Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data
Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging...
Saved in:
| Published in: | Journal of biomechanics Vol. 49; no. 14; pp. 3216 - 3222 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
03.10.2016
Elsevier Limited |
| Subjects: | |
| ISSN: | 0021-9290, 1873-2380 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. |
|---|---|
| AbstractList | Abstract Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one׳s ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical differences between experimental conditions and/or subject populations. A common approach to analyzing cyclic biomechanical data involves averaging the biomechanical signals across cycle replications, and then comparing mean differences at specific points of the cycle. This pointwise analysis approach ignores the functional nature of the data, which can hinder one's ability to find subtle differences between experimental conditions and/or subject populations. To overcome this limitation, we propose using mixed-effects smoothing spline analysis of variance (SSANOVA) to analyze differences in cyclic biomechanical data. The SSANOVA framework makes it possible to decompose the estimated function into the portion that is common across groups (i.e., the average cycle, AC) and the portion that differs across groups (i.e., the contrast cycle, CC). By partitioning the signal in such a manner, we can obtain estimates of the CC differences (CCDs), which are the functions directly describing group differences in the cyclic biomechanical data. Using both simulated and experimental data, we illustrate the benefits of using SSANOVA models to analyze differences in noisy biomechanical (gait) signals collected from multiple locations (joints) of subjects participating in different experimental conditions. Using Bayesian confidence intervals, the SSANOVA results can be used in clinical and research settings to reliably quantify biomechanical differences between experimental conditions and/or subject populations. |
| Author | Shorter, K. Alex Helwig, Nathaniel E. Hsiao-Wecksler, Elizabeth T. Ma, Ping |
| Author_xml | – sequence: 1 givenname: Nathaniel E. surname: Helwig fullname: Helwig, Nathaniel E. email: helwig@umn.edu organization: Department of Psychology, University of Minnesota, Minneapolis, MN 55455-0366, United States – sequence: 2 givenname: K. Alex surname: Shorter fullname: Shorter, K. Alex email: kshorter@umich.edu organization: Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109-2125, United States – sequence: 3 givenname: Ping surname: Ma fullname: Ma, Ping email: pingma@uga.edu organization: Department of Statistics, University of Georgia, Athens, GA 30602-5029, United States – sequence: 4 givenname: Elizabeth T. surname: Hsiao-Wecksler fullname: Hsiao-Wecksler, Elizabeth T. email: ethw@illinois.edu organization: Department of Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801-2906, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27553848$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNksFu1DAURS1URKeFX6gssWGT9NlO4hghRFUBRarEorC2PM4L45DEg50pmr_H6UxBzGa6siyde_X8fM7IyehHJOSCQc6AVZdd3i2dH9Cucp7uOcgcRPmMLFgtRcZFDSdkAcBZpriCU3IWYwcAspDqBTnlsixFXdQL0t4N3k8rN_6gcd27EakZTb-NLlLf0nsTnBkt0sE32Me39IqO-JtO3ve09YFOq_95u7W9s3Q_mRmdNT1tzGRekuet6SO-2p_n5Punj9-ub7Lbr5-_XF_dZraUfMoEYlFAaVQtWcsqY1uwTIHgvFhKZRgTbcUNb6Uo5FJVSgC2qgK0UijGUIpz8mbXuw7-1wbjpAcXLfa9GdFvomZ1engFkJqOo0Km1cmiegpalkxWTCX09QHa-U1IK3qgmOCs4POYF3tqsxyw0evgBhO2-vFfElDtABt8jAHbvwgDPQugO_0ogJ4F0CB1EiAF3x0ErZvM5Pw4BeP64_EPu3j6bbx3GHS0DpMBjQtoJ914d7zi_UFFcuLBhJ-4xfhvHTpyDfpulnR2lFUC0sqPFDxlgj_-tfe7 |
| CitedBy_id | crossref_primary_10_1080_03610918_2023_2277658 crossref_primary_10_3390_stats4030042 crossref_primary_10_3390_stats5030053 crossref_primary_10_3390_math13030516 crossref_primary_10_1016_j_gaitpost_2023_12_005 crossref_primary_10_1016_j_jbiomech_2018_08_005 crossref_primary_10_1038_s41598_020_74707_4 crossref_primary_10_1016_j_jbiomech_2024_112074 crossref_primary_10_3390_app8101766 crossref_primary_10_1109_TVCG_2024_3456391 crossref_primary_10_1080_14763141_2024_2368064 crossref_primary_10_1038_s41598_019_52434_9 crossref_primary_10_3390_stats7010003 crossref_primary_10_1016_j_brat_2019_103513 crossref_primary_10_1016_j_jelekin_2021_102591 crossref_primary_10_1016_j_heliyon_2024_e32544 crossref_primary_10_1016_j_jbiomech_2021_110478 crossref_primary_10_1016_j_jbiomech_2021_110523 crossref_primary_10_1123_jab_2020_0140 crossref_primary_10_1123_jab_2021_0326 |
| Cites_doi | 10.1214/009053605000000110 10.1016/j.gaitpost.2012.01.014 10.1111/1467-9868.00115 10.1007/BF01404567 10.1016/0966-6362(95)99063-Q 10.1080/01621459.1998.10473723 10.1016/j.jbiomech.2005.07.032 10.1007/s00167-003-0440-1 10.1053/apmr.2001.24893 10.18637/jss.v067.i01 10.1080/10618600.2014.926819 10.1121/1.1289206 10.1136/bjsm.2008.056846 10.1111/j.2517-6161.1983.tb01239.x 10.1016/j.clinbiomech.2007.11.009 10.1016/S0966-6362(03)00017-1 10.1080/01621459.1998.10474115 10.1123/jab.28.2.210 10.1016/j.jbiomech.2015.05.019 10.4310/SII.2016.v9.n4.a3 10.1080/01621459.1988.10478711 10.1055/s-2004-830382 10.1093/ptj/85.8.740 10.1016/j.jbiomech.2010.09.015 10.1097/00005768-199707000-00003 10.1016/j.jbiomech.2005.01.019 10.1098/rspb.2009.0664 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd Elsevier Ltd Copyright © 2016 Elsevier Ltd. All rights reserved. Copyright Elsevier Limited 2016 |
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2016 Elsevier Ltd. All rights reserved. – notice: Copyright Elsevier Limited 2016 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 7QO P64 |
| DOI | 10.1016/j.jbiomech.2016.07.035 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Research Library (ProQuest) Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Engineering Research Database MEDLINE Technology Research Database Research Library Prep MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 3222 |
| ExternalDocumentID | 4225194201 27553848 10_1016_j_jbiomech_2016_07_035 S0021929016308375 1_s2_0_S0021929016308375 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD .GJ 29J 3V. 53G AACTN AAQQT AAQXK ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFCTW AFFDN AFJKZ AFKWA AGHFR AI. AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT PKN R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP YCJ ZGI AAIAV ABLVK ABYKQ AJBFU LCYCR 9DU AAYXX AFFHD AGQPQ AIGII APXCP CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 7QO P64 |
| ID | FETCH-LOGICAL-c572t-3ee4405a9871f16acf0c1903224b79a113f62a2f7347b96930ef960ec73911e73 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000386984400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 |
| IngestDate | Sun Nov 09 10:21:05 EST 2025 Tue Oct 07 09:34:51 EDT 2025 Wed Oct 01 09:28:04 EDT 2025 Sat Nov 29 14:32:51 EST 2025 Thu Apr 03 07:00:46 EDT 2025 Tue Nov 18 22:40:07 EST 2025 Sat Nov 29 07:28:38 EST 2025 Fri Feb 23 02:28:50 EST 2024 Tue Feb 25 20:12:58 EST 2025 Tue Oct 14 19:30:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Keywords | Cyclic data Gait analysis Functional data analysis Smoothing spline |
| Language | English |
| License | Copyright © 2016 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c572t-3ee4405a9871f16acf0c1903224b79a113f62a2f7347b96930ef960ec73911e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 27553848 |
| PQID | 1831321427 |
| PQPubID | 1226346 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1855360011 proquest_miscellaneous_1837290746 proquest_miscellaneous_1835517619 proquest_journals_1831321427 pubmed_primary_27553848 crossref_primary_10_1016_j_jbiomech_2016_07_035 crossref_citationtrail_10_1016_j_jbiomech_2016_07_035 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2016_07_035 elsevier_clinicalkeyesjournals_1_s2_0_S0021929016308375 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2016_07_035 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-03 |
| PublicationDateYYYYMMDD | 2016-10-03 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-03 day: 03 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Shorter, Polk, Rosengren, Hsiao-Wecksler (bib31) 2008; 23 Forner-Cordero, Koopman, van der Helm (bib9) 2006; 39 James C.R., 2004. Considerations of movement variability in biomechanics research, Stergiou N., (Ed), In: Innovative Analyses of Human Movement, Human Kinetics, Champaign, IL, 29–62 Collins, S.H., Adamczyk, P.G., Kuo, A.D., 2009. Dynamic arm swinging in human walking. Proceedings of the Royal Society B: Biological Sciences 276, pp. 3679–3688. Knoll, Kocsis, Kiss (bib22) 2004; 12 Gu (bib11) 2013 Gu, Wahba (bib13) 1993; 2 〉 Page, Ayala, León, Peydro, Prat (bib27) 2006; 39 Helwig, N.E., 2016. bigsplines: Smoothing Splines for Large Samples. R package version 1.0-8. URL Huang, Kuo (bib20) 2014; 217 R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL Wahba (bib33) 1983; 45 Nychka (bib25) 1988; 83 O׳Connor, Xu, Kuo (bib26) 2012; 36 Hausdorff, Rios, Edelberg (bib14) 2001; 82 Helwig, N.E., 2015. Efficient estimation of variance components in nonparametric mixed-effects models with large samples. Statistics and Computing (Advance online publication), pp. 1–18. Helwig, N.E., Ma, P., 2016. Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters. Statistics and Its Interface (in press). Bates, Mächler, Bolker, Walker (bib1) 2015; 67 Diop, Rahmani, Belli, Gautheron, Geyssant, Cottalorda (bib8) 2005; 26 Nimeskern, Pleumeekers, Pawson, Koevoet, Lehtoviita, Soyka, Röösli, Holzmann, van Osch, Müller, Stok (bib24) 2015; 48 Helwig, Hong, Hsiao-Wecksler, Polk (bib17) 2011; 44 . Risberg, Moksnes, Storevold, Holm, Snyder-Mackler (bib29) 2009; 43 Helwig, Ma (bib18) 2015; 24 Becker, Rosenbaum, Kriese, Gerngro, Clase (bib2) 1995; 311 Chmielewski, Hurd, Rudolph, Axe, Snyder-Mackler (bib3) 2005; 85 Wang (bib35) 1998; 93 Vaughan, Davis, O׳Connor (bib32) 1999 Zhang, Lin, Raz, Sowers (bib36) 1998; 93 Romei, Galli, Motta, Schwartz, Crivellini (bib30) 2004; 19 Griffin, Olney, McBride (bib10) 1995; 3 Lucero, Koenig (bib23) 2000; 108 Wang (bib34) 1998; 60 Craven, Wahba (bib5) 1979; 31 DeVita, Hortobagyi, Barrier, Torry, Glover, Speroni, Money, Mahar (bib6) 1997; 29 Gu, Ma (bib12) 2005; 33 DiBerardino, Ragetly, Hong, Griffon, Hsiao-Wecksler (bib7) 2012; 28 10.1016/j.jbiomech.2016.07.035_bib16 Hausdorff (10.1016/j.jbiomech.2016.07.035_bib14) 2001; 82 10.1016/j.jbiomech.2016.07.035_bib19 10.1016/j.jbiomech.2016.07.035_bib15 Chmielewski (10.1016/j.jbiomech.2016.07.035_bib3) 2005; 85 Shorter (10.1016/j.jbiomech.2016.07.035_bib31) 2008; 23 Lucero (10.1016/j.jbiomech.2016.07.035_bib23) 2000; 108 Gu (10.1016/j.jbiomech.2016.07.035_bib12) 2005; 33 Nychka (10.1016/j.jbiomech.2016.07.035_bib25) 1988; 83 Griffin (10.1016/j.jbiomech.2016.07.035_bib10) 1995; 3 Helwig (10.1016/j.jbiomech.2016.07.035_bib18) 2015; 24 Nimeskern (10.1016/j.jbiomech.2016.07.035_bib24) 2015; 48 Becker (10.1016/j.jbiomech.2016.07.035_bib2) 1995; 311 Wahba (10.1016/j.jbiomech.2016.07.035_bib33) 1983; 45 Romei (10.1016/j.jbiomech.2016.07.035_bib30) 2004; 19 Gu (10.1016/j.jbiomech.2016.07.035_bib11) 2013 10.1016/j.jbiomech.2016.07.035_bib21 Gu (10.1016/j.jbiomech.2016.07.035_bib13) 1993; 2 10.1016/j.jbiomech.2016.07.035_bib28 Wang (10.1016/j.jbiomech.2016.07.035_bib35) 1998; 93 Zhang (10.1016/j.jbiomech.2016.07.035_bib36) 1998; 93 Huang (10.1016/j.jbiomech.2016.07.035_bib20) 2014; 217 10.1016/j.jbiomech.2016.07.035_bib4 DeVita (10.1016/j.jbiomech.2016.07.035_bib6) 1997; 29 Bates (10.1016/j.jbiomech.2016.07.035_bib1) 2015; 67 Wang (10.1016/j.jbiomech.2016.07.035_bib34) 1998; 60 Vaughan (10.1016/j.jbiomech.2016.07.035_bib32) 1999 Forner-Cordero (10.1016/j.jbiomech.2016.07.035_bib9) 2006; 39 Helwig (10.1016/j.jbiomech.2016.07.035_bib17) 2011; 44 Knoll (10.1016/j.jbiomech.2016.07.035_bib22) 2004; 12 Page (10.1016/j.jbiomech.2016.07.035_bib27) 2006; 39 Risberg (10.1016/j.jbiomech.2016.07.035_bib29) 2009; 43 Craven (10.1016/j.jbiomech.2016.07.035_bib5) 1979; 31 O׳Connor (10.1016/j.jbiomech.2016.07.035_bib26) 2012; 36 Diop (10.1016/j.jbiomech.2016.07.035_bib8) 2005; 26 DiBerardino (10.1016/j.jbiomech.2016.07.035_bib7) 2012; 28 |
| References_xml | – volume: 217 start-page: 605 year: 2014 end-page: 613 ident: bib20 article-title: Mechanics and energetics of load carriage during human walking publication-title: J. Exp. Biol. – year: 1999 ident: bib32 article-title: Dynamics of Human Gait – volume: 45 start-page: 133 year: 1983 end-page: 150 ident: bib33 article-title: Bayesian “confidence intervals” for the cross-validated smoothing spline publication-title: J. R. Stat. Soc. Ser. B – volume: 67 start-page: 1 year: 2015 end-page: 48 ident: bib1 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. – volume: 108 start-page: 1408 year: 2000 end-page: 1420 ident: bib23 article-title: Time normalization of voice signals using functional data analysis publication-title: J. Acoust. Soc. Am. – volume: 12 start-page: 7 year: 2004 end-page: 14 ident: bib22 article-title: Gait patterns before and after anterior cruciate ligament reconstruction publication-title: Knee Surg. Sport. Traumatol. Arthrosc. – volume: 311 start-page: 262 year: 1995 end-page: 269 ident: bib2 article-title: Gait asymmetry following successful surgical treatment of ankle fractures in young adults publication-title: Clin. Orthop. Relat. Res. – volume: 39 start-page: 948 year: 2006 end-page: 957 ident: bib9 article-title: Describing gait as a sequence of states publication-title: J. Biomech. – volume: 29 start-page: 853 year: 1997 end-page: 859 ident: bib6 article-title: Gait adaptations before and after anterior cruciate ligament reconstruction surgery publication-title: Med. Sci. Sport. Exerc. – volume: 2 start-page: 97 year: 1993 end-page: 117 ident: bib13 article-title: Smoothing spline ANOVA with component-wise Bayesian “confidence intervals” publication-title: J. Comput. Graph. Stat. – volume: 82 start-page: 1050 year: 2001 end-page: 1056 ident: bib14 article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study publication-title: Arch. Phys. Med. Rehabil. – volume: 48 start-page: 1721 year: 2015 end-page: 1729 ident: bib24 article-title: Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs publication-title: J. Biomech. – volume: 43 start-page: 423 year: 2009 end-page: 428 ident: bib29 article-title: Rehabilitation after anterior cruciate ligament injury influences joint loading during walking but not hopping publication-title: Br. J. Sport. Med. – volume: 19 start-page: 85 year: 2004 end-page: 90 ident: bib30 article-title: Use of the normalcy index for the evaluation of gait pathology publication-title: Gait Posture – volume: 28 start-page: 210 year: 2012 end-page: 214 ident: bib7 article-title: Improving regions of deviation gait symmetry analysis with pointwise publication-title: J. Appl. Biomech. – volume: 24 start-page: 715 year: 2015 end-page: 732 ident: bib18 article-title: Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples publication-title: J. Comput. Graph. Stat. – reference: Helwig, N.E., 2016. bigsplines: Smoothing Splines for Large Samples. R package version 1.0-8. URL 〈 – volume: 33 start-page: 1357 year: 2005 end-page: 1379 ident: bib12 article-title: Optimal smoothing in nonparametric mixed-effect models publication-title: Ann. Stat. – reference: 〉. – volume: 93 start-page: 341 year: 1998 end-page: 348 ident: bib35 article-title: Smoothing spline models with correlated random errors publication-title: J. Am. Stat. Assoc. – volume: 36 start-page: 102 year: 2012 end-page: 107 ident: bib26 article-title: Energetic cost of walking with increased step variability publication-title: Gait Posture – reference: James C.R., 2004. Considerations of movement variability in biomechanics research, Stergiou N., (Ed), In: Innovative Analyses of Human Movement, Human Kinetics, Champaign, IL, 29–62 – year: 2013 ident: bib11 article-title: Smoothing Spline ANOVA Models – volume: 23 start-page: 459 year: 2008 end-page: 467 ident: bib31 article-title: A new approach to detecting asymmetries in gait publication-title: Clin. Biomech. – volume: 39 start-page: 2526 year: 2006 end-page: 2534 ident: bib27 article-title: Normalizing temporal patterns to analyze sit-to-stand movements by using registration of functional data publication-title: J. Biomech. – volume: 3 start-page: 132 year: 1995 end-page: 142 ident: bib10 article-title: Role of symmetry in gait performance of stroke subjects with hemiplegia publication-title: Gait Posture – reference: 〉 – volume: 60 start-page: 159 year: 1998 end-page: 174 ident: bib34 article-title: Mixed effects smoothing spline analysis of variance publication-title: J. R. Stat. Soc. Ser. B – reference: Helwig, N.E., Ma, P., 2016. Smoothing spline ANOVA for super-large samples: Scalable computation via rounding parameters. Statistics and Its Interface (in press). – reference: Helwig, N.E., 2015. Efficient estimation of variance components in nonparametric mixed-effects models with large samples. Statistics and Computing (Advance online publication), pp. 1–18. – reference: R Core Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL: 〈 – volume: 93 start-page: 710 year: 1998 end-page: 719 ident: bib36 article-title: Semiparametric stochastic mixed models for longitudinal data publication-title: J. Am. Stat. Assoc. – volume: 44 start-page: 561 year: 2011 end-page: 566 ident: bib17 article-title: Methods to temporally align gait cycle data publication-title: J. Biomech. – volume: 85 start-page: 740 year: 2005 end-page: 749 ident: bib3 article-title: Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture publication-title: Phys. Ther. – volume: 31 start-page: 377 year: 1979 end-page: 403 ident: bib5 article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation publication-title: Numer. Math. – volume: 83 start-page: 1134 year: 1988 end-page: 1143 ident: bib25 article-title: Bayesian confidence intervals for smoothing splines publication-title: J. Am. Stat. Assoc. – volume: 26 start-page: 682 year: 2005 end-page: 687 ident: bib8 article-title: Influence of speed variation and age on ground reaction forces and stride parameters of children׳s normal gait publication-title: Int. J. Sport. Med. – reference: Collins, S.H., Adamczyk, P.G., Kuo, A.D., 2009. Dynamic arm swinging in human walking. Proceedings of the Royal Society B: Biological Sciences 276, pp. 3679–3688. – volume: 33 start-page: 1357 year: 2005 ident: 10.1016/j.jbiomech.2016.07.035_bib12 article-title: Optimal smoothing in nonparametric mixed-effect models publication-title: Ann. Stat. doi: 10.1214/009053605000000110 – ident: 10.1016/j.jbiomech.2016.07.035_bib28 – volume: 217 start-page: 605 year: 2014 ident: 10.1016/j.jbiomech.2016.07.035_bib20 article-title: Mechanics and energetics of load carriage during human walking publication-title: J. Exp. Biol. – volume: 36 start-page: 102 year: 2012 ident: 10.1016/j.jbiomech.2016.07.035_bib26 article-title: Energetic cost of walking with increased step variability publication-title: Gait Posture doi: 10.1016/j.gaitpost.2012.01.014 – volume: 311 start-page: 262 year: 1995 ident: 10.1016/j.jbiomech.2016.07.035_bib2 article-title: Gait asymmetry following successful surgical treatment of ankle fractures in young adults publication-title: Clin. Orthop. Relat. Res. – volume: 60 start-page: 159 year: 1998 ident: 10.1016/j.jbiomech.2016.07.035_bib34 article-title: Mixed effects smoothing spline analysis of variance publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00115 – volume: 31 start-page: 377 year: 1979 ident: 10.1016/j.jbiomech.2016.07.035_bib5 article-title: Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation publication-title: Numer. Math. doi: 10.1007/BF01404567 – volume: 3 start-page: 132 year: 1995 ident: 10.1016/j.jbiomech.2016.07.035_bib10 article-title: Role of symmetry in gait performance of stroke subjects with hemiplegia publication-title: Gait Posture doi: 10.1016/0966-6362(95)99063-Q – ident: 10.1016/j.jbiomech.2016.07.035_bib21 – volume: 93 start-page: 710 year: 1998 ident: 10.1016/j.jbiomech.2016.07.035_bib36 article-title: Semiparametric stochastic mixed models for longitudinal data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10473723 – volume: 39 start-page: 2526 year: 2006 ident: 10.1016/j.jbiomech.2016.07.035_bib27 article-title: Normalizing temporal patterns to analyze sit-to-stand movements by using registration of functional data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.07.032 – volume: 12 start-page: 7 year: 2004 ident: 10.1016/j.jbiomech.2016.07.035_bib22 article-title: Gait patterns before and after anterior cruciate ligament reconstruction publication-title: Knee Surg. Sport. Traumatol. Arthrosc. doi: 10.1007/s00167-003-0440-1 – volume: 82 start-page: 1050 year: 2001 ident: 10.1016/j.jbiomech.2016.07.035_bib14 article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study publication-title: Arch. Phys. Med. Rehabil. doi: 10.1053/apmr.2001.24893 – ident: 10.1016/j.jbiomech.2016.07.035_bib15 – volume: 67 start-page: 1 year: 2015 ident: 10.1016/j.jbiomech.2016.07.035_bib1 article-title: Fitting linear mixed-effects models using lme4 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 24 start-page: 715 year: 2015 ident: 10.1016/j.jbiomech.2016.07.035_bib18 article-title: Fast and stable multiple smoothing parameter selection in smoothing spline analysis of variance models with large samples publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2014.926819 – volume: 108 start-page: 1408 year: 2000 ident: 10.1016/j.jbiomech.2016.07.035_bib23 article-title: Time normalization of voice signals using functional data analysis publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1289206 – volume: 43 start-page: 423 year: 2009 ident: 10.1016/j.jbiomech.2016.07.035_bib29 article-title: Rehabilitation after anterior cruciate ligament injury influences joint loading during walking but not hopping publication-title: Br. J. Sport. Med. doi: 10.1136/bjsm.2008.056846 – volume: 45 start-page: 133 year: 1983 ident: 10.1016/j.jbiomech.2016.07.035_bib33 article-title: Bayesian “confidence intervals” for the cross-validated smoothing spline publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1983.tb01239.x – volume: 23 start-page: 459 year: 2008 ident: 10.1016/j.jbiomech.2016.07.035_bib31 article-title: A new approach to detecting asymmetries in gait publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2007.11.009 – volume: 19 start-page: 85 year: 2004 ident: 10.1016/j.jbiomech.2016.07.035_bib30 article-title: Use of the normalcy index for the evaluation of gait pathology publication-title: Gait Posture doi: 10.1016/S0966-6362(03)00017-1 – volume: 93 start-page: 341 year: 1998 ident: 10.1016/j.jbiomech.2016.07.035_bib35 article-title: Smoothing spline models with correlated random errors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10474115 – year: 2013 ident: 10.1016/j.jbiomech.2016.07.035_bib11 – year: 1999 ident: 10.1016/j.jbiomech.2016.07.035_bib32 – volume: 28 start-page: 210 year: 2012 ident: 10.1016/j.jbiomech.2016.07.035_bib7 article-title: Improving regions of deviation gait symmetry analysis with pointwise t tests publication-title: J. Appl. Biomech. doi: 10.1123/jab.28.2.210 – volume: 48 start-page: 1721 year: 2015 ident: 10.1016/j.jbiomech.2016.07.035_bib24 article-title: Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.05.019 – ident: 10.1016/j.jbiomech.2016.07.035_bib19 doi: 10.4310/SII.2016.v9.n4.a3 – volume: 83 start-page: 1134 year: 1988 ident: 10.1016/j.jbiomech.2016.07.035_bib25 article-title: Bayesian confidence intervals for smoothing splines publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1988.10478711 – volume: 26 start-page: 682 year: 2005 ident: 10.1016/j.jbiomech.2016.07.035_bib8 article-title: Influence of speed variation and age on ground reaction forces and stride parameters of children׳s normal gait publication-title: Int. J. Sport. Med. doi: 10.1055/s-2004-830382 – volume: 85 start-page: 740 year: 2005 ident: 10.1016/j.jbiomech.2016.07.035_bib3 article-title: Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture publication-title: Phys. Ther. doi: 10.1093/ptj/85.8.740 – volume: 2 start-page: 97 year: 1993 ident: 10.1016/j.jbiomech.2016.07.035_bib13 article-title: Smoothing spline ANOVA with component-wise Bayesian “confidence intervals” publication-title: J. Comput. Graph. Stat. – volume: 44 start-page: 561 year: 2011 ident: 10.1016/j.jbiomech.2016.07.035_bib17 article-title: Methods to temporally align gait cycle data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.09.015 – volume: 29 start-page: 853 year: 1997 ident: 10.1016/j.jbiomech.2016.07.035_bib6 article-title: Gait adaptations before and after anterior cruciate ligament reconstruction surgery publication-title: Med. Sci. Sport. Exerc. doi: 10.1097/00005768-199707000-00003 – volume: 39 start-page: 948 year: 2006 ident: 10.1016/j.jbiomech.2016.07.035_bib9 article-title: Describing gait as a sequence of states publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2005.01.019 – ident: 10.1016/j.jbiomech.2016.07.035_bib16 – ident: 10.1016/j.jbiomech.2016.07.035_bib4 doi: 10.1098/rspb.2009.0664 |
| SSID | ssj0007479 |
| Score | 2.3494813 |
| Snippet | Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare biomechanical... Abstract Cyclic biomechanical data are commonplace in orthopedic, rehabilitation, and sports research, where the goal is to understand and compare... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3216 |
| SubjectTerms | Analysis of Variance Ankle Biomechanical engineering Biomechanical Phenomena Biomechanics Confidence intervals Cyclic data Functional data analysis Gait analysis Humans Male Mathematical models Mechanical Phenomena Models, Statistical Physical Medicine and Rehabilitation Physiology Populations Smoothing Smoothing spline Splines Statistics as Topic - methods Studies Time series Variance analysis Young Adult |
| Title | Smoothing spline analysis of variance models: A new tool for the analysis of cyclic biomechanical data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929016308375 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929016308375 https://dx.doi.org/10.1016/j.jbiomech.2016.07.035 https://www.ncbi.nlm.nih.gov/pubmed/27553848 https://www.proquest.com/docview/1831321427 https://www.proquest.com/docview/1835517619 https://www.proquest.com/docview/1837290746 https://www.proquest.com/docview/1855360011 |
| Volume | 49 |
| WOSCitedRecordID | wos000386984400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDaHxwEcHW8eojIR4C2vsJE72ggraxMtKxYfUN8t1bWlVl2xLN2n_PXeOE4YEBcFLpTa-5sOX8-98Hz-A1zo3RmQOrZ9zJkqE0ZF28yxyYo7Ln0uydKY92YQcj_PptJiEDbc6pFW2NtEb6nllaI_8EFUvJlIdLt9dXEbEGkXR1UChsQFb1CWB-9S9SWeJESqHFI84QhgwvFMhvHi78PXtPiARNw08PeXbLxen34FPvwidPP7fy38CjwL8ZKNGX57CPVv2YGdUout9fsveMJ8Q6nfae_DwTq_CHjw4DVH4HXBfziucYPyZ1VTQa5kOrU1Y5dgNet-kSsyT7NRHbMQQurNVVS0ZImSGiPOn8ebWLM8MC89J-zpNRomrz-DbyfHXDx-jwNcQmVTyVSSsTRD_6QKdMBdn2rihQbyBJiOZyULHsXAZ19xJkchZQRyM1qEDZY0UaHKtFM9hs6xKuwcMYYcWRWozirwaWxTGoiD-_dxoLnTWh7SdKGVCM3Pi1FiqNmttodoJVjTBaigVTnAfDju5i6adxx8lZKsHqi1WRfOqcMX5N0lbBytRq1jVXA0VBcxj0k_ExoiIJUoWnWQAQg3A-auzHrQKqH6cqNO-PrzqDqMhoeiQLm117ccgeqZdrbVj0Bkjipp1Y9JUEIyO-7DbvCzdo-YSj-VJvr_-Il_ANt2Rz5kUB7C5urq2L-G-uVmd1VcD2JBT6T_zAWy9Px5PPuO3U_5p4N_-73asXeI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwED-Ngfh44KPjozDASMBbWG0ncYOEUAVMm7YVJIa0N-O6trSqS0bTDfWf4m_kzvlgSFAQ0h54bXxJ4_x89zvfnQ_gqelbK1OP2s97G8XSmsj4cRp5OUbz5-M0GZnQbEINh_2Dg-zDCnxramEorbLRiUFRjwtLe-QbCD1OTXWEen38JaKuURRdbVpoVLDYcYuv6LKVr7bf4vd9JsTmu_03W1HdVSCyiRLzSDoXI0sx6Gxzz1Njfc-iVURgxyOVGc6lT4URXslYjTLqFOg80nxnlUTF4JTE-16AizF5QpQqKN63mh-peZ1SwiOkHb0zFcmTF5NQTx8CILw6MDS0mPulMfwd2Q1Gb_PG_zZdN-F6Ta_ZoFoPt2DF5R1YG-RmXhwt2HMWEl5DJKED186cxdiBy3t1lsEa-I9HBQIYf2YlFSw7ZuqjW1jh2amZ0UaQY6GJUPmSDRi6JmxeFFOGHgBDRv3TeLuw00PL6u9iQh0qo8Tc2_DpXKbiDqzmRe7uAUNaZWSWuJQiy9ZlmXUoiLcfWyOkSbuQNMDQtj6snXqGTHWTlTfRDaA0AUr3lEZAdWGjlTuujiv5o4RqcKebYlw0Hxot6r9JurLWgqXmuhS6pykhgNN6QO6PjF-hZNZK1kSvInB_9dT1BvD6x4NatHfhSXsZFSVFv0zuipMwBr0D2rVbOgadTWrBs2xMkkhyE3gX7laLs51qofBaP-7fX_4nH8OVrf29Xb27Pdx5AFfp7UJ-qFyH1fnsxD2ES_Z0fljOHgX9wuDzea_Q77qgs1g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aHZrggUvHpWyAkYC3sDpO4mYSQoWtYhpUFTBpb8Z1bWlVl4wmG-pf26_bseOEIUFBSHvgsY1P0jrfufncAJ7LnlIsMSj9jFFBxJQMpJkkgWETVH8mSuKxdMMm-HDYOzxMRytwXtfC2LTKWiY6QT3JlT0j30LoUTtUB11149MiRjuDNyffAjtBykZa63EaFUT29eI7um_F670dfNcvwnCw--Xd-8BPGAhUzMMyYFpHaLFIdLypoYlUpqtQQyLIozFPJaXMJKEMDWcRH6d2aqA2aPJrxRkKCc0Z3vcarOKnMGrB6tvd4ehTowfQUPcJJjRAI6R7qT55-mrqqutdOIRW7UPdwLlfqsbfmb5OBQ5u_8-bdwduecOb9CtOuQsrOmvDej-TZX68IC-JS4V1MYY23LzUpbENax99_sE6mM_HOUIbvyaFLWXWRPqmLiQ35EzO7RGRJm68ULFN-gSdFlLm-Yygb0DQ1v5pvVqo2ZEi_h1JV6FKbMruPTi4kq24D60sz_RDIGhwSZbGOrExZ6XTVGkkxNtPlAyZTDoQ1yARyrdxt9NEZqLO15uKGlzCgkt0uUBwdWCroTupGpn8kYLXGBR1mS4qFoG69t8odeHlYyGoKELRFTZVgFreQK8AfQGOlGlD6U3AyrT7q6du1uAXPx7UIL8Dz5rLKEJtXExmOj91a9BvsOd5S9egG2qH8yxbE8fMOhC0Aw8qRm22OuR4rRf1Hi3_kU9hDRlTfNgb7m_ADfvnXOIo24RWOT_Vj-G6OiuPivkTL2wIfL1qFr0AjLq9dQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+spline+analysis+of+variance+models%3A+A+new+tool+for+the+analysis+of+cyclic+biomechanical+data&rft.jtitle=Journal+of+biomechanics&rft.au=Helwig%2C+Nathaniel+E.&rft.au=Shorter%2C+K.+Alex&rft.au=Ma%2C+Ping&rft.au=Hsiao-Wecksler%2C+Elizabeth+T.&rft.date=2016-10-03&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=49&rft.issue=14&rft.spage=3216&rft.epage=3222&rft_id=info:doi/10.1016%2Fj.jbiomech.2016.07.035&rft.externalDocID=S0021929016308375 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929016X00140%2Fcov150h.gif |