MeSH indexing based on automatically generated summaries

Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiativ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BMC bioinformatics Ročník 14; číslo 1; s. 208
Hlavní autori: Jimeno-Yepes, Antonio J, Plaza, Laura, Mork, James G, Aronson, Alan R, Díaz, Alberto
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 26.06.2013
BioMed Central Ltd
Predmet:
ISSN:1471-2105, 1471-2105
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
AbstractList MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results.BACKGROUNDMEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results.We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision.RESULTSWe have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision.Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.CONCLUSIONSOur results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled vocabulary. For this task, the human indexers read the full text of the article. Due to the growth of MEDLINE, the NLM Indexing Initiative explores indexing methodologies that can support the task of the indexers. Medical Text Indexer (MTI) is a tool developed by the NLM Indexing Initiative to provide MeSH indexing recommendations to indexers. Currently, the input to MTI is MEDLINE citations, title and abstract only. Previous work has shown that using full text as input to MTI increases recall, but decreases precision sharply. We propose using summaries generated automatically from the full text for the input to MTI to use in the task of suggesting MeSH headings to indexers. Summaries distill the most salient information from the full text, which might increase the coverage of automatic indexing approaches based on MEDLINE. We hypothesize that if the results were good enough, manual indexers could possibly use automatic summaries instead of the full texts, along with the recommendations of MTI, to speed up the process while maintaining high quality of indexing results. Results We have generated summaries of different lengths using two different summarizers, and evaluated the MTI indexing on the summaries using different algorithms: MTI, individual MTI components, and machine learning. The results are compared to those of full text articles and MEDLINE citations. Our results show that automatically generated summaries achieve similar recall but higher precision compared to full text articles. Compared to MEDLINE citations, summaries achieve higher recall but lower precision. Conclusions Our results show that automatic summaries produce better indexing than full text articles. Summaries produce similar recall to full text but much better precision, which seems to indicate that automatic summaries can efficiently capture the most important contents within the original articles. The combination of MEDLINE citations and automatically generated summaries could improve the recommendations suggested by MTI. On the other hand, indexing performance might be dependent on the MeSH heading being indexed. Summarization techniques could thus be considered as a feature selection algorithm that might have to be tuned individually for each MeSH heading.
ArticleNumber 208
Audience Academic
Author Jimeno-Yepes, Antonio J
Aronson, Alan R
Díaz, Alberto
Mork, James G
Plaza, Laura
AuthorAffiliation 1 National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
4 UCM NIL Group, C/Profesor José García Santesmases s/n, Madrid 28040, Spain
2 National ICT Australia, Victoria Research Laboratory, Melbourne, Australia
3 UNED NLP & IR Group, C/ Juan del Rosal 16, Madrid 28040, Spain
AuthorAffiliation_xml – name: 4 UCM NIL Group, C/Profesor José García Santesmases s/n, Madrid 28040, Spain
– name: 1 National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
– name: 3 UNED NLP & IR Group, C/ Juan del Rosal 16, Madrid 28040, Spain
– name: 2 National ICT Australia, Victoria Research Laboratory, Melbourne, Australia
Author_xml – sequence: 1
  givenname: Antonio J
  surname: Jimeno-Yepes
  fullname: Jimeno-Yepes, Antonio J
  email: antonio.jimeno@gmail.com
  organization: National Library of Medicine, National ICT Australia, Victoria Research Laboratory
– sequence: 2
  givenname: Laura
  surname: Plaza
  fullname: Plaza, Laura
  organization: UNED NLP & IR Group
– sequence: 3
  givenname: James G
  surname: Mork
  fullname: Mork, James G
  organization: National Library of Medicine
– sequence: 4
  givenname: Alan R
  surname: Aronson
  fullname: Aronson, Alan R
  organization: National Library of Medicine
– sequence: 5
  givenname: Alberto
  surname: Díaz
  fullname: Díaz, Alberto
  organization: UCM NIL Group
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23802936$$D View this record in MEDLINE/PubMed
BookMark eNqFks1rFjEQxoNU7IfePcmCF3vYmsluks1FKEXbQkWweg7Z7OyaspvUZLe0_71Z3rb0FT-YQ8LM75mEmWef7PjgkZDXQI8AGvEeagklA8pLqEtGm2dk7zG18-S-S_ZTuqIUZEP5C7LLqoYyVYk90nzGy7PC-Q5vnR-K1iTsiuALs8xhMrOzZhzvigE9RjPnUlqmyUSH6SV53psx4av784B8__Tx28lZefHl9Pzk-KK0XLK5bFWn0LSSsq5TPTU1SNO3QBtBWwRZt7bGrjZtLVrZK8GZYooKK1kHOYyoDsiHTd_rpZ2ws-jnaEZ9HV3-x50Oxuntinc_9BBudCWpqLjMDd7dN4jh54Jp1pNLFsfReAxL0lAD46AEqP-jlVKcSs5X9O0GHcyI2vk-5MftiutjXtUcOKcrdfQHKkeHk7N5l73L-S3B4ZYgMzPezoNZUtLnl1-32TdPJ_M4koflZkBsABtDShF7bd2cdxrWQblRA9Wri_RqE73aJN90dlEW0t-ED73_IYGNJGXUDxj1VViiz874u-YXAoTVKg
CitedBy_id crossref_primary_10_1136_amiajnl_2014_002767
crossref_primary_10_1186_s12911_020_01330_8
crossref_primary_10_1016_j_jbi_2014_07_014
crossref_primary_10_1007_s10579_017_9399_2
crossref_primary_10_1016_j_respol_2024_105075
crossref_primary_10_3945_an_117_015941
crossref_primary_10_1016_j_jvcir_2018_11_022
crossref_primary_10_1109_TCBB_2020_3016355
crossref_primary_10_1186_s12859_015_0564_6
crossref_primary_10_1016_j_jbi_2016_06_009
crossref_primary_10_1016_j_rcsop_2022_100172
crossref_primary_10_4137_CIN_S13884
crossref_primary_10_1080_10255842_2025_2479854
crossref_primary_10_1186_s12859_015_0723_9
Cites_doi 10.1016/j.jbi.2003.11.003
10.1145/1008992.1009035
10.1145/502585.502647
10.1093/bioinformatics/bti783
10.1186/1471-2105-9-108
10.1145/1656274.1656278
10.1016/0306-4573(95)00052-I
10.1613/jair.1523
10.1145/321510.321519
10.1093/bioinformatics/btp249
10.1186/1471-2105-8-423
10.5626/JCSE.2012.6.2.151
10.1016/j.artmed.2004.07.017
10.1186/1471-2105-8-S9-S4
10.1197/jamia.M1641
10.3115/1596431.1596442
10.1147/rd.22.0159
10.1016/j.artmed.2011.06.005
10.1016/S0169-7552(98)00110-X
10.1145/2110363.2110450
10.1075/nlp.3
10.1186/1471-2105-11-569
10.1016/j.ipm.2007.01.026
10.1136/jamia.2009.002733
ContentType Journal Article
Copyright Jimeno-Yepes et al.; licensee BioMed Central Ltd. 2013
COPYRIGHT 2013 BioMed Central Ltd.
Copyright © 2013 Jimeno-Yepes et al.; licensee BioMed Central Ltd. 2013 Jimeno-Yepes et al.; licensee BioMed Central Ltd.
Copyright_xml – notice: Jimeno-Yepes et al.; licensee BioMed Central Ltd. 2013
– notice: COPYRIGHT 2013 BioMed Central Ltd.
– notice: Copyright © 2013 Jimeno-Yepes et al.; licensee BioMed Central Ltd. 2013 Jimeno-Yepes et al.; licensee BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
7QO
8FD
FR3
P64
5PM
DOI 10.1186/1471-2105-14-208
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Engineering Research Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 208
ExternalDocumentID PMC3706357
A534515509
23802936
10_1186_1471_2105_14_208
Genre Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Australia
United States
Spain
GeographicLocations_xml – name: Spain
– name: Australia
– name: United States
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ID FETCH-LOGICAL-c572t-b9d9eab702dd9f0a417afb10860be174bc4ed4ab46b7f965292906c72d1d1da63
IEDL.DBID RSV
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000321505200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Tue Nov 04 01:55:44 EST 2025
Tue Oct 07 09:44:29 EDT 2025
Fri Sep 05 06:48:33 EDT 2025
Tue Nov 11 10:56:27 EST 2025
Tue Nov 04 18:30:06 EST 2025
Thu Nov 13 16:45:33 EST 2025
Mon Jul 21 06:06:56 EDT 2025
Tue Nov 18 20:25:48 EST 2025
Sat Nov 29 05:39:55 EST 2025
Sat Sep 06 07:27:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Full Text
High Recall
MeSH
Unify Medical Language System
Full Text Article
Language English
License http://creativecommons.org/licenses/by/2.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-b9d9eab702dd9f0a417afb10860be174bc4ed4ab46b7f965292906c72d1d1da63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://link.springer.com/10.1186/1471-2105-14-208
PMID 23802936
PQID 1399507559
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3706357
proquest_miscellaneous_1412519619
proquest_miscellaneous_1399507559
gale_infotracmisc_A534515509
gale_infotracacademiconefile_A534515509
gale_incontextgauss_ISR_A534515509
pubmed_primary_23802936
crossref_citationtrail_10_1186_1471_2105_14_208
crossref_primary_10_1186_1471_2105_14_208
springer_journals_10_1186_1471_2105_14_208
PublicationCentury 2000
PublicationDate 2013-06-26
PublicationDateYYYYMMDD 2013-06-26
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2013
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References C Gay (5967_CR5) 2005
Ruch P (5967_CR6) 2006; 22
A Jimeno-Yepes (5967_CR48) 2012; 6
D Shen (5967_CR46) 2004
A Aronson (5967_CR3) 2000
G Poulter (5967_CR7) 2008; 9
H Edmundson (5967_CR17) 1969; 2
L Plaza (5967_CR23) 2011; 53
E Lloret (5967_CR30) 2010
R Brandow (5967_CR15) 1995; 5
5967_CR27
R Mihalcea (5967_CR19) 2004
Mani I (5967_CR13) 2001
M Fiszman (5967_CR25) 2004
M Yetisgen-Yildiz (5967_CR10) 2005
Y Aphinyanaphongs (5967_CR9) 2005; 12
A Névéol (5967_CR36) 2007
A Jimeno-Yepes (5967_CR33) 2011
5967_CR35
5967_CR34
ME Funk (5967_CR45) 1983; 71
5967_CR39
5967_CR38
5967_CR37
L Plaza (5967_CR40) 2011
G Erkan (5967_CR18) 2004; 22
Z Shi (5967_CR24) 2007
5967_CR42
H Luhn (5967_CR16) 1958; 2
D Shen (5967_CR28) 2004
S Brin (5967_CR41) 1998; 30
M Hall (5967_CR47) 2009; 11
J Lin (5967_CR11) 2007; 8
KW Fung (5967_CR32) 2005
5967_CR49
A Kolcz (5967_CR51) 2001
CY Lin (5967_CR44) 2004
A Kolcz (5967_CR29) 2001
L Reeve (5967_CR21) 2007; 43
A Jimeno Yepes (5967_CR50) 2012
A Aronson (5967_CR31) 2010; 17
I Yoo (5967_CR22) 2007; 8
5967_CR1
5967_CR2
CY Lin (5967_CR43) 2004
D Trieschnigg (5967_CR12) 2009; 25
A Aronson (5967_CR4) 2004
S Afantenos (5967_CR14) 2005; 33
S Fleischman (5967_CR20) 2008
T Rindflesch (5967_CR26) 2003; 36
A Kastrin (5967_CR8) 2009; 48
References_xml – ident: 5967_CR34
– volume: 71
  start-page: 176
  issue: 2
  year: 1983
  ident: 5967_CR45
  publication-title: Bull Med Libr Assoc
– volume: 36
  start-page: 462
  year: 2003
  ident: 5967_CR26
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2003.11.003
– ident: 5967_CR38
– start-page: 242
  volume-title: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
  year: 2004
  ident: 5967_CR46
  doi: 10.1145/1008992.1009035
– start-page: 365
  volume-title: Proceedings of the Tenth International Conference on Information and Knowledge Management
  year: 2001
  ident: 5967_CR29
  doi: 10.1145/502585.502647
– volume: 22
  start-page: 658
  issue: 6
  year: 2006
  ident: 5967_CR6
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti783
– volume: 9
  start-page: 108
  year: 2008
  ident: 5967_CR7
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-108
– volume: 11
  start-page: 10
  year: 2009
  ident: 5967_CR47
  publication-title: ACM SIGKDD Explorations Newsl
  doi: 10.1145/1656274.1656278
– start-page: 849
  volume-title: AMIA Annual Symposium Proceedings Volume 2005
  year: 2005
  ident: 5967_CR10
– start-page: 553
  volume-title: AMIA Annual Symposium Proceedings, Volume 2007
  year: 2007
  ident: 5967_CR36
– volume: 5
  start-page: 675
  issue: 31
  year: 1995
  ident: 5967_CR15
  publication-title: Inf Proc Manage
  doi: 10.1016/0306-4573(95)00052-I
– volume: 22
  start-page: 457
  year: 2004
  ident: 5967_CR18
  publication-title: J Artif Intell Res(JAIR)
  doi: 10.1613/jair.1523
– ident: 5967_CR27
– volume: 2
  start-page: 264
  issue: 16
  year: 1969
  ident: 5967_CR17
  publication-title: J Assoc Comput Mach
  doi: 10.1145/321510.321519
– start-page: 242
  volume-title: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’04)
  year: 2004
  ident: 5967_CR28
– start-page: 266
  volume-title: AMIA Annual Symposium Proceedings, Volume 2005
  year: 2005
  ident: 5967_CR32
– ident: 5967_CR37
– start-page: 17
  volume-title: Proceedings of the AMIA Symposium
  year: 2000
  ident: 5967_CR3
– volume: 25
  start-page: 1412
  issue: 11
  year: 2009
  ident: 5967_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp249
– start-page: 268
  volume-title: Medinfo 2004: proceedings of the 11th World Conference on Medical Informatics
  year: 2004
  ident: 5967_CR4
– volume: 8
  start-page: 423
  year: 2007
  ident: 5967_CR11
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-423
– start-page: (255)
  volume-title: BMC Bioinformatics
  year: 2011
  ident: 5967_CR40
– start-page: 74
  volume-title: Proceedings of the ACL 2004 Workshop: Text Summarization Branches Out
  year: 2004
  ident: 5967_CR43
– volume: 6
  start-page: 151
  issue: 2
  year: 2012
  ident: 5967_CR48
  publication-title: J Comput Sci Eng
  doi: 10.5626/JCSE.2012.6.2.151
– start-page: 365
  volume-title: Proceedings of the Tenth International Conference on Information and Knowledge Management
  year: 2001
  ident: 5967_CR51
  doi: 10.1145/502585.502647
– volume: 33
  start-page: 157
  issue: 2
  year: 2005
  ident: 5967_CR14
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.07.017
– volume-title: Proceedings of the 4th NTCIR Workshop on Research in Information Access Technologies Information Retrieval, Question Answering and Summarization
  year: 2004
  ident: 5967_CR44
– ident: 5967_CR1
– start-page: 271
  volume-title: AMIA Annual Symposium Proceedings Volume 2005
  year: 2005
  ident: 5967_CR5
– volume: 48
  start-page: 10
  year: 2009
  ident: 5967_CR8
  publication-title: Methods Inf Med
– volume: 8
  start-page: S4
  issue: 9
  year: 2007
  ident: 5967_CR22
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-8-S9-S4
– ident: 5967_CR42
– volume: 12
  start-page: 207
  issue: 2
  year: 2005
  ident: 5967_CR9
  publication-title: J Am Med Inform Assoc
  doi: 10.1197/jamia.M1641
– start-page: 284
  volume-title: Proceedings of the Canadian Conference on Artificial Intelligence
  year: 2007
  ident: 5967_CR24
– start-page: 76
  volume-title: Proceedings of the HLT-NAACL Workshop on Computational Lexical Semantics
  year: 2004
  ident: 5967_CR25
  doi: 10.3115/1596431.1596442
– volume-title: Proceedings of the Fourth International Symposium on Languages in Biology and Medicine
  year: 2011
  ident: 5967_CR33
– start-page: 107
  volume-title: Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text
  year: 2010
  ident: 5967_CR30
– ident: 5967_CR35
– volume-title: Language and Medicine
  year: 2008
  ident: 5967_CR20
– ident: 5967_CR2
– volume: 2
  start-page: 1159
  issue: 2
  year: 1958
  ident: 5967_CR16
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.22.0159
– volume: 53
  start-page: 1
  year: 2011
  ident: 5967_CR23
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2011.06.005
– volume: 30
  start-page: 1
  year: 1998
  ident: 5967_CR41
  publication-title: Comput Netw ISDN Syst
  doi: 10.1016/S0169-7552(98)00110-X
– start-page: 737
  volume-title: Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium
  year: 2012
  ident: 5967_CR50
  doi: 10.1145/2110363.2110450
– volume-title: Automatic Summarization
  year: 2001
  ident: 5967_CR13
  doi: 10.1075/nlp.3
– ident: 5967_CR39
  doi: 10.1186/1471-2105-11-569
– ident: 5967_CR49
– volume: 43
  start-page: 1765
  year: 2007
  ident: 5967_CR21
  publication-title: Inf Proc Manage
  doi: 10.1016/j.ipm.2007.01.026
– start-page: 404
  volume-title: Proceedings of the Conference EMNLP 2004
  year: 2004
  ident: 5967_CR19
– volume: 17
  start-page: 229
  issue: 3
  year: 2010
  ident: 5967_CR31
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/jamia.2009.002733
SSID ssj0017805
Score 2.23195
Snippet Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH)...
MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH) controlled...
Background MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH)...
Background: MEDLINE citations are manually indexed at the U.S. National Library of Medicine (NLM) using as reference the Medical Subject Headings (MeSH)...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 208
SubjectTerms Abstracting and Indexing - methods
Algorithms
Analysis
Artificial Intelligence
Automatic indexing
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Indexing
Knowledge-based analysis
Life Sciences
Machine learning
Medical Subject Headings
MEDLINE
Microarrays
Research Article
Title MeSH indexing based on automatically generated summaries
URI https://link.springer.com/article/10.1186/1471-2105-14-208
https://www.ncbi.nlm.nih.gov/pubmed/23802936
https://www.proquest.com/docview/1399507559
https://www.proquest.com/docview/1412519619
https://pubmed.ncbi.nlm.nih.gov/PMC3706357
Volume 14
WOSCitedRecordID wos000321505200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database (subscription)
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB_6UPCL72q0hiiCKITmsdnNfqzS0qI9wp2W0y_LPpJaOBJp7oT-985uksMcWlACS8hOXpPZnZnszG8AXjNFK0MjE-aUxPZvVRZyU6qQUclLnXLDXIb3-Sc2meTzOS-2IBlyYVy0-7Ak6WZqN6xzehDjNBqig5KFMcFvm2_DLiq73A7G6ex8vXJgMfqH5cg_nDVSP5uT8G9aaDNCcmOZ1Gmf43v_89z34W5vawaHnXA8gK2yfgi3u-qT148gPytnJ4GDS8TrBVafmaCpA7laNg7IVS4W18GFw6VGuzTo8tzQs34MX46PPn84CftCCqHOWLIMFTe8lIpFiTG8iiSJmayUrbEUqRJdEqVJaYhUhCpWcZol3ILAa5aYGDdJ0z3YqZu6fAqBllyShBmiK0MyTZThXOs0V6nC42nqwcHAX6F7lHFb7GIhnLeRU2H5ISw_cE8gPzx4uz7jR4ewcQPtK_vJhAWuqG1kzIVcta04nU3FYZYSW64m4h686YmqBm-tZZ9ogC9gsa5GlPsjShxZetT9cpAMYbtsOFpdNqtWxDYhGI2t7CYaYm1Hjg6qB086aVq_H9pJEdpZ1AM2krM1gQX9HvfUl98d-HfKIgsh6MG7QdpEP-u0f2Xbs38hfg53kq7kR5jQfdhZXq3KF3BL_1xetlc-bLM5c23uw-77o0kx9d1_DGw_stC3sbMFtkX2DfuL07Piq-8G6C8MmCxQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB9qVfSL70e0ahRBKizNY7Ob_VjEcsXrIb1a-m3ZV2rhSKS5E_rfu7NJDnNoQcmXkJ08dnZ2ZyY78xuA91yzyrLEkpLRFP9WFURYpwlnSjiTC8tDhvfplM9m5dmZ-LoF2ZALE6Ldhy3JsFKHaV2yvdQvo8Q7KAVJqR_b8gbcpF5fYRjf8fx0vXOAGP3DduQf7hqpn81F-DcttBkhubFNGrTPwf3_-e4HcK-3NeP9TjgewparH8Htrvrk1WMoj9x8Ege4RP-8GPWZjZs6VqtlE4Bc1WJxFZ8HXGpvl8Zdnpv3rJ_At4PPJ58mpC-kQEzBsyXRwgqnNE8ya0WVKJpyVWmssZRo510SbaizVGnKNK8EKzKBIPCGZzb1h2L5U9ium9o9h9gooWjGLTWVpYWh2gphTF7qXPvreR7B3sBfaXqUcSx2sZDB2yiZRH5I5Ic_k54fEeyu7_jRIWxcQ_sOh0wicEWNkTHnatW28nB-LPeLnGK5mkRE8KEnqhr_aqP6RAPfAcS6GlHujCj9zDKj5reDZEhswnC02jWrVqaYEOyNreI6Goq2o_AOagTPOmla98_bSYm3s1gEfCRnawIE_R631BffA_h3zhOEEIzg4yBtsl912r-y7cW_EL-BO5OTo6mcHs6-vIS7WVf-g2RsB7aXlyv3Cm6Zn8uL9vJ1mHi_ALATJl8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB-0avGLb9vUqlEEUVguj81u9mNRjxbrUTwt_bbsK23hSEqTE_rfdyePwxxaEMmXkJ0k7Ozs7szOzG8A3nHNCssiS3JGYzytyoiwThPOlHAmFZa3Gd7Hh3w2y09OxFF_4FYP0e6DS7LLaUCUprKZXNiim-I5m8R-SSXeWMlITP0457fhDsWSQWitz49XXgTE6x9ck394a7QVrS_Iv-1I69GSay7TdieaPvzfPjyCB70OGu51QvMYbrnyCdzrqlJePYX8m5vvhy2Mov92iPucDasyVMumagFe1WJxFZ62eNVeXw27_DdvcT-Dn9MvPz7tk77AAjEZTxqihRVOaR4l1ooiUjTmqtDIyEg7b6poQ52lSlOmeSFYlggEhzc8sbG_FEufw0ZZlW4bQqOEogm31BSWZoZqK4Qxaa5T7Z-naQCTgdfS9OjjWARjIVsrJGcS-SGRH_5Oen4E8GH1xkWHvHED7VscPomAFiVGzJyqZV3Lg_l3uZelFMvYRCKA9z1RUflfG9UnIPgOIAbWiHJ3ROlnnBk1vxmkRGIThqmVrlrWMsZEYa-EZTfRUNQphTdcA9jqJGvVP68_RV7_YgHwkcytCBAMfNxSnp-1oOApjxBaMICPg-TJfjWq_8q2nX8hfg2bR5-n8vBg9vUF3E-6qiAkYbuw0Vwu3Uu4a3415_Xlq3YOXgNbVi9D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MeSH+indexing+based+on+automatically+generated+summaries&rft.jtitle=BMC+bioinformatics&rft.au=Jimeno-Yepes%2C+Antonio+J&rft.au=Plaza%2C+Laura&rft.au=Mork%2C+James+G&rft.au=Aronson%2C+Alan+R&rft.date=2013-06-26&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=14&rft_id=info:doi/10.1186%2F1471-2105-14-208&rft.externalDBID=ISR&rft.externalDocID=A534515509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon