, Funato, Tomita, Senda, Tsuchiya (bib4) 2013; 52 Neptune, Clark, Kautz (bib29) 2009; 42 Wu, Miyamoto, Castro, Ölveczky, Smith (bib38) 2014; 17 Dietz, Duysens (bib13) 2000; 11 Yuan, Y.X., 2000. A review of trust region algorithms for optimization. In: ICM99: Proceedings 4th International Congress on Industrial and Applied Mathematics. Oxford University Press. Oxford. Tresch, Cheung, d׳Avella (bib37) 2006; 95 Krouchev, Kalaska, Drew (bib18) 2006; 96 Tresch, Saltiel, Bizzi (bib36) 1999; 2 Chong, Wagner, Wulf (bib8) 2012; 50 Matsuoka (bib23) 1985; 52 Nassour, Hénaff, Benouezdou, Cheng (bib28) 2014; 108 McCrea, Rybak (bib25) 2008; 57 Churchland, Afshar, Shenoy (bib9) 2006; 52 Matsuoka (bib24) 1987; 56 Markin, Lemay, Prilutsky, Rybak (bib21) 2012; 107 Aoi, Ogihara, Funato, Sugimoto, Tsuchiya (bib3) 2010; 102 Rossignol, Lund, Drew (bib32) 1988 Dietz, Mueller, Colombo (bib14) 2002; 125 Aoi, Ogihara, Sugimoto, Tsuchiya (bib2) 2008; 22 Bernshteĭn (bib6) 1967 Clark, Ting, Zajac, Neptune, Kautz (bib11) 2010; 103 Bernshteĭn (10.1016/j.jbiomech.2017.01.020_bib6) 1967 Wu (10.1016/j.jbiomech.2017.01.020_bib38) 2014; 17 Nassour (10.1016/j.jbiomech.2017.01.020_bib28) 2014; 108 Clark (10.1016/j.jbiomech.2017.01.020_bib11) 2010; 103 Taga (10.1016/j.jbiomech.2017.01.020_bib35) 1998; 78 Matsuoka (10.1016/j.jbiomech.2017.01.020_bib24) 1987; 56 Allen (10.1016/j.jbiomech.2017.01.020_bib1) 2012; 45 Markin (10.1016/j.jbiomech.2017.01.020_bib20) 2010; 1198 Ogihara (10.1016/j.jbiomech.2017.01.020_bib30) 2001; 84 Neptune (10.1016/j.jbiomech.2017.01.020_bib29) 2009; 42 Dietz (10.1016/j.jbiomech.2017.01.020_bib13) 2000; 11 Grillner (10.1016/j.jbiomech.2017.01.020_bib16) 1979; 34 10.1016/j.jbiomech.2017.01.020_bib33 Tresch (10.1016/j.jbiomech.2017.01.020_bib37) 2006; 95 McGowan (10.1016/j.jbiomech.2017.01.020_bib26) 2010; 43 Duysens (10.1016/j.jbiomech.2017.01.020_bib15) 1998; 7 Aoi (10.1016/j.jbiomech.2017.01.020_bib2) 2008; 22 Ivanenko (10.1016/j.jbiomech.2017.01.020_bib17) 2005; 25 10.1016/j.jbiomech.2017.01.020_bib39 Churchland (10.1016/j.jbiomech.2017.01.020_bib9) 2006; 52 Chong (10.1016/j.jbiomech.2017.01.020_bib8) 2012; 50 Markin (10.1016/j.jbiomech.2017.01.020_bib22) 2016 Pang (10.1016/j.jbiomech.2017.01.020_bib31) 2000; 528 Chvatal (10.1016/j.jbiomech.2017.01.020_bib10) 2013; 7 Berkinblit (10.1016/j.jbiomech.2017.01.020_bib5) 1986; 9 Lee (10.1016/j.jbiomech.2017.01.020_bib19) 1999; 401 Dietz (10.1016/j.jbiomech.2017.01.020_bib14) 2002; 125 Rossignol (10.1016/j.jbiomech.2017.01.020_bib32) 1988 McCrea (10.1016/j.jbiomech.2017.01.020_bib25) 2008; 57 Aoi (10.1016/j.jbiomech.2017.01.020_bib4) 2013; 52 Markin (10.1016/j.jbiomech.2017.01.020_bib21) 2012; 107 d׳Avella (10.1016/j.jbiomech.2017.01.020_bib12) 2003; 6 Ussa-Ivaldi (10.1016/j.jbiomech.2017.01.020_bib27) 1994; 91 Cappellini (10.1016/j.jbiomech.2017.01.020_bib7) 2006; 95 Krouchev (10.1016/j.jbiomech.2017.01.020_bib18) 2006; 96 Aoi (10.1016/j.jbiomech.2017.01.020_bib3) 2010; 102 Matsuoka (10.1016/j.jbiomech.2017.01.020_bib23) 1985; 52 Taga (10.1016/j.jbiomech.2017.01.020_bib34) 1995; 73 Tresch (10.1016/j.jbiomech.2017.01.020_bib36) 1999; 2 |
| References_xml | – volume: 50 start-page: 917 year: 2012 end-page: 923 ident: bib8 article-title: Neural oscillators triggered by loading and hip orientation can generate activation patterns at the ankle during walking in humans publication-title: Med. Biol. Eng. Comput. – volume: 103 start-page: 844 year: 2010 end-page: 857 ident: bib11 article-title: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke publication-title: J. Neurophysiol. – volume: 95 start-page: 3426 year: 2006 end-page: 3437 ident: bib7 article-title: Motor patterns in human walking and runnng publication-title: J. Neurophysiol. – volume: 56 start-page: 345 year: 1987 end-page: 353 ident: bib24 article-title: Mechanisms of frequency and pattern control in the neural rhythm generators publication-title: Biol. Cybern. – start-page: 201 year: 1988 end-page: 283 ident: bib32 article-title: The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates publication-title: Neural Control Rhythm. Mov. Vertebr. – volume: 95 start-page: 2199 year: 2006 end-page: 2212 ident: bib37 article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets publication-title: J. Neurophysiol. – volume: 17 start-page: 312 year: 2014 end-page: 321 ident: bib38 article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability publication-title: Nat. Neurosci. – volume: 528 start-page: 389 year: 2000 end-page: 404 ident: bib31 article-title: The initiation of the swing phase in human infant stepping: importance of hip position and leg loading publication-title: J. Physiol. – volume: 73 start-page: 97 year: 1995 end-page: 111 ident: bib34 article-title: A model of the neuro-musculo-skeletal system for human locomotion publication-title: Biol. Cybern. – volume: 57 start-page: 134 year: 2008 end-page: 146 ident: bib25 article-title: Organization of mammalian locomotor rhythm and pattern generation publication-title: Brain Res. Rev. – volume: 22 start-page: 1697 year: 2008 end-page: 1713 ident: bib2 article-title: Simulating adaptive human bipedal locomotion based on phase resetting using foot-contact information publication-title: Adv. Robot. – volume: 52 start-page: 1085 year: 2006 end-page: 1096 ident: bib9 article-title: A central source of movement variability publication-title: Neuron – volume: 7 start-page: 48 year: 2013 ident: bib10 article-title: Common muscle synergies for balance and walking publication-title: Front. Comput. Neurosci. – volume: 52 start-page: 367 year: 1985 end-page: 376 ident: bib23 article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation publication-title: Biol. Cybern. – volume: 107 start-page: 2057 year: 2012 end-page: 2071 ident: bib21 article-title: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study publication-title: J. Neurophysiol. – volume: 6 start-page: 300 year: 2003 end-page: 308 ident: bib12 article-title: Combinations of muscle synergies in the construction of a natural motor behavior publication-title: Nat. Neurosci. – volume: 42 start-page: 1282 year: 2009 end-page: 1287 ident: bib29 article-title: Modular control of human walking: a simulation study publication-title: J. Biomech. – volume: 102 start-page: 373 year: 2010 end-page: 387 ident: bib3 article-title: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator publication-title: Biol. Cybern. – volume: 96 start-page: 1991 year: 2006 end-page: 2010 ident: bib18 article-title: Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition publication-title: J. Neurophysiol. – volume: 45 start-page: 2157 year: 2012 end-page: 2163 ident: bib1 article-title: Three-dimensional modular control of human walking publication-title: J. Biomech. – reference: Rybak, I.A., Ivashko, D.G., Prilutsky, B.I., Lewis, M.A., Chapin, J.K., 2002. Modeling neural control of locomotion: integration of reflex circuits with CPG. In: Proceedings of International Conference on Artificial Neural Networks, Springer Berlin, Heidelberg. – volume: 34 start-page: 241 year: 1979 end-page: 261 ident: bib16 article-title: On the central generation of locomotion in the low spinal cat publication-title: Exp. Brain Res. – volume: 9 start-page: 585 year: 1986 end-page: 599 ident: bib5 article-title: Adaptability of innate motor patterns and motor control mechanisms publication-title: Behav. Brain Sci. – volume: 43 start-page: 412 year: 2010 end-page: 419 ident: bib26 article-title: Modular control of human walking: adaptations to altered mechanical demands publication-title: J. Biomech. – start-page: 21 year: 2016 end-page: 30 ident: bib22 article-title: A neuromechanical model of spinal control of locomotion publication-title: Neuromechanical Modeling of Posture and Locomotion – reference: Yuan, Y.X., 2000. A review of trust region algorithms for optimization. In: ICM99: Proceedings 4th International Congress on Industrial and Applied Mathematics. Oxford University Press. Oxford. – volume: 78 start-page: 9 year: 1998 end-page: 17 ident: bib35 article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance publication-title: Biol. Cybern. – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib19 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 108 start-page: 291 year: 2014 end-page: 303 ident: bib28 article-title: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots publication-title: Biol. Cybern. – year: 1967 ident: bib6 article-title: Co-ordination and Regulation of Movements – volume: 7 start-page: 131 year: 1998 end-page: 141 ident: bib15 article-title: Neural control of locomotion; Part 1: the central pattern generator from cats to humans publication-title: Gait Posture – volume: 84 start-page: 1 year: 2001 end-page: 11 ident: bib30 article-title: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model publication-title: Biol. Cybern. – volume: 52 start-page: 201 year: 2013 end-page: 216 ident: bib4 article-title: Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study publication-title: Biol. Cybern. – volume: 1198 start-page: 21 year: 2010 end-page: 34 ident: bib20 article-title: Afferent control of locomotor CPG: insights from a simple neuromechanical model publication-title: Ann. N. Y. Acad. Sci. – volume: 91 start-page: 7534 year: 1994 end-page: 7538 ident: bib27 article-title: Linear combinations of primitives in vertebrate motor control publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 25 start-page: 7238 year: 2005 end-page: 7253 ident: bib17 article-title: Coordination of locomotion with voluntary movements in humans publication-title: J. Neurosci. – volume: 2 start-page: 162 year: 1999 end-page: 167 ident: bib36 article-title: The construction of movement by the spinal cord publication-title: Nat. Neurosci. – volume: 11 start-page: 102 year: 2000 end-page: 110 ident: bib13 article-title: Significance of load receptor input during locomotion: a review publication-title: Gait Posture – volume: 125 start-page: 2626 year: 2002 end-page: 2634 ident: bib14 article-title: Locomotor activity in spinal man: significance of afferent input from joint and load receptors publication-title: Brain – volume: 6 start-page: 300 issue: 3 year: 2003 ident: 10.1016/j.jbiomech.2017.01.020_bib12 article-title: Combinations of muscle synergies in the construction of a natural motor behavior publication-title: Nat. Neurosci. doi: 10.1038/nn1010 – volume: 107 start-page: 2057 year: 2012 ident: 10.1016/j.jbiomech.2017.01.020_bib21 article-title: Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study publication-title: J. Neurophysiol. doi: 10.1152/jn.00865.2011 – volume: 108 start-page: 291 issue: 3 year: 2014 ident: 10.1016/j.jbiomech.2017.01.020_bib28 article-title: Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots publication-title: Biol. Cybern. doi: 10.1007/s00422-014-0592-8 – volume: 102 start-page: 373 issue: 5 year: 2010 ident: 10.1016/j.jbiomech.2017.01.020_bib3 article-title: Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator publication-title: Biol. Cybern. doi: 10.1007/s00422-010-0373-y – volume: 45 start-page: 2157 issue: 12 year: 2012 ident: 10.1016/j.jbiomech.2017.01.020_bib1 article-title: Three-dimensional modular control of human walking publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.037 – volume: 25 start-page: 7238 issue: 31 year: 2005 ident: 10.1016/j.jbiomech.2017.01.020_bib17 article-title: Coordination of locomotion with voluntary movements in humans publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1327-05.2005 – year: 1967 ident: 10.1016/j.jbiomech.2017.01.020_bib6 – volume: 57 start-page: 134 issue: 1 year: 2008 ident: 10.1016/j.jbiomech.2017.01.020_bib25 article-title: Organization of mammalian locomotor rhythm and pattern generation publication-title: Brain Res. Rev. doi: 10.1016/j.brainresrev.2007.08.006 – volume: 11 start-page: 102 issue: 2 year: 2000 ident: 10.1016/j.jbiomech.2017.01.020_bib13 article-title: Significance of load receptor input during locomotion: a review publication-title: Gait Posture doi: 10.1016/S0966-6362(99)00052-1 – start-page: 21 year: 2016 ident: 10.1016/j.jbiomech.2017.01.020_bib22 article-title: A neuromechanical model of spinal control of locomotion – volume: 22 start-page: 1697 issue: 15 year: 2008 ident: 10.1016/j.jbiomech.2017.01.020_bib2 article-title: Simulating adaptive human bipedal locomotion based on phase resetting using foot-contact information publication-title: Adv. Robot. doi: 10.1163/156855308X3689785 – volume: 42 start-page: 1282 issue: 9 year: 2009 ident: 10.1016/j.jbiomech.2017.01.020_bib29 article-title: Modular control of human walking: a simulation study publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.03.009 – ident: 10.1016/j.jbiomech.2017.01.020_bib33 doi: 10.1007/3-540-46084-5_17 – volume: 7 start-page: 48 year: 2013 ident: 10.1016/j.jbiomech.2017.01.020_bib10 article-title: Common muscle synergies for balance and walking publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2013.00048 – volume: 95 start-page: 2199 issue: 4 year: 2006 ident: 10.1016/j.jbiomech.2017.01.020_bib37 article-title: Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets publication-title: J. Neurophysiol. doi: 10.1152/jn.00222.2005 – volume: 7 start-page: 131 issue: 2 year: 1998 ident: 10.1016/j.jbiomech.2017.01.020_bib15 article-title: Neural control of locomotion; Part 1: the central pattern generator from cats to humans publication-title: Gait Posture doi: 10.1016/S0966-6362(97)00042-8 – volume: 73 start-page: 97 issue: 2 year: 1995 ident: 10.1016/j.jbiomech.2017.01.020_bib34 article-title: A model of the neuro-musculo-skeletal system for human locomotion publication-title: Biol. Cybern. doi: 10.1007/BF00204048 – volume: 103 start-page: 844 issue: 2 year: 2010 ident: 10.1016/j.jbiomech.2017.01.020_bib11 article-title: Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke publication-title: J. Neurophysiol. doi: 10.1152/jn.00825.2009 – volume: 528 start-page: 389 issue: 2 year: 2000 ident: 10.1016/j.jbiomech.2017.01.020_bib31 article-title: The initiation of the swing phase in human infant stepping: importance of hip position and leg loading publication-title: J. Physiol. doi: 10.1111/j.1469-7793.2000.00389.x – volume: 96 start-page: 1991 year: 2006 ident: 10.1016/j.jbiomech.2017.01.020_bib18 article-title: Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition publication-title: J. Neurophysiol. doi: 10.1152/jn.00241.2006 – volume: 78 start-page: 9 issue: 1 year: 1998 ident: 10.1016/j.jbiomech.2017.01.020_bib35 article-title: A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance publication-title: Biol. Cybern. doi: 10.1007/s004220050408 – volume: 95 start-page: 3426 issue: 6 year: 2006 ident: 10.1016/j.jbiomech.2017.01.020_bib7 article-title: Motor patterns in human walking and runnng publication-title: J. Neurophysiol. doi: 10.1152/jn.00081.2006 – volume: 1198 start-page: 21 year: 2010 ident: 10.1016/j.jbiomech.2017.01.020_bib20 article-title: Afferent control of locomotor CPG: insights from a simple neuromechanical model publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05435.x – start-page: 201 year: 1988 ident: 10.1016/j.jbiomech.2017.01.020_bib32 article-title: The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates publication-title: Neural Control Rhythm. Mov. Vertebr. – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.jbiomech.2017.01.020_bib19 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 52 start-page: 201 issue: 2 year: 2013 ident: 10.1016/j.jbiomech.2017.01.020_bib4 article-title: Contributions of phase resetting and interlimb coordination to the adaptive control of hindlimb obstacle avoidance during locomotion in rats: a simulation study publication-title: Biol. Cybern. doi: 10.1007/s00422-013-0546-6 – volume: 52 start-page: 1085 issue: 6 year: 2006 ident: 10.1016/j.jbiomech.2017.01.020_bib9 article-title: A central source of movement variability publication-title: Neuron doi: 10.1016/j.neuron.2006.10.034 – volume: 56 start-page: 345 issue: 5-6 year: 1987 ident: 10.1016/j.jbiomech.2017.01.020_bib24 article-title: Mechanisms of frequency and pattern control in the neural rhythm generators publication-title: Biol. Cybern. doi: 10.1007/BF00319514 – volume: 9 start-page: 585 issue: 4 year: 1986 ident: 10.1016/j.jbiomech.2017.01.020_bib5 article-title: Adaptability of innate motor patterns and motor control mechanisms publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X00051268 – volume: 125 start-page: 2626 issue: 12 year: 2002 ident: 10.1016/j.jbiomech.2017.01.020_bib14 article-title: Locomotor activity in spinal man: significance of afferent input from joint and load receptors publication-title: Brain doi: 10.1093/brain/awf273 – volume: 34 start-page: 241 issue: 2 year: 1979 ident: 10.1016/j.jbiomech.2017.01.020_bib16 article-title: On the central generation of locomotion in the low spinal cat publication-title: Exp. Brain Res. doi: 10.1007/BF00235671 – volume: 2 start-page: 162 issue: 2 year: 1999 ident: 10.1016/j.jbiomech.2017.01.020_bib36 article-title: The construction of movement by the spinal cord publication-title: Nat. Neurosci. doi: 10.1038/5721 – volume: 52 start-page: 367 issue: 6 year: 1985 ident: 10.1016/j.jbiomech.2017.01.020_bib23 article-title: Sustained oscillations generated by mutually inhibiting neurons with adaptation publication-title: Biol. Cybern. doi: 10.1007/BF00449593 – volume: 17 start-page: 312 issue: 2 year: 2014 ident: 10.1016/j.jbiomech.2017.01.020_bib38 article-title: Temporal structure of motor variability is dynamically regulated and predicts motor learning ability publication-title: Nat. Neurosci. doi: 10.1038/nn.3616 – volume: 84 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.jbiomech.2017.01.020_bib30 article-title: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model publication-title: Biol. Cybern. doi: 10.1007/PL00007977 – volume: 91 start-page: 7534 issue: 16 year: 1994 ident: 10.1016/j.jbiomech.2017.01.020_bib27 article-title: Linear combinations of primitives in vertebrate motor control publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.91.16.7534 – volume: 50 start-page: 917 issue: 9 year: 2012 ident: 10.1016/j.jbiomech.2017.01.020_bib8 article-title: Neural oscillators triggered by loading and hip orientation can generate activation patterns at the ankle during walking in humans publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-012-0944-2 – volume: 43 start-page: 412 issue: 3 year: 2010 ident: 10.1016/j.jbiomech.2017.01.020_bib26 article-title: Modular control of human walking: adaptations to altered mechanical demands publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2009.10.009 – ident: 10.1016/j.jbiomech.2017.01.020_bib39 doi: 10.1093/oso/9780198505143.003.0023 |
| SSID | ssj0007479 |
| Score | 2.3627357 |
| Snippet | The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For... Abstract The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 154 |
| SubjectTerms | Activation Adult Algorithms Central Pattern Generators - physiology Electromyography Experiments Gait Generators Humans Knee Leg - physiology Legs Locomotion Locomotion - physiology Male Mathematical models Motor pattern Motor program Muscle redundancy Muscle synergies Muscle, Skeletal - physiology Muscles Musculoskeletal system Nervous system Periodicity Physical Medicine and Rehabilitation Reproduction Rhythmic activity Spinal cord Spinal Cord - physiology Studies Walking Young Adult |
| Title | Modular neuromuscular control of human locomotion by central pattern generator |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929017300210 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929017300210 https://dx.doi.org/10.1016/j.jbiomech.2017.01.020 https://www.ncbi.nlm.nih.gov/pubmed/28126336 https://www.proquest.com/docview/1879236238 https://www.proquest.com/docview/1862764531 https://www.proquest.com/docview/1877848201 https://www.proquest.com/docview/1893905671 |
| Volume | 53 |
| WOSCitedRecordID | wos000396970100022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiE48NjyWCgrIyFuoXHitZ0TKqgVB3ZZIZD2Zjm2g1jRZGl2kfrvGTtO6KULgksuseXEY8984xl_A_BSFplF91gnWhdZgiagSkopWUIlZzqXnrEt8Mx-EPO5XC6LRTxwa2NaZa8Tg6K2jfFn5Me-KnaG2jaXb9Y_El81ykdXYwmNPThAQ819BYNZ9nHQxAiVY4oHTRAGpFduCK9er8L99hCQoKKj7kyvM07Xgc9ghM7u_e_n34e7EX6Sk269PIAbrh7B4UmNrvf5JXlFQkJoOGkfwZ0rXIUjuDWLUfhDmM8a67NXSSDDPN92uawkZr2TpiKh8h9BO9l0VYJIeUliGihZB0bPmnwNhNfo8j-EL2enn9-9T2JdhsRMRbZJjBCWlaxy1gpBrUB9mVoP1atSU27Q4XOZZlJnpjQWPRA3zVN8YY0uC1dKlz-C_bqp3RMgKdfMWW41LwzTutI8RxVMS84qkVNajGHaC0SZSFrua2d8V3122kr1glRekCqlCgU5huOh37qj7fhjD9HLW_WXUlGNKrQs_9bTtVEbtIqqNlOp8oFx6tch9UUC0NceQzH0jICnAzJ_NepRv9DU74GGVTaGF8NrVBg-CqRr12x9G54JznCWd7URQjIPDne1KfIC4bPANo-7TTFMdYawkec5f7r7I5_Bbf9HHUPAEexvLrbuOdw0Pzff2osJ7ImlCE85gYO3p_PFp0nY3_4pFr8ATw5WEg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tC-Jx4NHlUVjASMAtbOy4dnJAaAWsdrVtxWGRejNO7CAqNilNCuqf4jcydh7sZQtC2gPnePJw5_FNZ_wNwPM4YQbTYx1onbAAQ0AepHHMAxoLrqPYMbZ5ntmxnE7j2Sz5sAU_u7Mwrq2y84neUZsyc_-R77mp2Ay9bRS_WXwL3NQoV13tRmg0anFs1z8wZateH73D3_cFYwfvT94eBu1UgSAbSVYHmZSGpzy3xkhJjURrD40DmnmqqcgwXbFM81izLM0M4mc7ikK8YDKdJjaNbYT3vQSX0Y9LZ1Fy1id4jou-bSmhAcKO8MyJ5PmruT9P7wsgVDZUoeF5wfA8sOuD3sGt_227bsPNFl6T_cYe7sCWLQaws1_oujxdk5fEN7z6SsIAbpzhYhzA1UnbZbAD00lpXHcu8WSfp6umV5e0Xf2kzImfbEgQB5TNFCSSrknb5koWnrG0IJ89oXddLu_Cxwv55HuwXZSFfQAkFJpbI4wWSca1zrWIMMTQVPBcRpQmQxh1CqCylpTdzQb5qrruu7nqFEc5xVEhVag4Q9jr5RYNLckfJWSnX6o7dIthQmHk_DdJW7XerlJUVUyFyhX-qdN76oYgMIqSSS_ZAroGqP3VU3c7xVa_H9Rr9RCe9ZfRIboqly5suXJrBJOC4y5vWiNlzB343bQmiRJMDySuud8YYb_VDGGxiCLxcPNLPoVrhyeTsRofTY8fwXX3dQ0bwi5s18uVfQxXsu_1l2r5xPsRAp8u2hJ_AW_3sQQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JbxMxFH4qBVVwYElZAgWMBNyGjD2O7TkgVFEiqrZRDiD1ZjxjDyKiMyELKH-NX8ezZ6GXBoTUA-fxm8V5y-f48_cAnquUWVwem8iYlEVYAoooU4pHVAluEuUV24LO7LEcj9XpaTrZgp_tWRhPq2xzYkjUtsr9f-QD3xWbYbZN1KBoaBGTg9Gb2bfId5DyO61tO43aRY7c-gcu3xavDw_wt37B2Ojdh7fvo6bDQJQPJVtGuZSWZ7xw1kpJrcTIj60HnUVmqMhx6eKY4cqwPMstYmk3TGK8YHOTpS5TLsH7XoGrkotYBdrgpKsCCNMbegmNEILE504nT19Nw9n6sBlCZS0bGl9UGC8CvqEAjm79z1N3G242sJvs13FyB7Zc2YPd_dIsq7M1eUkCETbsMPTgxjmNxh7snDTsg10Yn1TWs3ZJEAE9W9UcXtKw_UlVkNDxkCA-qOruSCRbk4b-SmZBybQkn4PQ97Ka34WPl_LJ92C7rEr3AEgsDHdWWCPSnBtTGJFg6aGZ4IVMKE37MGydQeeNWLvvGfJVt6y8qW6dSHsn0jHV6ER9GHR2s1qu5I8WsvU13R7GxfKhsaL-m6VbNFlwoaleMB1rTwigPgaob47AKFqmnWUD9GoA91dP3WudXP9-UOfhfXjWXcZE6Xe_TOmqlR8jmBQcZ3nTGCkV96B405g0SXHZIHHM_Togu6lmCJdFkoiHm1_yKexgAOrjw_HRI7juP64WSdiD7eV85R7Dtfz78sti_iSkFAKfLjsQfwEPy7nb |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modular+neuromuscular+control+of+human+locomotion+by+central+pattern+generator&rft.jtitle=Journal+of+biomechanics&rft.au=Haghpanah%2C+Seyyed+Arash&rft.au=Farahmand%2C+Farzam&rft.au=Zohoor%2C+Hassan&rft.date=2017-02-28&rft.issn=1873-2380&rft.eissn=1873-2380&rft.volume=53&rft.spage=154&rft_id=info:doi/10.1016%2Fj.jbiomech.2017.01.020&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929017X00031%2Fcov150h.gif |