Comparison and improvement of algorithms for computing minimal cut sets

Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 14; H. 1; S. 318
Hauptverfasser: Jungreuthmayer, Christian, Nair, Govind, Klamt, Steffen, Zanghellini, Jürgen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 06.11.2013
BioMed Central Ltd
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
AbstractList Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
Background: Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results: Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions: Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable.BACKGROUNDConstrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable.Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach.RESULTSHere we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach.Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.CONCLUSIONSGenerally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations.
Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted optimization of metabolic networks. Two different algorithmic schemes (adapted Berge algorithm and binary integer programming) have been proposed to compute cMCSs from elementary modes. However, in their original formulation both algorithms are not fully comparable. Results Here we show that by a small extension to the integer program both methods become equivalent. Furthermore, based on well-known preprocessing procedures for integer programming we present efficient preprocessing steps which can be used for both algorithms. We then benchmark the numerical performance of the algorithms in several realistic medium-scale metabolic models. The benchmark calculations reveal (i) that these preprocessing steps can lead to an enormous speed-up under both algorithms, and (ii) that the adapted Berge algorithm outperforms the binary integer approach. Conclusions Generally, both of our new implementations are by at least one order of magnitude faster than other currently available implementations. Keywords: Metabolic network analysis, Elementary modes, Minimal cut sets, Knockout strategies, Integer programming, Berge's algorithm
ArticleNumber 318
Audience Academic
Author Zanghellini, Jürgen
Klamt, Steffen
Nair, Govind
Jungreuthmayer, Christian
AuthorAffiliation 2 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
1 Austrian Centre of Industrial Biotechnology, Vienna, Austria
3 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
AuthorAffiliation_xml – name: 1 Austrian Centre of Industrial Biotechnology, Vienna, Austria
– name: 2 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
– name: 3 Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
Author_xml – sequence: 1
  givenname: Christian
  surname: Jungreuthmayer
  fullname: Jungreuthmayer, Christian
  organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences
– sequence: 2
  givenname: Govind
  surname: Nair
  fullname: Nair, Govind
  organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences
– sequence: 3
  givenname: Steffen
  surname: Klamt
  fullname: Klamt, Steffen
  organization: Max Planck Institute for Dynamics of Complex Technical Systems
– sequence: 4
  givenname: Jürgen
  surname: Zanghellini
  fullname: Zanghellini, Jürgen
  email: juergen.zanghellini@acib.at
  organization: Austrian Centre of Industrial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24191903$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNU7IfuXcmAG11Mzc1MJslGKA-thYLgxzpkMsk0ZSZ5JplS_3szvLb0iYpkkZD7Oyfh3nOMDnzwBqGXgE8BePcOWgY1AUxraOsG-BN09HB18Oh8iI5TusYYGMf0GTokLQgQuDlC55swb1V0KfhK-aFy8zaGGzMbn6tgKzWNIbp8NafKhljpAi_Z-bGanXezmiq95CqZnJ6jp1ZNyby420_Q948fvm0-1Zefzy82Z5e1pozkutcADekNJaoH0zLbiI4zAZQMFvcDtliUItNctNpyTqwwlJvWYNYL3vGmOUHvd77bpZ_NoMs_o5rkNpbfxJ8yKCf3K95dyTHcyKa4MUaLwZs7gxh-LCZlObukzTQpb8KSJLSCdKQBRv4HxawlgkNBX-_QUU1GOm9DeVyvuDyjTUuBUrxSp3-gyhrM7HQZrXXlfk_wdk9QmGxu86iWlOTF1y_77KvHnXloyf2sC9DtAB1DStFYqV1W2YW1UW6SgOUaKrmmRq6pKSdZQlWE-Dfhvfc_JLCTpIL60UR5HZboSzL-rvkF4-Pajw
CitedBy_id crossref_primary_10_1093_bib_bbaf188
crossref_primary_10_1371_journal_pcbi_1005409
crossref_primary_10_1093_bioadv_vbaf127
crossref_primary_10_1186_s12859_020_03837_3
crossref_primary_10_4137_BBI_S12466
crossref_primary_10_1016_j_joule_2019_05_011
crossref_primary_10_1016_j_nbt_2015_03_017
crossref_primary_10_1186_s13015_015_0060_6
crossref_primary_10_3390_pr8121649
crossref_primary_10_1016_j_ifacol_2017_08_1605
crossref_primary_10_1109_TCBB_2013_116
crossref_primary_10_1016_j_ymben_2015_10_005
crossref_primary_10_1371_journal_pone_0092583
crossref_primary_10_1371_journal_pone_0129840
crossref_primary_10_1038_s41598_024_68073_8
crossref_primary_10_3390_computation9100111
crossref_primary_10_1186_s13015_014_0028_y
crossref_primary_10_1016_j_ymben_2018_02_001
crossref_primary_10_1109_TCBBIO_2025_3550472
crossref_primary_10_1186_s12859_017_1483_5
Cites_doi 10.1371/journal.pcbi.1000744
10.1016/j.dam.2007.04.017
10.1016/j.ymben.2009.11.002
10.1016/j.ymben.2010.12.004
10.1186/1752-0509-4-53
10.1186/1752-0509-6-103
10.1016/j.ymben.2011.01.003
10.1186/1752-0509-1-2
10.1016/j.mib.2008.02.007
10.1002/biot.201200269
10.1128/AEM.00382-11
10.1093/bioinformatics/btl267
10.1016/j.biosystems.2013.04.002
10.1287/ijoc.6.4.445
10.1038/nchembio.970
10.1101/gr.2872004
10.1089/cmb.2007.0229
10.1016/S0167-7799(98)01290-6
10.1002/bit.10803
10.1093/bioinformatics/btn401
10.1016/j.ymben.2012.09.005
10.1007/s00253-012-4197-7
10.1073/pnas.232349399
10.1016/j.ymben.2011.11.002
10.1038/73786
10.1016/j.parco.2011.04.002
10.1016/S1004-9541(08)60052-X
10.1007/s00253-008-1770-1
10.1016/j.ymben.2011.06.008
10.1128/AEM.02708-07
10.1128/AEM.00115-10
ContentType Journal Article
Copyright Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
COPYRIGHT 2013 BioMed Central Ltd.
Copyright © 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: Copyright © 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd. 2013 Jungreuthmayer et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1186/1471-2105-14-318
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale in Context: Science
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE
Engineering Research Database
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 318
ExternalDocumentID PMC3882775
A534515501
24191903
10_1186_1471_2105_14_318
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c572t-bc1132be52ab1e47f396879152df0bd0f09be57c894cf882f9e58e4e07b986833
IEDL.DBID RSV
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332200300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:32:29 EST 2025
Tue Oct 07 09:32:56 EDT 2025
Fri Sep 05 08:17:58 EDT 2025
Tue Nov 11 10:56:27 EST 2025
Tue Nov 04 18:30:05 EST 2025
Thu Nov 13 16:45:32 EST 2025
Thu Apr 03 06:59:30 EDT 2025
Sat Nov 29 05:39:56 EST 2025
Tue Nov 18 22:02:21 EST 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integer programming
Metabolic network analysis
Knockout strategies
Minimal cut sets
Berge’s algorithm
Elementary modes
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-bc1132be52ab1e47f396879152df0bd0f09be57c894cf882f9e58e4e07b986833
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://link.springer.com/10.1186/1471-2105-14-318
PMID 24191903
PQID 1490742981
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3882775
proquest_miscellaneous_1492623172
proquest_miscellaneous_1490742981
gale_infotracmisc_A534515501
gale_infotracacademiconefile_A534515501
gale_incontextgauss_ISR_A534515501
pubmed_primary_24191903
crossref_citationtrail_10_1186_1471_2105_14_318
crossref_primary_10_1186_1471_2105_14_318
springer_journals_10_1186_1471_2105_14_318
PublicationCentury 2000
PublicationDate 2013-11-06
PublicationDateYYYYMMDD 2013-11-06
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References S Schuster (6856_CR13) 1999; 17
JW Lee (6856_CR1) 2012; 8
C Jungreuthmayer (6856_CR10) 2012; 6
J Zanghellini (6856_CR20) 2013; 8
Av Kamp (6856_CR27) 2006; 22
J Deutscher (6856_CR31) 2008; 11
C Jungreuthmayer (6856_CR24) 2013; 113
MWP Savelsbergh (6856_CR35) 1994; 6
K Murakami (6856_CR34) 2011
AR Zomorrodi (6856_CR3) 2012; 14
M Terzer (6856_CR26) 2008; 24
P Pharkya (6856_CR7) 2004; 14
S Klamt (6856_CR32) 2007; 1
JD Orth (6856_CR30) 2009
X Xu (6856_CR18) 2008; 16
DS Chen (6856_CR29) 2010
C Trinh (6856_CR21) 2009; 81
C Berge (6856_CR22) 1989
AP Burgard (6856_CR8) 2003; 84
S Ranganathan (6856_CR6) 2010; 6
D Segrè (6856_CR9) 2002; 99
J Kim (6856_CR4) 2010; 4
H Driouch (6856_CR19) 2012; 14
P Unrean (6856_CR17) 2010; 12
CT Trinh (6856_CR33) 2012; 95
UU Haus (6856_CR23) 2008; 15
T Eiter (6856_CR28) 2008; 156
O Hädicke (6856_CR11) 2011; 13
S Schuster (6856_CR12) 2000; 18
CT Trinh (6856_CR15) 2011; 77
P Xu (6856_CR2) 2011; 13
CT Trinh (6856_CR16) 2008; 74
D Jevremović (6856_CR25) 2011; 37
HS Choi (6856_CR5) 2010; 76
J Becker (6856_CR14) 2011; 13
21763447 - Metab Eng. 2011 Sep;13(5):578-87
19015845 - Appl Microbiol Biotechnol. 2009 Jan;81(5):813-26
22898474 - BMC Syst Biol. 2012;6:103
23788432 - Biotechnol J. 2013 Sep;8(9):1009-16
18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93
20348305 - Appl Environ Microbiol. 2010 May;76(10):3097-105
22058581 - Parallel Comput. 2011 Jun;37(6-7):261-278
10700151 - Nat Biotechnol. 2000 Mar;18(3):326-32
23026121 - Metab Eng. 2012 Nov;14(6):672-86
18676417 - Bioinformatics. 2008 Oct 1;24(19):2229-35
23664840 - Biosystems. 2013 Jul;113(1):37-9
16731697 - Bioinformatics. 2006 Aug 1;22(15):1930-1
22596205 - Nat Chem Biol. 2012 Jun;8(6):536-46
17408509 - BMC Syst Biol. 2007;1:2
18424547 - Appl Environ Microbiol. 2008 Jun;74(12):3634-43
10087604 - Trends Biotechnol. 1999 Feb;17(2):53-60
14595777 - Biotechnol Bioeng. 2003 Dec 20;84(6):647-57
12415116 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7
22115737 - Metab Eng. 2012 Jan;14(1):47-58
21642415 - Appl Environ Microbiol. 2011 Jul;77(14):4894-904
18331197 - J Comput Biol. 2008 Apr;15(3):259-68
20419153 - PLoS Comput Biol. 2010 Apr;6(4):e1000744
19944775 - Metab Eng. 2010 Mar;12(2):112-22
22678028 - Appl Microbiol Biotechnol. 2012 Aug;95(4):1083-94
21147248 - Metab Eng. 2011 Mar;13(2):204-13
15520298 - Genome Res. 2004 Nov;14(11):2367-76
21241816 - Metab Eng. 2011 Mar;13(2):159-68
20426856 - BMC Syst Biol. 2010;4:53
References_xml – volume: 6
  start-page: e1000744
  issue: 4
  year: 2010
  ident: 6856_CR6
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000744
– volume: 156
  start-page: 2035
  issue: 11
  year: 2008
  ident: 6856_CR28
  publication-title: Discrete Appl Math
  doi: 10.1016/j.dam.2007.04.017
– volume: 12
  start-page: 112
  issue: 2
  year: 2010
  ident: 6856_CR17
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2009.11.002
– volume: 13
  start-page: 204
  issue: 2
  year: 2011
  ident: 6856_CR11
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2010.12.004
– volume: 4
  start-page: 53
  year: 2010
  ident: 6856_CR4
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-53
– volume: 6
  start-page: 103
  year: 2012
  ident: 6856_CR10
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-6-103
– volume: 13
  start-page: 159
  issue: 2
  year: 2011
  ident: 6856_CR14
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2011.01.003
– start-page: 56
  volume-title: EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology
  year: 2009
  ident: 6856_CR30
– volume: 1
  start-page: 2
  year: 2007
  ident: 6856_CR32
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-1-2
– volume: 11
  start-page: 87
  issue: 2
  year: 2008
  ident: 6856_CR31
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2008.02.007
– volume: 8
  start-page: 1009
  issue: 9
  year: 2013
  ident: 6856_CR20
  publication-title: Biotechnol J
  doi: 10.1002/biot.201200269
– volume: 77
  start-page: 4894
  issue: 14
  year: 2011
  ident: 6856_CR15
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00382-11
– volume: 22
  start-page: 1930
  issue: 15
  year: 2006
  ident: 6856_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl267
– volume: 113
  start-page: 37
  year: 2013
  ident: 6856_CR24
  publication-title: Biosystems
  doi: 10.1016/j.biosystems.2013.04.002
– volume: 6
  start-page: 445
  issue: 4
  year: 1994
  ident: 6856_CR35
  publication-title: ORSA J Comput
  doi: 10.1287/ijoc.6.4.445
– volume: 8
  start-page: 536
  issue: 6
  year: 2012
  ident: 6856_CR1
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.970
– volume-title: arXiv:1102.3813
  year: 2011
  ident: 6856_CR34
– volume: 14
  start-page: 2367
  issue: 11
  year: 2004
  ident: 6856_CR7
  publication-title: Genome Res
  doi: 10.1101/gr.2872004
– volume: 15
  start-page: 259
  issue: 3
  year: 2008
  ident: 6856_CR23
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2007.0229
– volume: 17
  start-page: 53
  issue: 2
  year: 1999
  ident: 6856_CR13
  publication-title: Trends Biotechnol
  doi: 10.1016/S0167-7799(98)01290-6
– volume: 84
  start-page: 647
  issue: 6
  year: 2003
  ident: 6856_CR8
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.10803
– volume: 24
  start-page: 2229
  issue: 19
  year: 2008
  ident: 6856_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn401
– volume: 14
  start-page: 672
  issue: 6
  year: 2012
  ident: 6856_CR3
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2012.09.005
– volume: 95
  start-page: 1083
  issue: 4
  year: 2012
  ident: 6856_CR33
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-012-4197-7
– volume: 99
  start-page: 15112
  issue: 23
  year: 2002
  ident: 6856_CR9
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.232349399
– volume: 14
  start-page: 47
  year: 2012
  ident: 6856_CR19
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2011.11.002
– volume-title: Hypergraphs: Combinatorics of Finite Sets
  year: 1989
  ident: 6856_CR22
– volume: 18
  start-page: 326
  issue: 3
  year: 2000
  ident: 6856_CR12
  publication-title: Nat Biotech
  doi: 10.1038/73786
– volume: 37
  start-page: 261
  issue: 6-7
  year: 2011
  ident: 6856_CR25
  publication-title: Parallel Comput
  doi: 10.1016/j.parco.2011.04.002
– volume: 16
  start-page: 135
  year: 2008
  ident: 6856_CR18
  publication-title: Chin J Chem Eng
  doi: 10.1016/S1004-9541(08)60052-X
– volume: 81
  start-page: 813
  issue: 5
  year: 2009
  ident: 6856_CR21
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-008-1770-1
– volume: 13
  start-page: 578
  issue: 5
  year: 2011
  ident: 6856_CR2
  publication-title: Metab Eng
  doi: 10.1016/j.ymben.2011.06.008
– volume: 74
  start-page: 3634
  issue: 12
  year: 2008
  ident: 6856_CR16
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02708-07
– volume-title: Applied Integer Programming: Modeling and Solution
  year: 2010
  ident: 6856_CR29
– volume: 76
  start-page: 3097
  issue: 10
  year: 2010
  ident: 6856_CR5
  publication-title: Appl Environ Microbiolo
  doi: 10.1128/AEM.00115-10
– reference: 10700151 - Nat Biotechnol. 2000 Mar;18(3):326-32
– reference: 14595777 - Biotechnol Bioeng. 2003 Dec 20;84(6):647-57
– reference: 18359269 - Curr Opin Microbiol. 2008 Apr;11(2):87-93
– reference: 22898474 - BMC Syst Biol. 2012;6:103
– reference: 21642415 - Appl Environ Microbiol. 2011 Jul;77(14):4894-904
– reference: 19015845 - Appl Microbiol Biotechnol. 2009 Jan;81(5):813-26
– reference: 20426856 - BMC Syst Biol. 2010;4:53
– reference: 22058581 - Parallel Comput. 2011 Jun;37(6-7):261-278
– reference: 15520298 - Genome Res. 2004 Nov;14(11):2367-76
– reference: 20419153 - PLoS Comput Biol. 2010 Apr;6(4):e1000744
– reference: 21147248 - Metab Eng. 2011 Mar;13(2):204-13
– reference: 22115737 - Metab Eng. 2012 Jan;14(1):47-58
– reference: 21241816 - Metab Eng. 2011 Mar;13(2):159-68
– reference: 23664840 - Biosystems. 2013 Jul;113(1):37-9
– reference: 21763447 - Metab Eng. 2011 Sep;13(5):578-87
– reference: 22596205 - Nat Chem Biol. 2012 Jun;8(6):536-46
– reference: 12415116 - Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15112-7
– reference: 22678028 - Appl Microbiol Biotechnol. 2012 Aug;95(4):1083-94
– reference: 17408509 - BMC Syst Biol. 2007;1:2
– reference: 23026121 - Metab Eng. 2012 Nov;14(6):672-86
– reference: 18331197 - J Comput Biol. 2008 Apr;15(3):259-68
– reference: 23788432 - Biotechnol J. 2013 Sep;8(9):1009-16
– reference: 18424547 - Appl Environ Microbiol. 2008 Jun;74(12):3634-43
– reference: 19944775 - Metab Eng. 2010 Mar;12(2):112-22
– reference: 16731697 - Bioinformatics. 2006 Aug 1;22(15):1930-1
– reference: 18676417 - Bioinformatics. 2008 Oct 1;24(19):2229-35
– reference: 20348305 - Appl Environ Microbiol. 2010 May;76(10):3097-105
– reference: 10087604 - Trends Biotechnol. 1999 Feb;17(2):53-60
SSID ssj0017805
Score 2.2167697
Snippet Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted...
Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted...
Background Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted...
Background: Constrained minimal cut sets (cMCSs) have recently been introduced as a framework to enumerate minimal genetic intervention strategies for targeted...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 318
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Cell metabolism
Comparative analysis
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer Simulation
Escherichia coli - genetics
Gene Deletion
Gene Knockout Techniques
Humans
Image Processing, Computer-Assisted
Life Sciences
Metabolic Networks and Pathways - genetics
Methodology
Methodology Article
Microarrays
Models, Genetic
Networks analysis
Software
Thermodynamics
Title Comparison and improvement of algorithms for computing minimal cut sets
URI https://link.springer.com/article/10.1186/1471-2105-14-318
https://www.ncbi.nlm.nih.gov/pubmed/24191903
https://www.proquest.com/docview/1490742981
https://www.proquest.com/docview/1492623172
https://pubmed.ncbi.nlm.nih.gov/PMC3882775
Volume 14
WOSCitedRecordID wos000332200300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_6oeBL_axGa4giiEJoLslmdx9rabWIR2hVTl-WZLNpD9pELrmC_70ze0kwhxb0ZQnMJNlMZnd-Ozs7A_CqKAiVl9o3aHv8uNSZn3FctSaiYDLUWRFmgS02wadTMZvJdAPC_iyMjXbvtyTtTG2HtUj2JziN-rhAYf4kpjO_m7DNKNcMrdDPvg47B5Sjv9-O_MNdI_OzPgn_ZoXWIyTXtkmt9Tm--z_9vgc7Hdb0DlbKcR82TPUAbq-qT_58CO8PhxqEXlYV3tz6F6y70KtLL7s8rxfz9uKq8RDYetqWf8AXe5SN5Aqfq5et15i2eQRfjo8-H37wu7oKvmY8bP1cU3n53LAwyycm5mUkE8ElWvKiDPIiKAOJRK6FjHWJCLyUhgkTm4DnUiQiinZhq6or8wQ8XXKZIwhiSZTEOswQLgaahzHLBT7MJA7s9-JWuks6TrUvLpVdfIhEkXgUiQevFIrHgTfDHT9WCTdu4H1Jf1BRHouKAmXOs2XTqJOzU3XAopiq1wQTB153TGWNr9ZZd-4AP4BSX40490acOND0iPyiVxRFJIpOq0y9bLA31sUgxc08IUJNxIsOPF4p1_B9iKIkArPIAT5Su4GBcoCPKdX8wuYCj_D_cM4ceNsrn-omoeavYnv6L8zP4E5IFUDIk57swVa7WJrncEtft_Nm4cImn3HbChe23x1N01PXujWw_ch9l0JpU2xT9h3p6cmn9Jtrx-svePMxPQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFD_MTXEvzm-rU6MIolDW268kj2M4N5wXcVP2FtI02S5srdz2DvzvPSe3LfaiA30r5CRpTk5yfvk6P4A3ZUmo3JnQou8JU2d0qDmuWnNRZjI2uox15Mkm-HQqTk_llzWI-7cw_rZ7fyTpZ2o_rEW-M8FpNMQFShZOUnrzewM2UiLZoRX68ffh5IBi9PfHkX_INXI_q5Pwb15o9YbkyjGp9z77W__z33fhToc12e7SOO7Bmq3uw60l--TPB_Bxb-AgZLoq2czvL_jtQlY7pi_O6vmsPb9sGAJbZjz9A1bMKBrJJZZrFi1rbNs8hG_7H072DsKOVyE0GY_bsDBEL1_YLNbFxKbcJTIXXKInL11UlJGLJCZyI2RqHCJwJ20mbGojXkiRiyR5BOtVXdknwIzjskAQlOVJnppYI1yMDI_TrBBYmM0D2OnVrUwXdJy4Ly6UX3yIXJF6FKkHvxSqJ4B3Q44fy4Ab18i-ph5UFMeioosyZ3rRNOrw-KvazZKU2GuiSQBvOyFXY9VGd-8OsAEU-mokuT2SxIFmRsmvekNRlES30ypbLxr8G7_FIMX1MjFCTcSLATxeGtfQPkRREoFZEgAfmd0gQDHAxynV7NzHAk-wfzjPAnjfG5_qJqHmr2p7-i_CL-H2wcnnI3V0OP30DDZjYgOhXfV8G9bb-cI-h5vmqp018xd-HP4CV1QrTA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB-0VfGL9e3aqlEEqbDc3r6SfCzV06IcpVXpt5DNJu1Bu1tu9wT_e2f2RffQgvhtIbOPzE4yv0wm8wN4m-eEyp3xLfoeP3ZG-5rjqjUVeSJDo_NQBw3ZBJ_PxcmJPOwCblWf7d5vSbZnGqhKU1FPLnPXDnGRTqY4pfq4WEn8aUznf2_CZozrGErpOjr-MewiUL3-fmvyD3eNXNH6hHzFI61nS65tmTaeaLb1v324D_c6DMr2WqN5ADds8RBut6yUvx7Bp_2Bm5DpImeLJu7QhBFZ6Zg-Py2Xi_rsomIIeJlpaCHwIxhVKbnA55pVzSpbV4_h--zjt_3Pfse34JuEh7WfGaKdz2wS6mxqY-4imQou0cPnLsjywAUSG7kRMjYOkbmTNhE2tgHPpEhFFD2BjaIs7DNgxnGZIThK0iiNTagRRgaGh3GSCXyYTT2Y9KpXpitGTpwY56pZlIhUkXoUqQevFKrHg93hjsu2EMc1sm_obyqqb1FQAs2pXlWVOjg-UntJFBOrTTD14F0n5Ep8tdHdeQTsAJXEGknujCRxAJpR8-veaBQ1UdZaYctVhV_ThB6kuF4mRAiKONKDp62hDf1DdCURsEUe8JEJDgJUG3zcUizOmhrhEf4fzhMP3veGqLrJqfqr2p7_i_AruHP4Yaa-Hsy_bMPdkEhCKNie7sBGvVzZF3DL_KwX1fJlMyR_A5IYNDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+and+improvement+of+algorithms+for+computing+minimal+cut+sets&rft.jtitle=BMC+bioinformatics&rft.au=Jungreuthmayer%2C+Christian&rft.au=Nair%2C+Govind&rft.au=Klamt%2C+Steffen&rft.au=Zanghellini%2C+J%C3%BCrgen&rft.date=2013-11-06&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-318&rft.externalDBID=ISR&rft.externalDocID=A534515501
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon