Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0)
Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to ≈ 100) parameters. The values of many of these parameters are empirically difficult to const...
Uloženo v:
| Vydáno v: | Geoscientific Model Development Ročník 10; číslo 1; s. 127 - 154 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Katlenburg-Lindau
Copernicus GmbH
09.01.2017
Copernicus Publications |
| Témata: | |
| ISSN: | 1991-9603, 1991-959X, 1991-962X, 1991-9603, 1991-962X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to ≈ 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes. |
|---|---|
| AbstractList | Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( ≈ 10 to ≈ 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes. Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many (âââ10 to âââ100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000Â years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes. Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many ( [approximate] 10 to [approximate] 100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes. We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes. Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical interactions, which are described by many (≈10 to≈100) parameters. The values of many of these parameters are empirically difficult to constrain, due to the fact that in the models they represent processes for a range of different groups of organisms at the same time, while even for single species parameter values are often difficult to determine in situ. Therefore, these models are subject to a high level of parametric uncertainty. This may be of consequence for their skill with respect to accurately describing the relevant features of the present ocean, as well as their sensitivity to possible environmental changes.We here present a framework for the calibration of global biogeochemical ocean models on short and long timescales. The framework combines an offline approach for transport of biogeochemical tracers with an estimation of distribution algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES). We explore the performance and capability of this framework by five different optimizations of six biogeochemical parameters of a global biogeochemical model, simulated over 3000 years. First, a twin experiment explores the feasibility of this approach. Four optimizations against a climatology of observations of annual mean dissolved nutrients and oxygen determine the extent to which different setups of the optimization influence model fit and parameter estimates. Because the misfit function applied focuses on the large-scale distribution of inorganic biogeochemical tracers, parameters that act on large spatial and temporal scales are determined earliest, and with the least spread. Parameters more closely tied to surface biology, which act on shorter timescales, are more difficult to determine. In particular, the search for optimum zooplankton parameters can benefit from a sound knowledge of maximum and minimum parameter values, leading to a more efficient optimization. It is encouraging that, although the misfit function does not contain any direct information about biogeochemical turnover, the optimized models nevertheless provide a better fit to observed global biogeochemical fluxes. |
| Audience | Academic |
| Author | Khatiwala, Samar Sauerland, Volkmar Kriest, Iris Srivastav, Anand Oschlies, Andreas |
| Author_xml | – sequence: 1 givenname: Iris surname: Kriest fullname: Kriest, Iris – sequence: 2 givenname: Volkmar surname: Sauerland fullname: Sauerland, Volkmar – sequence: 3 givenname: Samar orcidid: 0000-0001-9048-3234 surname: Khatiwala fullname: Khatiwala, Samar – sequence: 4 givenname: Anand surname: Srivastav fullname: Srivastav, Anand – sequence: 5 givenname: Andreas orcidid: 0000-0002-8295-4013 surname: Oschlies fullname: Oschlies, Andreas |
| BookMark | eNp9Uk1v1DAQjVCRaAtnrpG40IO3nsSx42O14mOlRUUUztb4K_UqiYudleDf42UBsQiQDx6P3nvWvHkX1dkcZ1dVz4GuOpDsepgsAUqgEaShIB5V5yAlEMlpe_Zb_aS6yHlHKZeCi_Nqu8Yx6IRLmIca62GMGsd6uU_OERsmN-cQ59LRIQ4umns3BVOe0Tic6ylaN9Yv392-vyOwoldPq8cex-ye_bgvq0-vX31cvyXb2zeb9c2WmE7AQqznnffMIbaa-V6AdqaRsgPLKWW900xyTT0D21MmHPaMae6dNcjLYBrby2pz1LURd-ohhQnTVxUxqO-NmAaFaQlmdIq33KBkktoGGG2KMmMdA43QI2deFK0XR62HFD_vXV7ULu5TGTmrhgFrGtqK7n8o6Dve9QyKt79QA5avw-zjktBMIRt1wwTvJbQCCmr1F1Q59mBuWaoPpX9CuDohFMziviwD7nNWm7sPp9juiDUp5pycVyYsZbuFkjCMCqg6pEWVtBzqkhZ1SEvhXf_B-2nrvxjfAIbuvlM |
| CitedBy_id | crossref_primary_10_5194_bg_16_3095_2019 crossref_primary_10_3389_fmars_2020_00358 crossref_primary_10_1016_j_ocemod_2017_09_005 crossref_primary_10_1029_2022MS003390 crossref_primary_10_1109_ACCESS_2022_3219979 crossref_primary_10_1016_j_ocemod_2019_101437 crossref_primary_10_1137_20M1373815 crossref_primary_10_1002_2017GB005690 crossref_primary_10_1038_s41598_021_00334_2 crossref_primary_10_1088_2632_2153_ac3ffa crossref_primary_10_3389_fmars_2021_724913 crossref_primary_10_1088_1748_9326_ab4c52 crossref_primary_10_5194_bg_14_4965_2017 crossref_primary_10_5194_bg_16_1865_2019 crossref_primary_10_1029_2018MS001452 crossref_primary_10_1016_j_ecolmodel_2021_109871 crossref_primary_10_5194_bg_20_4591_2023 crossref_primary_10_5194_bg_19_5079_2022 crossref_primary_10_5194_bg_14_1647_2017 crossref_primary_10_5194_bg_20_2645_2023 crossref_primary_10_1016_j_hal_2022_102296 crossref_primary_10_1109_TEVC_2023_3266955 crossref_primary_10_5194_bg_18_2891_2021 crossref_primary_10_1029_2018MS001510 crossref_primary_10_5194_bg_17_3057_2020 crossref_primary_10_5194_bg_19_3595_2022 |
| Cites_doi | 10.1016/S0967-0645(00)00161-2 10.5194/bg-10-8401-2013 10.1016/j.jmarsys.2009.12.005 10.1029/2006GB002745 10.1357/002224000321358855 10.1016/j.dsr2.2006.01.028 10.1162/106365601750190398 10.1029/2009GB003643 10.1016/j.nonrwa.2010.03.006 10.1029/96JC02775 10.5194/bg-12-209-2015 10.1016/j.jocs.2013.04.001 10.1029/2006GB002857 10.5194/bg-6-923-2009 10.5194/bg-5-55-2008 10.1073/pnas.1415311112 10.1016/0198-0149(87)90086-0 10.1016/j.swevo.2011.08.003 