Comparison and improvement of algorithms for computing minimal cut sets
Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been prop...
Saved in:
| Published in: | BMC bioinformatics Vol. 14; no. 1; p. 318 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
06.11.2013
BioMed Central Ltd |
| Subjects: | |
| ISSN: | 1471-2105, 1471-2105 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable.
Results
Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach.
Conclusions
Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. |
|---|---|
| AbstractList | Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Background: Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results: Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions: Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable.BACKGROUNDConstrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable.Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach.RESULTSHere we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach.Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.CONCLUSIONSGenerally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Keywords: Metabolic network analysis, Elementary modes, Minimal cut sets, Knockout strategies, Integer programming, Berge's algorithm |
| ArticleNumber | 318 |
| Audience | Academic |
| Author | Zanghellini, Jürgen Klamt, Steffen Nair, Govind Jungreuthmayer, Christian |
| AuthorAffiliation | 2 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria 1 Austrian Centre of Industrial Biotechnology, Vienna, Austria 3 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany |
| AuthorAffiliation_xml | – name: 1 Austrian Centre of Industrial Biotechnology, Vienna, Austria – name: 2 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria – name: 3 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany |
| Author_xml | – sequence: 1 givenname: Christian surname: Jungreuthmayer fullname: Jungreuthmayer, Christian organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences – sequence: 2 givenname: Govind surname: Nair fullname: Nair, Govind organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences – sequence: 3 givenname: Steffen surname: Klamt fullname: Klamt, Steffen organization: Max Planck Institute for Dynamics of Complex Technical Systems – sequence: 4 givenname: Jürgen surname: Zanghellini fullname: Zanghellini, Jürgen email: juergen.zanghellini@acib.at organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24191903$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1rFTEUxYNU7IfuXcmAG11Mzc1MJslGKA-thYLgxzpkMsk0ZSZ5JplS_3szvLb0iYpkkZD7Oyfh3nOMDnzwBqGXgE8BePcOWgY1AUxraOsG-BN09HB18Oh8iI5TusYYGMf0GTokLQgQuDlC55swb1V0KfhK-aFy8zaGGzMbn6tgKzWNIbp8NafKhljpAi_Z-bGanXezmiq95CqZnJ6jp1ZNyby420_Q948fvm0-1Zefzy82Z5e1pozkutcADekNJaoH0zLbiI4zAZQMFvcDtliUItNctNpyTqwwlJvWYNYL3vGmOUHvd77bpZ_NoMs_o5rkNpbfxJ8yKCf3K95dyTHcyKa4MUaLwZs7gxh-LCZlObukzTQpb8KSJLSCdKQBRv4HxawlgkNBX-_QUU1GOm9DeVyvuDyjTUuBUrxSp3-gyhrM7HQZrXXlfk_wdk9QmGxu86iWlOTF1y_77KvHnXloyf2sC9DtAB1DStFYqV1W2YW1UW6SgOUaKrmmRq6pKSdZQlWE-Dfhvfc_JLCTpIL60UR5HZboSzL-rvkF4-Pajw |
| CitedBy_id | crossref_primary_10_1093_bib_bbaf188 crossref_primary_10_1371_journal_pcbi_1005409 crossref_primary_10_1093_bioadv_vbaf127 crossref_primary_10_1186_s12859_020_03837_3 crossref_primary_10_4137_BBI_S12466 crossref_primary_10_1016_j_joule_2019_05_011 crossref_primary_10_1016_j_nbt_2015_03_017 crossref_primary_10_1186_s13015_015_0060_6 crossref_primary_10_3390_pr8121649 crossref_primary_10_1016_j_ifacol_2017_08_1605 crossref_primary_10_1109_TCBB_2013_116 crossref_primary_10_1016_j_ymben_2015_10_005 crossref_primary_10_1371_journal_pone_0092583 crossref_primary_10_1371_journal_pone_0129840 crossref_primary_10_1038_s41598_024_68073_8 crossref_primary_10_3390_computation9100111 crossref_primary_10_1186_s13015_014_0028_y crossref_primary_10_1016_j_ymben_2018_02_001 crossref_primary_10_1109_TCBBIO_2025_3550472 crossref_primary_10_1186_s12859_017_1483_5 |
| Cites_doi | 10.1371/journal.pcbi.1000744 10.1016/j.dam.2007.04.017 10.1016/j.ymben.2009.11.002 10.1016/j.ymben.2010.12.004 10.1186/1752-0509-4-53 10.1186/1752-0509-6-103 10.1016/j.ymben.2011.01.003 10.1186/1752-0509-1-2 10.1016/j.mib.2008.02.007 10.1002/biot.201200269 10.1128/AEM.00382-11 10.1093/bioinformatics/btl267 10.1016/j.biosystems.2013.04.002 10.1287/ijoc.6.4.445 10.1038/nchembio.970 10.1101/gr.2872004 10.1089/cmb.2007.0229 10.1016/S0167-7799(98)01290-6 10.1002/bit.10803 10.1093/bioinformatics/btn401 10.1016/j.ymben.2012.09.005 10.1007/s00253-012-4197-7 10.1073/pnas.232349399 10.1016/j.ymben.2011.11.002 10.1038/73786 10.1016/j.parco.2011.04.002 10.1016/S1004-9541(08)60052-X 10.1007/s00253-008-1770-1 10.1016/j.ymben.2011.06.008 10.1128/AEM.02708-07 10.1128/AEM.00115-10 |
| ContentType | Journal Article |
| Copyright | Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. COPYRIGHT 2013 BioMed Central Ltd. Copyright © 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. |
| Copyright_xml | – notice: Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. – notice: COPYRIGHT 2013 BioMed Central Ltd. – notice: Copyright © 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7QO 8FD FR3 P64 5PM |
| DOI | 10.1186/1471-2105-14-318 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 318 |
| ExternalDocumentID | PMC3882775 A534515501 24191903 10_1186_1471_2105_14_318 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 5PM |
| ID | FETCH-LOGICAL-c572t-bc1132be52ab1e47f396879152df0bd0f09be57c894cf882f9e58e4e07b986833 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332200300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Tue Nov 04 01:32:29 EST 2025 Tue Oct 07 09:32:56 EDT 2025 Fri Sep 05 08:17:58 EDT 2025 Tue Nov 11 10:56:27 EST 2025 Tue Nov 04 18:30:05 EST 2025 Thu Nov 13 16:45:32 EST 2025 Thu Apr 03 06:59:30 EDT 2025 Sat Nov 29 05:39:56 EST 2025 Tue Nov 18 22:02:21 EST 2025 Sat Sep 06 07:27:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Integer programming Metabolic network analysis Knockout strategies Minimal cut sets Berge’s algorithm Elementary modes |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-bc1132be52ab1e47f396879152df0bd0f09be57c894cf882f9e58e4e07b986833 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://link.springer.com/10.1186/1471-2105-14-318 |
| PMID | 24191903 |
| PQID | 1490742981 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882775 proquest_miscellaneous_1492623172 proquest_miscellaneous_1490742981 gale_infotracmisc_A534515501 gale_infotracacademiconefile_A534515501 gale_incontextgauss_ISR_A534515501 pubmed_primary_24191903 crossref_citationtrail_10_1186_1471_2105_14_318 crossref_primary_10_1186_1471_2105_14_318 springer_journals_10_1186_1471_2105_14_318 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-06 |
| PublicationDateYYYYMMDD | 2013-11-06 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2013 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | S Schuster (6856_CR13) 1999; 17 JW Lee (6856_CR1) 2012; 8 C Jungreuthmayer (6856_CR10) 2012; 6 J Zanghellini (6856_CR20) 2013; 8 Av Kamp (6856_CR27) 2006; 22 J Deutscher (6856_CR31) 2008; 11 C Jungreuthmayer (6856_CR24) 2013; 113 MWP Savelsbergh (6856_CR35) 1994; 6 K Murakami (6856_CR34) 2011 AR Zomorrodi (6856_CR3) 2012; 14 M Terzer (6856_CR26) 2008; 24 P Pharkya (6856_CR7) 2004; 14 S Klamt (6856_CR32) 2007; 1 JD Orth (6856_CR30) 2009 X Xu (6856_CR18) 2008; 16 DS Chen (6856_CR29) 2010 C Trinh (6856_CR21) 2009; 81 C Berge (6856_CR22) 1989 AP Burgard (6856_CR8) 2003; 84 S Ranganathan (6856_CR6) 2010; 6 D Segrè (6856_CR9) 2002; 99 J Kim (6856_CR4) 2010; 4 H Driouch (6856_CR19) 2012; 14 P Unrean (6856_CR17) 2010; 12 CT Trinh (6856_CR33) 2012; 95 UU Haus (6856_CR23) 2008; 15 T Eiter (6856_CR28) 2008; 156 O Hädicke (6856_CR11) 2011; 13 S Schuster (6856_CR12) 2000; 18 CT Trinh (6856_CR15) 2011; 77 P Xu (6856_CR2) 2011; 13 CT Trinh (6856_CR16) 2008; 74 D Jevremović (6856_CR25) 2011; 37 HS Choi (6856_CR5) 2010; 76 J Becker (6856_CR14) 2011; 13 21763447 - Metab Eng. 2011 Sep;13(5):578-87 19015845 - Appl Microbiol Biotechnol. 2009 Jan;81(5):813-26 22898474 - BMC Syst Biol. 2012;6:103 23788432 - Biotechnol J. 2013 Sep;8(9):1009-16 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 20348305 - Appl Environ Microbiol. 2010 May;76(10):3097-105 22058581 - Parallel Comput. 2011 Jun;37(6-7):261-278 10700151 - Nat Biotechnol. 2000 Mar;18(3):326-32 23026121 - Metab Eng. 2012 Nov;14(6):672-86 18676417 - Bioinformatics. 2008 Oct 1;24(19):2229-35 23664840 - Biosystems. 2013 Jul;113(1):37-9 16731697 - Bioinformatics. 2006 Aug 1;22(15):1930-1 22596205 - Nat Chem Biol. 2012 Jun;8(6):536-46 17408509 - BMC Syst Biol. 2007;1:2 18424547 - Appl Environ Microbiol. 2008 Jun;74(12):3634-43 10087604 - Trends Biotechnol. 1999 Feb;17(2):53-60 14595777 - Biotechnol Bioeng. 2003 Dec 20;84(6):647-57 12415116 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7 22115737 - Metab Eng. 2012 Jan;14(1):47-58 21642415 - Appl Environ Microbiol. 2011 Jul;77(14):4894-904 18331197 - J Comput Biol. 2008 Apr;15(3):259-68 20419153 - PLoS Comput Biol. 2010 Apr;6(4):e1000744 19944775 - Metab Eng. 2010 Mar;12(2):112-22 22678028 - Appl Microbiol Biotechnol. 2012 Aug;95(4):1083-94 21147248 - Metab Eng. 2011 Mar;13(2):204-13 15520298 - Genome Res. 2004 Nov;14(11):2367-76 21241816 - Metab Eng. 2011 Mar;13(2):159-68 20426856 - BMC Syst Biol. 2010;4:53 |
| References_xml | – volume: 6 start-page: e1000744 issue: 4 year: 2010 ident: 6856_CR6 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000744 – volume: 156 start-page: 2035 issue: 11 year: 2008 ident: 6856_CR28 publication-title: Discrete Appl Math doi: 10.1016/j.dam.2007.04.017 – volume: 12 start-page: 112 issue: 2 year: 2010 ident: 6856_CR17 publication-title: Metab Eng doi: 10.1016/j.ymben.2009.11.002 – volume: 13 start-page: 204 issue: 2 year: 2011 ident: 6856_CR11 publication-title: Metab Eng doi: 10.1016/j.ymben.2010.12.004 – volume: 4 start-page: 53 year: 2010 ident: 6856_CR4 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-53 – volume: 6 start-page: 103 year: 2012 ident: 6856_CR10 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-6-103 – volume: 13 start-page: 159 issue: 2 year: 2011 ident: 6856_CR14 publication-title: Metab Eng doi: 10.1016/j.ymben.2011.01.003 – start-page: 56 volume-title: EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology year: 2009 ident: 6856_CR30 – volume: 1 start-page: 2 year: 2007 ident: 6856_CR32 publication-title: BMC Syst Biol doi: 10.1186/1752-0509-1-2 – volume: 11 start-page: 87 issue: 2 year: 2008 ident: 6856_CR31 publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2008.02.007 – volume: 8 start-page: 1009 issue: 9 year: 2013 ident: 6856_CR20 publication-title: Biotechnol J doi: 10.1002/biot.201200269 – volume: 77 start-page: 4894 issue: 14 year: 2011 ident: 6856_CR15 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00382-11 – volume: 22 start-page: 1930 issue: 15 year: 2006 ident: 6856_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl267 – volume: 113 start-page: 37 year: 2013 ident: 6856_CR24 publication-title: Biosystems doi: 10.1016/j.biosystems.2013.04.002 – volume: 6 start-page: 445 issue: 4 year: 1994 ident: 6856_CR35 publication-title: ORSA J Comput doi: 10.1287/ijoc.6.4.445 – volume: 8 start-page: 536 issue: 6 year: 2012 ident: 6856_CR1 publication-title: Nat Chem Biol doi: 10.1038/nchembio.970 – volume-title: arXiv:1102.3813 year: 2011 ident: 6856_CR34 – volume: 14 start-page: 2367 issue: 11 year: 2004 ident: 6856_CR7 publication-title: Genome Res doi: 10.1101/gr.2872004 – volume: 15 start-page: 259 issue: 3 year: 2008 ident: 6856_CR23 publication-title: J Comput Biol doi: 10.1089/cmb.2007.0229 – volume: 17 start-page: 53 issue: 2 year: 1999 ident: 6856_CR13 publication-title: Trends Biotechnol doi: 10.1016/S0167-7799(98)01290-6 – volume: 84 start-page: 647 issue: 6 year: 2003 ident: 6856_CR8 publication-title: Biotechnol Bioeng doi: 10.1002/bit.10803 – volume: 24 start-page: 2229 issue: 19 year: 2008 ident: 6856_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn401 – volume: 14 start-page: 672 issue: 6 year: 2012 ident: 6856_CR3 publication-title: Metab Eng doi: 10.1016/j.ymben.2012.09.005 – volume: 95 start-page: 1083 issue: 4 year: 2012 ident: 6856_CR33 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-012-4197-7 – volume: 99 start-page: 15112 issue: 23 year: 2002 ident: 6856_CR9 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.232349399 – volume: 14 start-page: 47 year: 2012 ident: 6856_CR19 publication-title: Metab Eng doi: 10.1016/j.ymben.2011.11.002 – volume-title: Hypergraphs: Combinatorics of Finite Sets year: 1989 ident: 6856_CR22 – volume: 18 start-page: 326 issue: 3 year: 2000 ident: 6856_CR12 publication-title: Nat Biotech doi: 10.1038/73786 – volume: 37 start-page: 261 issue: 6-7 year: 2011 ident: 6856_CR25 publication-title: Parallel Comput doi: 10.1016/j.parco.2011.04.002 – volume: 16 start-page: 135 year: 2008 ident: 6856_CR18 publication-title: Chin J Chem Eng doi: 10.1016/S1004-9541(08)60052-X – volume: 81 start-page: 813 issue: 5 year: 2009 ident: 6856_CR21 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-008-1770-1 – volume: 13 start-page: 578 issue: 5 year: 2011 ident: 6856_CR2 publication-title: Metab Eng doi: 10.1016/j.ymben.2011.06.008 – volume: 74 start-page: 3634 issue: 12 year: 2008 ident: 6856_CR16 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02708-07 – volume-title: Applied Integer Programming: Modeling and Solution year: 2010 ident: 6856_CR29 – volume: 76 start-page: 3097 issue: 10 year: 2010 ident: 6856_CR5 publication-title: Appl Environ Microbiolo doi: 10.1128/AEM.00115-10 – reference: 10700151 - Nat Biotechnol. 2000 Mar;18(3):326-32 – reference: 14595777 - Biotechnol Bioeng. 2003 Dec 20;84(6):647-57 – reference: 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93 – reference: 22898474 - BMC Syst Biol. 2012;6:103 – reference: 21642415 - Appl Environ Microbiol. 2011 Jul;77(14):4894-904 – reference: 19015845 - Appl Microbiol Biotechnol. 2009 Jan;81(5):813-26 – reference: 20426856 - BMC Syst Biol. 2010;4:53 – reference: 22058581 - Parallel Comput. 2011 Jun;37(6-7):261-278 – reference: 15520298 - Genome Res. 2004 Nov;14(11):2367-76 – reference: 20419153 - PLoS Comput Biol. 2010 Apr;6(4):e1000744 – reference: 21147248 - Metab Eng. 2011 Mar;13(2):204-13 – reference: 22115737 - Metab Eng. 2012 Jan;14(1):47-58 – reference: 21241816 - Metab Eng. 2011 Mar;13(2):159-68 – reference: 23664840 - Biosystems. 2013 Jul;113(1):37-9 – reference: 21763447 - Metab Eng. 2011 Sep;13(5):578-87 – reference: 22596205 - Nat Chem Biol. 2012 Jun;8(6):536-46 – reference: 12415116 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7 – reference: 22678028 - Appl Microbiol Biotechnol. 2012 Aug;95(4):1083-94 – reference: 17408509 - BMC Syst Biol. 2007;1:2 – reference: 23026121 - Metab Eng. 2012 Nov;14(6):672-86 – reference: 18331197 - J Comput Biol. 2008 Apr;15(3):259-68 – reference: 23788432 - Biotechnol J. 2013 Sep;8(9):1009-16 – reference: 18424547 - Appl Environ Microbiol. 2008 Jun;74(12):3634-43 – reference: 19944775 - Metab Eng. 2010 Mar;12(2):112-22 – reference: 16731697 - Bioinformatics. 2006 Aug 1;22(15):1930-1 – reference: 18676417 - Bioinformatics. 2008 Oct 1;24(19):2229-35 – reference: 20348305 - Appl Environ Microbiol. 2010 May;76(10):3097-105 – reference: 10087604 - Trends Biotechnol. 1999 Feb;17(2):53-60 |
| SSID | ssj0017805 |
| Score | 2.21687 |
| Snippet | Background
Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted... Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted... Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted... Background: Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted... |
| SourceID | pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 318 |
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Cell metabolism Comparative analysis Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer Simulation Escherichia coli - genetics Gene Deletion Gene Knockout Techniques Humans Image Processing, Computer-Assisted Life Sciences Metabolic Networks and Pathways - genetics Methodology Methodology Article Microarrays Models, Genetic Networks analysis Software Thermodynamics |
| Title | Comparison and improvement of algorithms for computing minimal cut sets |
| URI | https://link.springer.com/article/10.1186/1471-2105-14-318 https://www.ncbi.nlm.nih.gov/pubmed/24191903 https://www.proquest.com/docview/1490742981 https://www.proquest.com/docview/1492623172 https://pubmed.ncbi.nlm.nih.gov/PMC3882775 |
| Volume | 14 |
| WOSCitedRecordID | wos000332200300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_6oeBL_axG6xFFEIWl-dhkdx9rabWIR2hVTl-WZLPbHrSJXHIF_3tn95JgDi3oy3Iwk0symd35zezsDMArJpLIpEVBIgSjhPKgJDmlhqgyR3BaKrS51DWbYNMpn81EtgFRfxbGZbv3W5JupXbTmqf7IS6jBB2UhITUnvndhO3E1pqxHvrZ12HnwNbo77cj_3DVyPysL8K_WaH1DMm1bVJnfY7v_s9z34OdDmv6ByvluA8bunoAt1fdJ38-hPeHQw9CP69Kf-7iCy5c6NfGzy_P68W8vbhqfAS2vnLtH_DGvq1GcoX_q5at3-i2eQRfjo8-H34gXV8FohIWtaRQtr18oZMoL0JNmYlFyplAS16aoCgDEwgkMsUFVQYRuBE64ZrqgBWCpzyOd2Grqiv9BHwW5eiy6aIUQUFVwHNhSoOYhSodou8rPNjvxS1VV3Tc9r64lM754Km04pFWPPhLong8eDNc8WNVcOMG3pf2C0pbx6KyiTLn-bJp5MnZqTxIYmq71wShB687JlPjrVXenTvAF7Clr0aceyNOnGhqRH7RK4q0JJudVul62eDTuBCD4DfzRAg1ES968HilXMP7IYoSCMxiD9hI7QYGWwN8TKnmF64WeIzfh7HEg7e98sluEWr-Kran_8L8DO5EtgOIjaSne7DVLpb6OdxS1-28WUxgk82YG_kEtt8dTbPTiQtr4PiRkYlNpc1wzJLvSM9OPmXfJm6-_gJQ8TEd |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9UwFD_MqegX34_q1CiCKJT1kTbJxzGcG86LuCn7Fto02S5srdz2Cv73npPbFnvRgX4r5LRJTk9yfieP8wN4LVSWuLwswwTBaMhlVIUF5y40VYHgtDLoc7knmxCzmTw5UZ83IBnuwvjT7sOWpJ-p_bCW-XaM02iIAUoWxpzu_F6Bq5xIdihCP_o27hxQjv5hO_IPb03cz_ok_JsXWj8hubZN6r3P3u3_afcduNVjTbazMo67sGHre3B9xT758z582B05CFlRV2zu1xf8ciFrHCvOT5vFvDu7aBkCW2Y8_QNWzCgbyQV-1yw71tqufQBf994f7-6HPa9CaDKRdGFpiF6-tFlSlLHlwqUql0KhJ69cVFaRixQWCiMVNw4RuFM2k5bbSJRK5jJNH8Jm3dT2MTCRFBiy2bJSUclNJAvlKoeYhRsbY-yrAtge1K1Nn3ScuC_OtQ8-ZK5JPZrUg08a1RPA2_GN76uEG5fIvqI_qCmPRU0HZU6LZdvqg6MveidLObHXRHEAb3oh12DVpujvHWAHKPXVRHJrIokDzUyKXw6GoqmITqfVtlm22Bq_xKDk5TIJQk3EiwE8WhnX2D9EUQqBWRqAmJjdKEA5wKcl9fzM5wJP8f8IkQXwbjA-3U9C7V_V9uRfhF_Ajf3jT4f68GD28SncTIgNhFbV8y3Y7BZL-wyumR_dvF089-PwFzRSKyw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9QwDLdgPMQX3o_CgICQ0JCq6yNtko_T4GACnaYN0L5FbZpsJ23tdO0h8d9j9yV6gkmIb5XitI3jxD87jg3wRqgkcmme-xGCUZ_LoPAzzp1vigzBaWFQ5_K22IRYLOTxsTroHW71EO0-HEl2dxooS1PZzC4K1y1xmc5C3FJ9NFYSP-R0__cqXONox1BI1-HR9_EUgfL1D0eTf-g1UUWbG_JvGmkzWnLjyLTVRPM7_zuGu3C7x6BstxOae3DFlvfhRleV8ucD-Lg31iZkWVmwZet3aN2IrHIsOzupVsvm9LxmCHiZactC4E8wylJyju8164bVtqkfwrf5h697n_y-3oJvEhE1fm6o7HxukyjLQ8uFi1UqhUINX7ggLwIXKGwURipuHCJzp2wiLbeByJVMZRw_gq2yKu0TYCLK0JSzeaGCnJtAZsoVDrEMNzZEm1h5MBtYr02fjJxqYpzp1iiRqSb2aGIPPmlkjwc7Y4-LLhHHJbSvaTY15bcoKYDmJFvXtd4_OtS7Scypqk0QevC2J3IVftpk_X0EHAClxJpQbk8ocQGaSfOrQWg0NVHUWmmrdY1_07oelLycJkIIijjSg8edoI3jQ3SlELDFHoiJCI4ElBt82lIuT9sc4THOjxCJB-8GQdT95lT_lW1P_4X4Jdw8eD_XX_YXn5_BrYiKhJCzPd2GrWa1ts_huvnRLOvVi3ZJ_gJkDjQQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+and+improvement+of+algorithms+for+computing+minimal+cut+sets&rft.jtitle=BMC+bioinformatics&rft.au=Jungreuthmayer%2C+Christian&rft.au=Nair%2C+Govind&rft.au=Klamt%2C+Steffen&rft.au=Zanghellini%2C+J%C3%BCrgen&rft.date=2013-11-06&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=14&rft.spage=318&rft.epage=318&rft_id=info:doi/10.1186%2F1471-2105-14-318&rft_id=info%3Apmid%2F24191903&rft.externalDocID=PMC3882775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |