Separate block-based parameter estimation method for Hammerstein systems

Different from the output–input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The ide...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Royal Society open science Ročník 5; číslo 6; s. 172194
Hlavní autoři: Zhang, Shuo, Wang, Dongqing, Liu, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: England The Royal Society Publishing 01.06.2018
The Royal Society
Témata:
ISSN:2054-5703, 2054-5703
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Different from the output–input representation-based identification methods of two-block Hammerstein systems, this paper concerns a separate block-based parameter estimation method for each block of a two-block Hammerstein CARMA system, without combining the parameters of two parts together. The idea is to consider each block as a subsystem and to estimate the parameters of the nonlinear block and the linear block separately (interactively), by using two least-squares algorithms in one recursive step. The internal variable between the two blocks (the output of the nonlinear block, and also the input of the linear block) is replaced by different estimates: when estimating the parameters of the nonlinear part, the internal variable between the two blocks is computed by the linear function; when estimating the parameters of the linear part, the internal variable is computed by the nonlinear function. The proposed parameter estimation method possesses property of the higher computational efficiency compared with the previous over-parametrization method in which many redundant parameters need to be computed. The simulation results show the effectiveness of the proposed algorithm.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.172194