10.1029/93GB03318 10.1098/rstb.1995.0062 10.1016/S0924-7963(03)00012-5 10.1162/evco.2007.15.1.1 10.1029/2005GB002631 10.1357/002224003322981156 10.1007/978-3-540-30217-9_29 10.1126/science.1137959 10.5194/bg-12-5429-2015 10.1007/3-540-32494-1_4 10.1016/j.tcs.2006.04.003 10.1145/1830761.1830790 10.1357/002224003322981147 10.1109/TEVC.2008.924423 10.1029/2011GB004072 10.1093/plankt/fbt023 10.1016/j.pocean.2007.11.003 10.1029/2007GB002923 10.1029/JC090iC04p06907 10.1002/gbc.20029 10.1007/978-3-642-38527-8_8 10.1007/978-3-662-43505-2_44 10.5194/os-11-573-2015 10.5194/gmd-9-1827-2016 10.1145/2464576.2482701 10.1111/j.1529-8817.2005.00067.x 10.1016/0304-4203(89)90057-1 10.1357/002224006779698387 10.1029/2011GB004099 10.1029/2007JC004520 10.1016/S0016-7037(01)00787-6 10.1016/j.swevo.2011.05.001 10.1016/0967-0637(95)00072-E 10.1029/2006GB002907 10.1357/00222400160497544 10.1016/j.pocean.2010.05.002 10.5194/bg-2016-242 10.1007/978-3-662-04378-3 10.1111/j.2006.0030-1299.14714.x 10.1007/s12293-015-0162-1 10.1145/2330163.2330210 10.1007/11844297_95 10.1016/j.ocemod.2011.05.001 10.1029/2000GB001273 10.5194/gmd-8-2929-2015 10.5194/gmd-8-697-2015 10.1016/j.swevo.2015.09.005 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2017 Copernicus GmbH Copyright Copernicus GmbH 2017 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2017 Copernicus GmbH – notice: Copyright Copernicus GmbH 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.5194/gmd-10-127-2017 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Biology |
| EISSN | 1991-9603 1991-962X |
| EndPage | 154 |
| ExternalDocumentID | oai_doaj_org_article_636ca9490d2140249644541ba18a64f7 4296535741 A476891371 10_5194_gmd_10_127_2017 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP IPNFZ ISR ITC KQ8 OK1 P2P Q2X RIG RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS |
| ID | FETCH-LOGICAL-c571t-df65ff4eaa3b4f871bec29951d60048eb496b0f41d8047ea844b6fedca6017ba3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000393680800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:51:58 EDT 2025 Fri Jul 25 10:41:54 EDT 2025 Fri Jul 25 10:44:11 EDT 2025 Mon Oct 20 22:24:54 EDT 2025 Mon Oct 20 16:23:43 EDT 2025 Thu Oct 16 13:50:59 EDT 2025 Sat Nov 29 01:50:25 EST 2025 Tue Nov 18 22:03:12 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-df65ff4eaa3b4f871bec29951d60048eb496b0f41d8047ea844b6fedca6017ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9048-3234 0000-0002-8295-4013 |
| OpenAccessLink | https://www.proquest.com/docview/2414220375?pq-origsite=%requestingapplication% |
| PQID | 1856584160 |
| PQPubID | 105726 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_636ca9490d2140249644541ba18a64f7 proquest_journals_2414220375 proquest_journals_1856584160 gale_infotracmisc_A476891371 gale_infotracacademiconefile_A476891371 gale_incontextgauss_ISR_A476891371 crossref_citationtrail_10_5194_gmd_10_127_2017 crossref_primary_10_5194_gmd_10_127_2017 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-09 |
| PublicationDateYYYYMMDD | 2017-01-09 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2017 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref74 ref33 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref64 doi: 10.1016/S0967-0645(00)00161-2 – ident: ref42 doi: 10.5194/bg-10-8401-2013 – ident: ref74 doi: 10.1016/j.jmarsys.2009.12.005 – ident: ref69 doi: 10.1029/2006GB002745 – ident: ref4 doi: 10.1357/002224000321358855 – ident: ref11 doi: 10.1016/j.dsr2.2006.01.028 – ident: ref20 – ident: ref25 doi: 10.1162/106365601750190398 – ident: ref72 doi: 10.1029/2009GB003643 – ident: ref61 doi: 10.1016/j.nonrwa.2010.03.006 – ident: ref53 doi: 10.1029/96JC02775 – ident: ref48 doi: 10.5194/bg-12-209-2015 – ident: ref60 doi: 10.1016/j.jocs.2013.04.001 – ident: ref55 doi: 10.1029/2006GB002857 – ident: ref59 doi: 10.5194/bg-6-923-2009 – ident: ref40 doi: 10.5194/bg-5-55-2008 – ident: ref52 doi: 10.1073/pnas.1415311112 – ident: ref54 doi: 10.1016/0198-0149(87)90086-0 – ident: ref30 doi: 10.1016/j.swevo.2011.08.003 – ident: ref2 doi: 10.1029/93GB03318 – ident: ref18 doi: 10.1098/rstb.1995.0062 – ident: ref17 doi: 10.1016/S0924-7963(03)00012-5 – ident: ref13 – ident: ref34 doi: 10.1162/evco.2007.15.1.1 – ident: ref6 – ident: ref46 doi: 10.1029/2005GB002631 – ident: ref62 doi: 10.1357/002224003322981156 – ident: ref24 doi: 10.1007/978-3-540-30217-9_29 – ident: ref9 doi: 10.1126/science.1137959 – ident: ref23 – ident: ref26 – ident: ref10 doi: 10.5194/bg-12-5429-2015 – ident: ref22 doi: 10.1007/3-540-32494-1_4 – ident: ref3 doi: 10.1016/j.tcs.2006.04.003 – ident: ref28 doi: 10.1145/1830761.1830790 – ident: ref63 doi: 10.1357/002224003322981147 – ident: ref27 doi: 10.1109/TEVC.2008.924423 – ident: ref45 doi: 10.1029/2011GB004072 – ident: ref66 doi: 10.1093/plankt/fbt023 – ident: ref33 doi: 10.1016/j.pocean.2007.11.003 – ident: ref38 doi: 10.1029/2007GB002923 – ident: ref68 doi: 10.1029/JC090iC04p06907 – ident: ref15 doi: 10.1002/gbc.20029 – ident: ref39 doi: 10.1007/978-3-642-38527-8_8 – ident: ref29 doi: 10.1007/978-3-662-43505-2_44 – ident: ref49 doi: 10.5194/os-11-573-2015 – ident: ref67 doi: 10.5194/gmd-9-1827-2016 – ident: ref5 doi: 10.1145/2464576.2482701 – ident: ref12 doi: 10.1111/j.1529-8817.2005.00067.x – ident: ref8 doi: 10.1016/0304-4203(89)90057-1 – ident: ref71 doi: 10.1357/002224006779698387 – ident: ref32 doi: 10.1029/2011GB004099 – ident: ref47 doi: 10.1029/2007JC004520 – ident: ref51 – ident: ref70 doi: 10.1016/S0016-7037(01)00787-6 – ident: ref35 doi: 10.1016/j.swevo.2011.05.001 – ident: ref1 doi: 10.1016/0967-0637(95)00072-E – ident: ref16 doi: 10.1029/2006GB002907 – ident: ref19 doi: 10.1357/00222400160497544 – ident: ref44 doi: 10.1016/j.pocean.2010.05.002 – ident: ref65 doi: 10.5194/bg-2016-242 – ident: ref7 doi: 10.1007/978-3-662-04378-3 – ident: ref36 doi: 10.1111/j.2006.0030-1299.14714.x – ident: ref57 doi: 10.1007/s12293-015-0162-1 – ident: ref50 doi: 10.1145/2330163.2330210 – ident: ref37 doi: 10.1007/11844297_95 – ident: ref41 doi: 10.1016/j.ocemod.2011.05.001 – ident: ref56 doi: 10.1029/2000GB001273 – ident: ref21 – ident: ref43 doi: 10.5194/gmd-8-2929-2015 – ident: ref73 – ident: ref31 doi: 10.5194/gmd-8-697-2015 – ident: ref58 doi: 10.1016/j.swevo.2015.09.005 – ident: ref14 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.3109388 |
| Snippet | Global biogeochemical ocean models contain a variety of different biogeochemical components and often much simplified representations of complex dynamical... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 127 |
| SubjectTerms | Analysis Biogeochemical cycles Biogeochemistry Biology Climatology Computer simulation Covariance matrix Distribution Environmental changes Evolutionary algorithms Feasibility studies Fluxes Frameworks Marine zooplankton Mopping Nitrogen Nutrients Ocean circulation Ocean models Ocean temperature Oceans Optimization Oxygen Parameter estimation Parameters Population Probability distribution Simulation Three dimensional models Tracers Tracers (Chemistry) Zooplankton |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS-QwFA4iK_iyFy84ritBFtSHaDNN0-bRlfUCroruwryFkyYZBO0szriw_37PSetlQPHBhT6U5hTS8yU555Tk-xj76pzHSABRZJiuCmWqXIApjdAQMq-8CqZIB4VPytPTajAw50-kvmhPWEsP3DpuV-e6BqNM5vtYC2CxgAG8UNKBrECrSOfIcRjSlLwgDbd2DdYYZJOsCu3rMYUZtKQ-mK2o3eGNF2lHQokjJOmUPcajRNv_0uKcIs7Bhzf09SN736WZfK995RObCc0CmztMMr5_F9kJHclyBH4z5MBbVhA-QVyD8MT333J1cHc1GgbS1EqkAhxjHTQ8iefwrR9n55dC7mTbS-zXwfef-0ei01UQdVHKifBRFzGqAJA7FbFiQhwxKhXSa5rQwWHHXRaV9FWmygCVUk7H4GvA6q10kC-z2WbUhBXGJXj0dsQ8LAe86goTOpcrX2jIg5Rlj-3ce9fWHek4aV9cWyw-CA6LcNA9wmEJjh7benjhd8u38bLpN0LgwYyIstMDhMR2kNjXIOmxDQLbEhVGQ3tthnA3Htvjywu7p7AUMzIvZY9tdkZxhL2voTu6gD4g9qwpy7UpS5yr9XTz_Ziy3VoxtpgxURoodfZsM6ZYqt8nqeLV__HBn9k8OS_9RTJrbHZyexe-sHf1n8nV-HY9zaJ_DOMWYg priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fSxwxEA5FWuiL2Fbp-aOEUlAfopvbbLJ5tKW2BauiFu4tTDbJIdi94p2C_70z2T3tQaUvwj4sm1nIfplkZpbk-xj75H3ASABJFJiuCmXrUoA1VmiIRVBBRVvlg8JH5vi4Ho3s6V9SX7QnrKMH7oDb16VuwCpbhCHWAlgsYACvlPQga9Aq5XPkhbHzYqpbgzUG2SyrQvt6bGVHHakPZitqf_w7iLwjwaCHZJ2yx3iUafufWpxzxDlcYct9qsgPui6-YS9i-5a9-paleO_esSM6VuVpANsxB94xe_AZjk0UgTj7O74N7i8n40i6WJkYgGO8gpZnARy-8_Pk9FzIvWJ3lf06_Hrx5bvotRFEUxk5EyHpKiUVAUqvElY9OBYYWSoZNE3K6BEoXyQlQ10oE6FWyusUQwNYgRkP5RpbaidtfM-4hICIJcylSsCrqTEp86UKlYYySmkGbG-OkGt64nDSr7hyWEAQpA4hpXuE1BGkA7bz8MKfjjPjadPPBPmDGZFd5wfoAq53Afc_FxiwjzRgjugsWtovM4ab6dT9OD9zBwrLKStLIwdsuzdKE-x9A_3xA8SAGLAWLDcXLHG-NYvNc79w_XyfOsx6KJWTuvhnM6ZJajgkueH15_jgDfaawMt_guwmW5pd38Qt9rK5nV1Orz_kmXAP2OUFIA priority: 102 providerName: Directory of Open Access Journals |
| Title | Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0) |
| URI | https://www.proquest.com/docview/1856584160 https://www.proquest.com/docview/2414220375 https://doaj.org/article/636ca9490d2140249644541ba18a64f7 |
| Volume | 10 |
| WOSCitedRecordID | wos000393680800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: RKB dateStart: 20080101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PCBAR dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: M7S dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: PIMPY dateStart: 20080101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdgA4kXvicKo4oQEuPBW9w4TvyEVrTBxFaiFqTyZNmxHU3aktF0SPvvuXPSjUqMF6Q-JPG1inzn-3DPvx8hb42xEAm0pzGkq5TLPKFaZpIK7WLLLXcyDQeFj7PJJJ_PZdFvuLV9W-XKJwZHbZsS98j3INLw0QgZWz9c_KTIGoX_rvYUGnfJJqIksNC6N1t5YgGhNvvzJpyLw1YfKUbzDucHEhi-V51bGpoUMjCaQF12E6ICkv9t_joEocNH__v6j8nDPv2M9jt7eULuuPopud8RUl7B1adA9Hv1jBzjoS2D5lFXkY463JBoCZp31CIjQIfmEZnTpnLIuhVgByKIhrqOAr1OtHPytZhRthu_f06-Hx58-_iZ9swLtEwztqTWi9R77rRODPdQU4GmIW6lzApc8s5wKUzsObN5zDOnc86N8M6WGuq7zOhki2zUTe1ekIhpC5PvIVNLNHzKHFI-k3CbCp04xrIB2V1Ntip7WHJkxzhTUJ6gdhRoB69BOwq1MyA711-46BA5bhcdo_auxRBKOzxoFpXqV6YSiSi15DK2Iyg2oRqFDDHlzGiWa8E9_Mgb1L1CsIwau3Eqfdm26mg2VfscbEqyJGMD8q4X8g28fan7ww0wB4ivtSa5vSYJq7lcH17Zj-q9Sasgp8JEkYn4r8M3tvXy38OvyAOclrCDJLfJxnJx6V6Te-Wv5Wm7GJLN8cGkmA7DtsQwrCR4VhydFD_gbvpl_Bupgx_c |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGBxov3CcKAyIEYnvwFieOEz8gNC5j1dpSsSGVJ2PHTjUJ0tF0oP4pfiPnOMlGJcbbHpDykMQnUWJ_PpfE53yEPDPGgiXQBQ3BXaVcZjHVMpVUaBdabrmTiU8U7qfDYTYey9EK-dXmwuCyylYnekVtpzl-I98BS8OjCBlbX518p8gahX9XWwqNGhYHbvETQrbqZe8tjO_zKNp7d_RmnzasAjRPUjanthBJUXCndWx4AfECvAXo5IRZgXB2hkthwoIzm4U8dTrj3IjC2VxD7JIaHcN9r5BVjmDvkNVRbzD63Op-AcY9_fPAZ-Lh4iIponFdWQhcJr4z-WapXxaRAkw9Wdq5UfTcARdZCG_29m7-bx12i9xoHOxgt54Rt8mKK--QazXl5gL23nsq48Vd0se0NIMToJwEOqgrowRzwLajFjkP6nolgTmeThzyivnCCgHYe10GnkAo2Bx8GB1Sth1u3SOfLuWl1kmnnJbuPgmYtjDYBfiisYYtz8CpNTG3idCxYyztku12cFXeFF5H_o-vCgIwRIMCNOA-oEEhGrpk8-yCk7rmyMWirxEtZ2JYLNyfmM4mqtE9SsQi15LL0EYQTkO8DT5wwpnRLNOCF3CTp4g1heVASlxvNNGnVaV6hx_VLgcMSxanrEteNELFFJ4-1036BvQBVhBbktxYkgR9lS83t3hVjb6sFHiN6AozEf61-RzLD_7d_ISs7R8N-qrfGx48JNexi_z3MrlBOvPZqXtEruY_5sfV7HEzcwPy5bKx_xu3NHr3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLdGB4gL34jCgAiBGAevceI4yQGhjVGo1pXCQPRm7NiOJkE62g7Uf42_jvecZKMS47YDUg5J_BIl9s_vI_F7P0KeaG3AEihHQ3BXKc-zmKo8zalQNjTccJsnPlF4mI5G2WSSj9fIrzYXBpdVtjrRK2ozLfAbeQ8sDY8iZGztuWZZxHi3__LoO0UGKfzT2tJp1BDZs8ufEL7NXwx2YayfRlH_9cdXb2nDMECLJGULapxInONWqVhzB7EDvBHo54QZgdC2mudCh44zk4U8tSrjXAtnTaEgjkm1iuG-F8h6JkQWdsj6Tn___efWDggw9OmfBz4rDxca5SKa1FWGwH3ivfKboX6JRAqQ9cRppwbS8wicZS28Cexf-5877zq52jjewXY9U26QNVvdJJdqKs4l7L3xFMfLW2SI6WoaJ0ZVBiqoK6YEC8C8pQa5EOo6JoE-nJYW-cZ8wYUA_ABVBZ5YKNjcfzc-oGwrfH6bfDqXl7pDOtW0sndJwJSBgXfgo8YKtiIDZ1fH3CRCxZaxtEu22oGWRVOQHXlBvkoIzBAZEpCB-4AMicjoks2TC47qWiRni-4gck7EsIi4PzGdlbLRSVLEolA5z0MTQZgNcTj4xglnWrFMCe7gJo8RdxLLhFSImVIdz-dycPBBbnPAc87ilHXJs0bITeHpC9WkdUAfYGWxFcmNFUnQY8Vqc4td2ejRuQRvEl1kJsK_Np_i-t6_mx-RywB4ORyM9u6TK9hD_jNavkE6i9mxfUAuFj8Wh_PZw2YSB-TLeUP_Nxe4g5c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calibrating+a+global+three-dimensional+biogeochemical+ocean+model&rft.jtitle=Geoscientific+model+development&rft.au=Kriest%2C+Iris&rft.au=Sauerland%2C+Volkmar&rft.au=Khatiwala%2C+Samar&rft.au=Srivastav%2C+Anand&rft.date=2017-01-09&rft.pub=Copernicus+GmbH&rft.issn=1991-959X&rft.volume=10&rft.issue=1&rft.spage=127&rft_id=info:doi/10.5194%2Fgmd-10-127-2017&rft.externalDocID=A476891371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |