Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance

Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Royal Society open science Ročník 4; číslo 9; s. 160889
Hlavní autoři: Xu, Liyan, Duan, Fabing, Gao, Xiao, Abbott, Derek, McDonnell, Mark D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England The Royal Society Publishing 01.09.2017
The Royal Society
Témata:
ISSN:2054-5703, 2054-5703
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman–LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.
AbstractList Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman–LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.
Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman-LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements on signal strength. In the generic SSR model, an optimal weighted decoding scheme shows its superiority in minimizing the mean square error (MSE). In this study, we extend the proposed optimal weighted decoding scheme to more general input characteristics by combining a Kalman filter and a least mean square (LMS) recursive algorithm, wherein the weighted coefficients can be adaptively adjusted so as to minimize the MSE without complete knowledge of input statistics. We demonstrate that the optimal weighted decoding scheme based on the Kalman-LMS recursive algorithm is able to robustly decode the outputs from the system in which SSR is observed, even for complex situations where the signal and noise vary over time.
Author Duan, Fabing
Gao, Xiao
Xu, Liyan
Abbott, Derek
McDonnell, Mark D.
AuthorAffiliation 1 Institute of Complexity Science, Qingdao University , Qingdao 266071, People's Republic of China
3 Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering , The University of Adelaide, Adelaide , South Australia 5005, Australia
2 Computational and Theoretical Neuroscience Laboratory , Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide, South Australia 5095, Australia
AuthorAffiliation_xml – name: 2 Computational and Theoretical Neuroscience Laboratory , Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia , Adelaide, South Australia 5095, Australia
– name: 1 Institute of Complexity Science, Qingdao University , Qingdao 266071, People's Republic of China
– name: 3 Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering , The University of Adelaide, Adelaide , South Australia 5005, Australia
Author_xml – sequence: 1
  givenname: Liyan
  orcidid: 0000-0003-4615-9183
  surname: Xu
  fullname: Xu, Liyan
  organization: Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China
– sequence: 2
  givenname: Fabing
  surname: Duan
  fullname: Duan, Fabing
  email: fabing.duan@gmail.com
  organization: Institute of Complexity Science, Qingdao University, Qingdao 266071, People's Republic of China
– sequence: 3
  givenname: Xiao
  surname: Gao
  fullname: Gao, Xiao
  organization: Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia 5095, Australia
– sequence: 4
  givenname: Derek
  orcidid: 0000-0002-0945-2674
  surname: Abbott
  fullname: Abbott, Derek
  organization: Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
– sequence: 5
  givenname: Mark D.
  surname: McDonnell
  fullname: McDonnell, Mark D.
  organization: Computational and Theoretical Neuroscience Laboratory, Institute for Telecommunications Research, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, South Australia 5095, Australia; Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28989729$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhU1JadI0p96Lj4Wy6diWLelSCKFNA4FA05x6EGN5vNbitbaSvGH76yPXadiEthdJo3nzzYP3OjkY7EBJ8jaD0wyk-Oi89adZBULIF8lRDiVblByKg733YXLi_QoAshIKXvFXyWEupJA8l0fJ7VmDm2C2lDrSo_PTC_uldSZ067S1LrWxvcY-vSOz7AI1qR83DkPnyHe2j2WwukMfjI4IbwccNL1JXrbYezp5uI-T2y-fv59_XVxdX1yen10tdMnzsBAVtkLnEiuSALLEhuoKeE4k2iKvW4aCStKcdFvUUrBSc96grnXRZKytqThOLmduY3GlNi4adTtl0ajfH9YtFbrorCeFrcxrLZssF5xVFcQKGw0VEcoWmYisTzNrM9ZrajQNwWH_BPq0M5hOLe1WlVXOoZIR8P4B4OzPkXxQa-M19T0OZEevMskkiJKzSfpuf9fjkj-5RMGHWaCd9d5R-yjJQE3Bqyl4NQcf1dkztTYBg7GTUdP_Y-bHPOPsLkZktaGwUys7uiGW6tvN9c2WGalAFBnweIL6ZTYzginj_UhK7hOf0eF_9L8ZugdyOOYo
CitedBy_id crossref_primary_10_1109_TSP_2018_2802463
crossref_primary_10_1109_TSP_2019_2931203
crossref_primary_10_1016_j_cjph_2018_11_005
crossref_primary_10_1007_s11071_024_10464_7
crossref_primary_10_1098_rsos_172194
Cites_doi 10.1371/journal.pcbi.1000348
10.1103/PhysRevLett.82.2402
10.1109/TIT.1984.1056892
10.1109/79.295229
10.1103/PhysRevE.82.051106
10.1109/PROC.1976.10286
10.1109/PROC.1975.10036
10.1103/PhysRevE.63.041114
10.1109/MSP.2015.2461733
10.1016/0375-9601(95)00731-6
10.1016/j.chaos.2011.10.012
10.1103/PhysRevLett.84.2310
10.1142/S0219477502000774
10.1016/j.sigpro.2012.01.013
10.1007/BF01053952
10.1103/PhysRevE.64.030902
10.1016/j.physleta.2015.05.032
10.1109/ICASSP.1995.480502
10.1038/srep27946
10.1142/S0219477505002884
10.1098/rspa.2010.0541
10.1017/CBO9780511535239
10.1109/MEMB.2003.1195700
10.1103/RevModPhys.70.223
10.1142/S0219477507003684
10.2172/920745
10.1002/0470045345
10.1371/journal.pone.0091345
10.1016/S0960-0779(02)00201-1
10.1016/j.chaos.2013.05.020
10.1109/TSP.2007.893938
10.1049/el:20030128
10.1063/1.3013178
10.1016/j.physa.2016.03.064
ContentType Journal Article
Copyright 2017 The Authors.
2017 The Authors. 2017
Copyright_xml – notice: 2017 The Authors.
– notice: 2017 The Authors. 2017
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1098/rsos.160889
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
DocumentTitleAlternate Adaptive algorithm for weighted SSR
EISSN 2054-5703
ExternalDocumentID oai_doaj_org_article_af92bc9d1287466092badc06eea9fa48
PMC5627069
28989729
10_1098_rsos_160889
Genre Journal Article
GrantInformation_xml – fundername: the Science and Technology Development Program of Shandong Province; ;
  grantid: 2014GGX101031
– fundername: National Natural Science Foundation of China; ;
  grantid: 61573202
– fundername: ;
  grantid: 61573202
– fundername: ;
  grantid: 2014GGX101031
GroupedDBID 53G
5VS
AAFWJ
ABXXB
ADBBV
ADRAZ
AFPKN
ALAEF
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBS
EJD
GROUPED_DOAJ
HYE
ICLEN
KQ8
M48
M~E
OK1
OP1
RPM
V1E
7X2
88I
AAYXX
ABJCF
ABUWG
AEUYN
AFFHD
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
DWQXO
GNUQQ
H13
HCIFZ
KB.
M0K
M2P
M7P
M7S
PATMY
PCBAR
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
PYCSY
NPM
7X8
5PM
ID FETCH-LOGICAL-c572t-86af8c29a6e90095adeb6072ee8f32bf4a8e5ec7ecf3b9845c77dacbc3d14fbe3
IEDL.DBID OP1
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412168900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2054-5703
IngestDate Fri Oct 03 12:52:17 EDT 2025
Thu Aug 21 13:52:24 EDT 2025
Fri Jul 11 11:06:46 EDT 2025
Thu Jan 02 22:23:24 EST 2025
Sat Nov 29 07:48:48 EST 2025
Tue Nov 18 21:18:55 EST 2025
Wed Jan 17 02:37:12 EST 2024
Tue May 24 16:18:52 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords recursive algorithm
suprathreshold stochastic resonance
adaptive signal processing
Kalman–least mean square
Language English
License open-access: Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-86af8c29a6e90095adeb6072ee8f32bf4a8e5ec7ecf3b9845c77dacbc3d14fbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0945-2674
0000-0003-4615-9183
OpenAccessLink https://royalsocietypublishing.org/doi/full/10.1098/rsos.160889
PMID 28989729
PQID 1949085749
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_af92bc9d1287466092badc06eea9fa48
crossref_primary_10_1098_rsos_160889
royalsociety_journals_10_1098_rsos_160889
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5627069
pubmed_primary_28989729
royalsociety_journals_RSOSv4i9_0831070830_zip_rsos_4_issue_9_rsos_160889_rsos_160889
proquest_miscellaneous_1949085749
crossref_citationtrail_10_1098_rsos_160889
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Royal Society open science
PublicationTitleAbbrev R. Soc. Open Sci
PublicationTitleAlternate R Soc Open Sci
PublicationYear 2017
Publisher The Royal Society Publishing
The Royal Society
Publisher_xml – name: The Royal Society Publishing
– name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_31_2
e_1_3_6_32_2
e_1_3_6_10_2
Widrow B (e_1_3_6_22_2) 1985
e_1_3_6_19_2
Haykin SS (e_1_3_6_25_2) 2008
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_12_2
e_1_3_6_39_2
e_1_3_6_11_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_15_2
e_1_3_6_36_2
e_1_3_6_20_2
e_1_3_6_21_2
e_1_3_6_5_2
e_1_3_6_4_2
e_1_3_6_3_2
e_1_3_6_2_2
e_1_3_6_9_2
e_1_3_6_8_2
e_1_3_6_7_2
e_1_3_6_6_2
e_1_3_6_26_2
e_1_3_6_27_2
e_1_3_6_28_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_24_2
21230436 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051106
11308826 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 1):041114
12733463 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):76-83
27306041 - Sci Rep. 2016 Jun 16;6:27946
19123626 - Chaos. 2008 Dec;18(4):043116
11018872 - Phys Rev Lett. 2000 Mar 13;84(11):2310-3
19562010 - PLoS Comput Biol. 2009 May;5(5):e1000348
24632853 - PLoS One. 2014 Mar 14;9(3):e91345
11580312 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 1):030902
References_xml – ident: e_1_3_6_7_2
  doi: 10.1371/journal.pcbi.1000348
– ident: e_1_3_6_35_2
  doi: 10.1103/PhysRevLett.82.2402
– ident: e_1_3_6_27_2
  doi: 10.1109/TIT.1984.1056892
– ident: e_1_3_6_23_2
  doi: 10.1109/79.295229
– ident: e_1_3_6_31_2
  doi: 10.1103/PhysRevE.82.051106
– ident: e_1_3_6_26_2
  doi: 10.1109/PROC.1976.10286
– ident: e_1_3_6_21_2
  doi: 10.1109/PROC.1975.10036
– volume-title: Adaptive filter theory
  year: 2008
  ident: e_1_3_6_25_2
– ident: e_1_3_6_4_2
  doi: 10.1103/PhysRevE.63.041114
– ident: e_1_3_6_30_2
  doi: 10.1109/MSP.2015.2461733
– ident: e_1_3_6_2_2
  doi: 10.1016/0375-9601(95)00731-6
– ident: e_1_3_6_34_2
  doi: 10.1016/j.chaos.2011.10.012
– ident: e_1_3_6_3_2
  doi: 10.1103/PhysRevLett.84.2310
– ident: e_1_3_6_8_2
  doi: 10.1142/S0219477502000774
– ident: e_1_3_6_13_2
  doi: 10.1016/j.sigpro.2012.01.013
– ident: e_1_3_6_20_2
  doi: 10.1007/BF01053952
– ident: e_1_3_6_5_2
  doi: 10.1103/PhysRevE.64.030902
– ident: e_1_3_6_16_2
– ident: e_1_3_6_10_2
– ident: e_1_3_6_18_2
  doi: 10.1016/j.physleta.2015.05.032
– ident: e_1_3_6_24_2
  doi: 10.1109/ICASSP.1995.480502
– ident: e_1_3_6_38_2
  doi: 10.1038/srep27946
– ident: e_1_3_6_15_2
  doi: 10.1142/S0219477505002884
– ident: e_1_3_6_29_2
  doi: 10.1098/rspa.2010.0541
– ident: e_1_3_6_17_2
  doi: 10.1017/CBO9780511535239
– ident: e_1_3_6_39_2
  doi: 10.1109/MEMB.2003.1195700
– ident: e_1_3_6_6_2
  doi: 10.1103/RevModPhys.70.223
– ident: e_1_3_6_12_2
  doi: 10.1142/S0219477507003684
– ident: e_1_3_6_14_2
  doi: 10.2172/920745
– ident: e_1_3_6_28_2
  doi: 10.1002/0470045345
– ident: e_1_3_6_37_2
  doi: 10.1371/journal.pone.0091345
– ident: e_1_3_6_36_2
  doi: 10.1016/S0960-0779(02)00201-1
– ident: e_1_3_6_33_2
  doi: 10.1016/j.chaos.2013.05.020
– ident: e_1_3_6_11_2
  doi: 10.1109/TSP.2007.893938
– ident: e_1_3_6_9_2
  doi: 10.1049/el:20030128
– volume-title: Adaptive signal processing
  year: 1985
  ident: e_1_3_6_22_2
– ident: e_1_3_6_32_2
  doi: 10.1063/1.3013178
– ident: e_1_3_6_19_2
  doi: 10.1016/j.physa.2016.03.064
– reference: 11018872 - Phys Rev Lett. 2000 Mar 13;84(11):2310-3
– reference: 11580312 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 1):030902
– reference: 19123626 - Chaos. 2008 Dec;18(4):043116
– reference: 11308826 - Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Apr;63(4 Pt 1):041114
– reference: 21230436 - Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Nov;82(5 Pt 1):051106
– reference: 19562010 - PLoS Comput Biol. 2009 May;5(5):e1000348
– reference: 24632853 - PLoS One. 2014 Mar 14;9(3):e91345
– reference: 27306041 - Sci Rep. 2016 Jun 16;6:27946
– reference: 12733463 - IEEE Eng Med Biol Mag. 2003 Mar-Apr;22(2):76-83
SSID ssj0001503767
Score 2.1103888
Snippet Suprathreshold stochastic resonance (SSR) is a distinct form of stochastic resonance, which occurs in multilevel parallel threshold arrays with no requirements...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
royalsociety
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 160889
SubjectTerms Adaptive Signal Processing
Engineering
Kalman–least Mean Square
Recursive Algorithm
Suprathreshold Stochastic Resonance
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NBLafrcvnAhh6ZgInttPY5paegpLU0CuQk9xt2FxLvYuyn013dGchYvGHrpxfghS7ZmRvokjb5h7IgHAc67Ig8abF5VZHNFbXOhOBQuOGw0fQw2Ic_P1fW1_jEK9UU-YYkeOFXciW106bwOBRGzC8HxygbPBYDVja3iNl8u9WgwlfYHc6IpGTbkca1OEL72NJWiKKD7qAuKTP1T8HLCS7KjEX2fvClHvdDZE_Z4gI_ZafrsQ_YA2qfscDDQPvs4sEgfP2NXp8GuqS3LOppSJy_1zN78WnXLzeI2Q6iarfDxLWb2O86OQsj67Rr1AYXb05pUhrDQLyzxOGMWhNixiOfs6uzr5Zdv-RBDIfe1LDe5ErZRvtRWgCY4ZQM4wWUJoJp56ZrKKqjBS_DN3GlV1V7KYL3z81BUjYP5C3bQrlp4xTLwupEqCGyRRKUBkZ8oVaOAC-sKJ_2MfbqvVuMHgnGKc3Fj0kK3MiQDk2QwY0e7xOvEqzGd7DPJZ5eEyLDjDVQRM6iI-ZeKzNiHe-kaNB5aEbEtrLZYiKZ1z1pWWNDLJO1dUSUF1sShx4zJPT3Y-5b9J-1yEQm6EVNKLvDN47HGmKF16Kd_9HI67c-L7xd31VKbGBJO4pGbP8t1ercy0TqNHmc1Pn_9P-rvDXtUEpiJnnVv2cGm28I79tDfbZZ99z4a3l_pDDu9
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive recursive algorithm for optimal weighted suprathreshold stochastic resonance
URI https://royalsocietypublishing.org/doi/full/10.1098/rsos.160889
https://www.ncbi.nlm.nih.gov/pubmed/28989729
https://www.proquest.com/docview/1949085749
https://pubmed.ncbi.nlm.nih.gov/PMC5627069
https://doaj.org/article/af92bc9d1287466092badc06eea9fa48
Volume 4
WOSCitedRecordID wos000412168900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAUN
  databaseName: Royal Society Open Access Journals
  customDbUrl:
  eissn: 2054-5703
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001503767
  issn: 2054-5703
  databaseCode: OP1
  dateStart: 20140901
  isFulltext: true
  titleUrlDefault: http://royalsocietypublishing.org/journals
  providerName: Royal Society Publications
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RwgEOQMuj4REZqQeKZGE79j6OBbXiQlvRVspttY9xY6lNIjtpJQ78dmbWbnBQLoiL5ce-7J3Z_XZm_Q1j-4nnYJ1NY6_AxHlOOpcWJuYygdR6i4OmC8EmxMmJHI_VWRfnlP6FqWnR3LQbFucrQ0xw6ZOOk026I0GSnxGRNmQdkVJtsYcZlymtvk7P0j9GliIhtpLuv7y_8qzNRIGwfxPK3LBZst_G3mR0_Oy_X-M5e9rh0OiwFZwd9gCmu-xJj51wl-10et9EHzty6oMX7PLQmzkNkVFNlnra_B6Z66tZXS0mNxEi4GiGj2-w6LtgdAUfNcs5ihnKTEOurgjRppsYoofGImghgFW8ZJfHRxdfv8VdaIbYFSJbxJKbUrpMGQ6KUJrxYHkiMgBZjjJb5kZCAU6AK0dWybxwQnjjrBv5NC8tjF6x7elsCnssAqdKIT3HgY7nChBQ8kyWEhJubGqFG7BP992kXcdbTuEzrnXrP5eaPqBuP-CA7a8Sz1u6js3JvlB_r5IQx3a4gR2kO5XVplSZdcqnFBKA8wSvjHcJBzCqNLkcsA_30qJRJ8nRYqYwW2Ilityphcixotet9KyqyiheJ65oBkysydVaW9afTKtJ4P1GqCoSjjkP-uKlu0Gn2fyiF5vT_jg_Pb_NK6VDpDmBx0T_rOZt3lwHpdeqX1T__M0_NOEte5wRFAr78t6x7UW9hPfskbtdVE09ZFtiLIfBEoLH77-OhkGDfwNoU1TV
linkProvider Royal Society Publications
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BQQIOQMsrPI3UA0WysB17H8eCqIooaUVTqbfVPsbEUutYdlIkfj0zthsclAviEiXxvuyd2f12ZvwNY7uR52CdjUOvwIRpSjoXZybkMoLYeouLpmuTTYjJRJ6fq5M-zym9C1PTobnpAharlSGmdemTjpNNuidBkh8QkTZkHZFS3WS3MtyIKKbv-CT-Y2TJImIr6d_L-6vO2k7UEvZvQpkbgiWHYxxsRgcP_vs2HrL7PQ4N9jvB2WY3oNxh9wbshDtsu9f7JnjXk1PvPWJn-95UtEQGNVnqKfg9MBc_5nWxmF0GiICDOV6-xKZ_tkZX8EGzrFDMUGYacnUFiDbdzBA9NDZBBwHs4jE7O_g8_XQY9qkZQpeJZBFKbnLpEmU4KEJpxoPlkUgAZD5ObJ4aCRk4AS4fWyXTzAnhjbNu7OM0tzB-wrbKeQnPWABO5UJ6jgsdTxUgoOSJzCVE3NjYCjdi76-nSbuet5zSZ1zozn8uNT1A3T3AEdtdFa46uo7NxT7SfK-KEMd2-wdOkO5VVptcJdYpH1NKAM4j_GW8iziAUblJ5Yi9vZYWjTpJjhZTwnyJnShyp2YixY6edtKz6iqhfJ14ohkxsSZXa2NZv1IWs5b3G6GqiDjW3BuKl-4XnWbzjU43l_1-enx6lRZKt5nmBH5G-ldRdXVT3Sq9VsOmht-f_8MQ3rA7h9NvR_roy-TrC3Y3IVjUxui9ZFuLegmv2G13tSia-nWru78BZ2JUqw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5BQQgegJYrnEbqA0WysB17j8dyRCBQGtFW6ttqjzGx1CaWnRSJX8-M7QYH-QXxYsXxXvbOrL-dGX_D2H7kOVhn49ArMGGaks7FmQm5jCC23uKi6ZpkE2I6lWdnatblOaVvYSraNNdtwGK5McQ0Ln3ScSh93pEgyXeISGuyjkiprrMbWZZEFNN3NIv_GFmyiNhKuu_y_qqz9SZqCPuHUOZAsGR_jL2X0eTef9_GfXa3w6HBYSs4u-waLPbYnR474R7b7fS-Dt505NQHD9jpoTclLZFBRZZ6Cn4PzPmPZVWs5hcBIuBgiZcvsOmfjdEVfFCvSxQzlJmaXF0Bok03N0QPjU3QRgC7eMhOJ59OPnwOu9QMoctEsgolN7l0iTIcFKE048HySCQAMh8nNk-NhAycAJePrZJp5oTwxlk39nGaWxg_YjuL5QKesACcyoX0HBc6nipAQMkTmUuIuLGxFW7E3l5Nk3YdbzmlzzjXrf9canqAun2AI7a_KVy2dB3Dxd7TfG-KEMd28wdOkO5UVptcJdYpH1NKAM4jPDPeRRzAqNykcsReX0mLRp0kR4tZwHKNnShyp2YixY4et9Kz6SqhfJ24oxkxsSVXW2PZvrIo5g3vN0JVEXGsedAXL90tOvXwjZ4Ml_1-fHR8mRZKN5nmBB4j_aso27qpbpReq35T_d9P_2EIr9it2ceJ_vZl-vUZu50QKmpC9J6znVW1hhfsprtcFXX1slHd335TVCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+recursive+algorithm+for+optimal+weighted+suprathreshold+stochastic+resonance&rft.jtitle=Royal+Society+open+science&rft.au=Xu%2C+Liyan&rft.au=Duan%2C+Fabing&rft.au=Gao%2C+Xiao&rft.au=Abbott%2C+Derek&rft.date=2017-09-01&rft.pub=The+Royal+Society+Publishing&rft.eissn=2054-5703&rft.volume=4&rft.issue=9&rft_id=info:doi/10.1098%2Frsos.160889&rft.externalDocID=10_1098_rsos_160889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2054-5703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2054-5703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2054-5703&client=summon