Machine translation of cortical activity to text with an encoder-decoder framework
A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurre...
Uloženo v:
| Vydáno v: | Nature neuroscience Ročník 23; číslo 4; s. 575 - 582 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Nature Publishing Group
01.04.2020
|
| Témata: | |
| ISSN: | 1097-6256, 1546-1726, 1546-1726 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30-50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants' data. |
|---|---|
| AbstractList | A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30-50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants' data.A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30-50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants' data. A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30–50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants’ data.Makin and colleagues decode speech from neural signals recorded during a preoperative procedure, using an algorithm inspired by machine translation. For one participant reading from a closed set of 50 sentences, decoding accuracy is nearly perfect. A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the electrocorticogram with high accuracy and at natural-speech rates. Taking a cue from recent advances in machine translation, we train a recurrent neural network to encode each sentence-length sequence of neural activity into an abstract representation, and then to decode this representation, word by word, into an English sentence. For each participant, data consist of several spoken repeats of a set of 30-50 sentences, along with the contemporaneous signals from ~250 electrodes distributed over peri-Sylvian cortices. Average word error rates across a held-out repeat set are as low as 3%. Finally, we show how decoding with limited data can be improved with transfer learning, by training certain layers of the network under multiple participants' data. |
| Author | Makin, Joseph G Chang, Edward F Moses, David A |
| Author_xml | – sequence: 1 givenname: Joseph G orcidid: 0000-0002-0053-7006 surname: Makin fullname: Makin, Joseph G email: makin@phy.ucsf.edu, makin@phy.ucsf.edu organization: Department of Neurological Surgery, UCSF, San Francisco, CA, USA. makin@phy.ucsf.edu – sequence: 2 givenname: David A surname: Moses fullname: Moses, David A organization: Department of Neurological Surgery, UCSF, San Francisco, CA, USA – sequence: 3 givenname: Edward F orcidid: 0000-0003-2480-4700 surname: Chang fullname: Chang, Edward F email: edward.chang@ucsf.edu, edward.chang@ucsf.edu organization: Department of Neurological Surgery, UCSF, San Francisco, CA, USA. edward.chang@ucsf.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32231340$$D View this record in MEDLINE/PubMed |
| BookMark | eNpd0EtLAzEUBeAgFfvQH-BGAm7cRPNOZinFF1QE0XVJM3fo1JmkZjLW_nur1o2rcxYfl8sZo0GIARA6ZfSSUWGvOslUIQjllFBNLbEHaMSU1IQZrge7TgtDNFd6iMZdt6KUGmWLIzQUnAsmJB2h50fnl3UAnJMLXeNyHQOOFfYx5dq7Bjuf6486b3GOOMNnxps6L7ELGIKPJSRSwk_iKrkWNjG9HaPDyjUdnOxzgl5vb16m92T2dPcwvZ4RrwzPRC5AatCy8ob6UlaWmwIMUKs8aE-LhbDcCqe0U-BEBc7bqlCcWeMtk56JCbr4vbtO8b2HLs_buvPQNC5A7Ls5F1ZxS7UpdvT8H13FPoXdd99KC6Wk5Dt1tlf9ooVyvk5169J2_reW-AKJ2W3J |
| CitedBy_id | crossref_primary_10_1007_s11229_022_03504_5 crossref_primary_10_1109_TCDS_2024_3431224 crossref_primary_10_17163_uni_n42_2025_08 crossref_primary_10_1016_j_neuroimage_2022_119363 crossref_primary_10_1109_TNSRE_2024_3421551 crossref_primary_10_1016_j_bspc_2024_106052 crossref_primary_10_1038_s41593_023_01304_9 crossref_primary_10_3390_s23125575 crossref_primary_10_1016_j_neuroimage_2023_120190 crossref_primary_10_1371_journal_pcbi_1011074 crossref_primary_10_1038_s41586_021_03506_2 crossref_primary_10_1038_s41593_025_01905_6 crossref_primary_10_1073_pnas_2300255120 crossref_primary_10_3389_fnhum_2023_1124065 crossref_primary_10_3390_app15010392 crossref_primary_10_1002_smll_202104810 crossref_primary_10_1109_TNNLS_2021_3105937 crossref_primary_10_1155_2022_4702003 crossref_primary_10_1038_s41562_024_01869_w crossref_primary_10_1038_s41597_024_03398_7 crossref_primary_10_1007_s13311_022_01190_2 crossref_primary_10_1038_s41467_022_33611_3 crossref_primary_10_1038_s42003_024_06518_6 crossref_primary_10_1088_1741_2552_abc742 crossref_primary_10_1177_1059712320950483 crossref_primary_10_1088_1741_2552_ace8be crossref_primary_10_1016_j_brainresbull_2023_110713 crossref_primary_10_1038_s41597_025_04741_2 crossref_primary_10_1109_TITS_2021_3074695 crossref_primary_10_1007_s00521_023_08328_z crossref_primary_10_1007_s10162_022_00846_2 crossref_primary_10_1016_j_wneu_2020_11_028 crossref_primary_10_1002_aisy_202200317 crossref_primary_10_1016_j_tra_2024_104074 crossref_primary_10_1109_JSEN_2025_3563587 crossref_primary_10_1016_j_tics_2021_04_003 crossref_primary_10_1016_j_neuri_2025_100232 crossref_primary_10_3389_fnhum_2024_1430086 crossref_primary_10_1109_TIM_2022_3224991 crossref_primary_10_1016_j_neunet_2021_08_006 crossref_primary_10_3389_fnhum_2022_898300 crossref_primary_10_1162_IMAG_a_146 crossref_primary_10_1002_EXP_20230146 crossref_primary_10_1088_1741_2552_ad83c0 crossref_primary_10_1002_hbm_25603 crossref_primary_10_1051_e3sconf_202127706006 crossref_primary_10_1088_1741_2552_ac8fb5 crossref_primary_10_1109_TNSRE_2023_3310883 crossref_primary_10_1146_annurev_bioeng_110122_012818 crossref_primary_10_1186_s12984_023_01272_y crossref_primary_10_1088_1741_2552_abda0b crossref_primary_10_1109_TCSVT_2025_3558125 crossref_primary_10_1088_1741_2552_ad593a crossref_primary_10_1038_s42256_024_00824_8 crossref_primary_10_3389_fnins_2021_658930 crossref_primary_10_3389_fnbot_2022_953968 crossref_primary_10_1038_s41583_021_00517_w crossref_primary_10_1088_1741_2552_aded35 crossref_primary_10_1016_j_jpha_2025_101271 crossref_primary_10_1097_WNP_0000000000000933 crossref_primary_10_3389_fnhum_2022_913777 crossref_primary_10_1016_j_bspc_2022_103496 crossref_primary_10_1109_ACCESS_2020_3026579 crossref_primary_10_1002_advs_202003761 crossref_primary_10_1080_07370024_2023_2170801 crossref_primary_10_1088_1741_2552_ad417a crossref_primary_10_1136_practneurol_2020_002688 crossref_primary_10_1088_1741_2552_ade568 crossref_primary_10_1016_j_neucom_2024_127243 crossref_primary_10_1038_s41598_024_68857_y crossref_primary_10_1016_j_drudis_2020_12_003 crossref_primary_10_1088_1741_2552_ad5c02 crossref_primary_10_1088_1741_2552_ad663c crossref_primary_10_1155_2022_6798505 crossref_primary_10_1002_advs_202304853 crossref_primary_10_1007_s13347_022_00522_6 crossref_primary_10_1016_j_celrep_2024_114924 crossref_primary_10_1080_0142159X_2025_2560570 crossref_primary_10_3390_s20164629 crossref_primary_10_1039_D2EE01676A crossref_primary_10_1088_1741_2552_ac3315 crossref_primary_10_1007_s11571_022_09919_7 crossref_primary_10_1038_s41583_024_00819_9 crossref_primary_10_3389_fnhum_2022_874199 crossref_primary_10_1038_s41467_022_29083_0 crossref_primary_10_1126_scirobotics_add1002 crossref_primary_10_1002_aisy_202000164 crossref_primary_10_1093_bib_bbaa355 crossref_primary_10_1056_NEJMoa2027540 crossref_primary_10_1088_1741_2552_adab21 crossref_primary_10_1145_3649891 crossref_primary_10_1109_TNSRE_2022_3207624 crossref_primary_10_1038_s41562_024_01867_y crossref_primary_10_1038_s41593_020_0616_8 crossref_primary_10_1080_02580136_2021_1921933 crossref_primary_10_1109_ACCESS_2021_3053117 crossref_primary_10_1016_j_engappai_2022_105347 crossref_primary_10_1109_TNSRE_2023_3314642 crossref_primary_10_3389_frai_2021_618372 crossref_primary_10_1088_1741_2552_adf2de crossref_primary_10_3389_fnhum_2022_841035 crossref_primary_10_1038_s41551_023_01106_1 crossref_primary_10_1093_pnasnexus_pgae145 crossref_primary_10_1109_THMS_2021_3138677 crossref_primary_10_52468_2542_1514_2022_6_2__32_49 crossref_primary_10_1080_17434440_2024_2438309 crossref_primary_10_3389_fnins_2022_856808 crossref_primary_10_1088_1741_2552_ac01a0 crossref_primary_10_1177_14727978251366808 crossref_primary_10_3389_fnhum_2024_1388267 crossref_primary_10_1038_s41467_021_27725_3 crossref_primary_10_1038_s42003_021_02578_0 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_1016_j_neucom_2025_130928 crossref_primary_10_1038_s41583_020_0308_0 crossref_primary_10_1016_j_petrol_2022_110548 crossref_primary_10_1016_j_bspc_2025_108381 crossref_primary_10_1016_j_inffus_2024_102316 crossref_primary_10_1038_s41551_024_01207_5 crossref_primary_10_1155_2021_5564705 crossref_primary_10_1016_j_knosys_2023_110837 crossref_primary_10_1002_cne_25540 crossref_primary_10_1088_1741_2552_aca1e1 crossref_primary_10_3389_ijph_2025_1608625 crossref_primary_10_3390_s23021028 crossref_primary_10_1007_s11432_021_3373_1 crossref_primary_10_1109_JSSC_2022_3161296 crossref_primary_10_1097_jagr_0000000000000022 crossref_primary_10_1016_j_engappai_2024_109615 crossref_primary_10_1088_1741_2552_acb230 crossref_primary_10_1016_j_futures_2021_102819 crossref_primary_10_1108_JET_09_2021_0044 crossref_primary_10_1080_2326263X_2021_2009654 crossref_primary_10_1038_s41593_024_01731_2 crossref_primary_10_1016_j_neubiorev_2022_104783 crossref_primary_10_1109_TCE_2024_3472054 crossref_primary_10_1038_s41467_023_42555_1 crossref_primary_10_1109_TNSRE_2022_3150007 crossref_primary_10_1038_s41598_024_62230_9 crossref_primary_10_1073_pnas_2108959118 crossref_primary_10_1016_j_cub_2024_07_073 crossref_primary_10_3389_fnins_2021_685119 crossref_primary_10_1016_j_neuroimage_2023_119913 crossref_primary_10_1088_1741_2552_abbfef crossref_primary_10_1038_s41593_022_01026_4 crossref_primary_10_1155_2022_7055624 crossref_primary_10_1109_TBME_2024_3376603 crossref_primary_10_1038_s41597_022_01382_7 crossref_primary_10_1016_j_compbiomed_2022_105871 crossref_primary_10_1080_10255842_2025_2512877 crossref_primary_10_1109_TBME_2021_3132861 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2020. |
| DBID | CGR CUY CVF ECM EIF NPM 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 |
| DOI | 10.1038/s41593-020-0608-8 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Central Basic Toxicology Abstracts ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Psychology MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1546-1726 |
| EndPage | 582 |
| ExternalDocumentID | 32231340 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U01 NS098971 |
| GroupedDBID | --- -DZ .55 .GJ 0R~ 123 29M 2FS 36B 39C 4.4 53G 5BI 5RE 70F 7X7 85S 88E 8AO 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABIVO ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AETEA AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D0L DB5 DU5 DWQXO EAD EAP EBC EBD EBS ECM EE. EIF EJD EMB EMK EMOBN EPL EPS ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR IPY ISR ITC M1P M2M M7P MVM N9A NFIDA NNMJJ NPM O9- ODYON P2P PHGZT PQQKQ PROAC PSQYO PSYQQ Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M XJT YNT YQT ZGI ~8M 3V. 7QG 7QP 7QR 7TK 7TM 7U7 7U9 7XB 8FD 8FE 8FH 8FK ABFSG ACSTC AEZWR AFHIU AGSTI AHWEU AIXLP ATHPR C1K FR3 H94 K9. LK8 P64 PHGZM PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 |
| ID | FETCH-LOGICAL-c572t-4be46e64fc70cd4f8279e7e085ce6c09b38283a56a5ea3feac8f952187c814c13 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 189 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522382600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1097-6256 1546-1726 |
| IngestDate | Sun Nov 09 11:37:43 EST 2025 Tue Oct 07 05:13:22 EDT 2025 Thu Apr 03 07:04:16 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-4be46e64fc70cd4f8279e7e085ce6c09b38283a56a5ea3feac8f952187c814c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0053-7006 0000-0003-2480-4700 |
| OpenAccessLink | https://pmc.ncbi.nlm.nih.gov/articles/PMC10560395/pdf/nihms-1923124.pdf |
| PMID | 32231340 |
| PQID | 2386355442 |
| PQPubID | 44706 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2385280679 proquest_journals_2386355442 pubmed_primary_32231340 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Nature neuroscience |
| PublicationTitleAlternate | Nat Neurosci |
| PublicationYear | 2020 |
| Publisher | Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group |
| References | 32231339 - Nat Neurosci. 2020 Apr;23(4):471-472 |
| References_xml | – reference: 32231339 - Nat Neurosci. 2020 Apr;23(4):471-472 |
| SSID | ssj0007589 |
| Score | 2.682677 |
| Snippet | A decade after speech was first decoded from human brain signals, accuracy and speed remain far below that of natural speech. Here we show how to decode the... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 575 |
| SubjectTerms | Accuracy Adult Algorithms Brain - physiology Brain-Computer Interfaces Cerebral cortex Coders Decoding Electrocorticography Female Humans Machine translation Middle Aged Neural networks Neural Networks, Computer Recurrent neural networks Representations Speech Speech Perception Transfer learning Translation Words (language) |
| Title | Machine translation of cortical activity to text with an encoder-decoder framework |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32231340 https://www.proquest.com/docview/2386355442 https://www.proquest.com/docview/2385280679 |
| Volume | 23 |
| WOSCitedRecordID | wos000522382600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwED5BYWDh_x8qIyG2iMRxYntCBbViSVQhkLpVjmNLDCSlDUhsvANvyJNwdlOYYGGxEsWyIvt83_nu8x3AeShLBI3UBKLAhpUUtxSzRZAohMvYSMUU88UmeJ6L0UgOW4fbrKVVLnSiV9RlrZ2P_BKhxWMjo1eT58BVjXLR1baExjKsuCwJ1FP3ht-aGG1h6aOdkgdo56eLqGYsLmcIXI65Rl3ZlVAE4ncL0yPNYOO__7gJ662NSXpzodiCJVNtw06vwvP10xu5IJ716d3pO3CfeTalIY0DrTkxjtSW4KHUe7mJu_jg6kuQpiaOJUKc55aoirgMmKWZfr5_lMY_Ebsgeu3Cw6B_f3MbtJUWAp1w2gSsMLheKbOah7pkVlAuDTdojmmT6lAWMR7MYpWkKjEqtqishZUI_IJrETEdxXvQqerKHAAxIiwik1paRpZxkSqBshAp7M8Vs0oewsli7sbtdpmNfybuEM6-P6Ogu-iFqkz94vskLgzMcYj9-fqMJ_OMHGPUSnEUs_Do78GPYY36FXfEmxPoNNMXcwqr-rV5nE27sMxH3LeiCyvX_Xx4h28ZzbpeqrDNh9kX1E_TSw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VgkQvFCgtpQWMBNyiJo4T24cKVUDVqt0Vh0XqLTjOWOJAUnZTUG_8A__BR_ElnXE25QS3HrhEkWJZSfw8b8bz7AF4mdqGSKPExNR0UY2kKaVCnRSO6DJH65RTsdiEnk7N2Zn9sAK_xr0wLKscbWI01E3neY18j6glcqOSb86_Jlw1irOrYwmNARYnePmdQrbF_vE7Gt9XUh6-n709SpZVBRJfaNknqkZ6t1IFr1PfqGCktqiRXA-PpU9tnVMQkruidAW6PJBhMsESyRntTaZ8llO_t-C24i2jLBWUk2vLT763jdlVqxOKK8oxi5qbvQURJSvlJJd5SU1i_u7RRmY7XP_f_sl9uLf0ocXBAPoHsILtQ9g4aF3ffbkUr0VUtcZ0wQbMJlEtiqJnUh6Ef6ILgoLuuIoveGMH188QfSdYBSN4ZVq4VvAJnw3Of__42WC8E2EUsj2CjzfyfZuw2nYtPgaBJq0zLINssqC0KZ0hrGeO2mungrPbsDuOVbU0B4vqz0Btw4vrxzSROTvjWuwuYpuC09yautga8FCdDyeOVGR18yxX6ZN_d_4c7h7NJqfV6fH0ZAfWZEQbi4x2YbWfX-BTuOO_9Z8X82cRtwI-3TQorgA95itr |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLUJcoKX8FFpwJeAWbeI4sX2oUGm7omq7WqEi9RYcZyxxICm7Kag33qFv08fpkzB2knKitx64RJFiWbE9M9-M57MH4G2sKwKNHCNV0kNUnFRKuDLKDMFlitoII0KxCTmdqtNTPVuCq-EsjKdVDjYxGOqqsX6PfEzQErBR8LHraRGzvcmHsx-RryDlM61DOY1ORA7x4heFb4vtgz1a63ecT_ZPdj9FfYWByGaSt5Eokf4zF87K2FbCKS41SiQ3xGJuY12mFJCkJstNhiZ1ZKSU0wR4SlqVCJuk1O89WJbkZIgRLH_cn84-3-AAeeI65Fq1jCjKyIecaqrGC4JNz5vjvuhLrCL1b_824Nzk8f88QyvwqPeu2U6nDquwhPUTWNupTdt8v2DvWeC7hkTCGpwcBx4pstbDdUcJZI1jFI6H_X3mj3z4yhqsbZgfJvN71szUzN_9WeH8-vdlheGNuYHi9hS-3Mn4nsGobmp8AQxVXCaYO14lTkiVG0VakBhqL41wRq_DxrBuRW8oFsXfRVuHrZvPpOI-b2NqbM5Dm8wnwCV18byTjeKsu4ukIHucJqmIX97e-Rt4QLJQHB1MD1_BQx4Ez7OPNmDUzs9xE-7bn-23xfx1L8QMvt61VPwBOH01hQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+translation+of+cortical+activity+to+text+with+an+encoder%E2%80%93decoder+framework&rft.jtitle=Nature+neuroscience&rft.au=Makin%2C+Joseph+G&rft.au=Moses%2C+David+A&rft.au=Chang%2C+Edward+F&rft.date=2020-04-01&rft.pub=Nature+Publishing+Group&rft.issn=1097-6256&rft.eissn=1546-1726&rft.volume=23&rft.issue=4&rft.spage=575&rft.epage=582&rft_id=info:doi/10.1038%2Fs41593-020-0608-8&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-6256&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-6256&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-6256&client=summon |