Planar Differential Growth Rates Initiate Precise Fold Positions in Complex Epithelia

Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folde...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Developmental cell Ročník 51; číslo 3; s. 299
Hlavní autoři: Tozluoǧlu, Melda, Duda, Maria, Kirkland, Natalie J, Barrientos, Ricardo, Burden, Jemima J, Muñoz, José J, Mao, Yanlan
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 04.11.2019
Témata:
ISSN:1878-1551, 1878-1551
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico.
AbstractList Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico.
Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico.Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of correct tissue morphology. Mechanisms forming individual folds have been studied, but the precise positioning of folds in complex, multi-folded epithelia is less well-understood. We present a computational model of morphogenesis, encompassing local differential growth and tissue mechanics, to investigate tissue fold positioning. We use the Drosophila wing disc as our model system and show that there is spatial-temporal heterogeneity in its planar growth rates. This differential growth, especially at the early stages of development, is the main driver for fold positioning. Increased apical layer stiffness and confinement by the basement membrane drive fold formation but influence positioning to a lesser degree. The model successfully predicts the in vivo morphology of overgrowth clones and wingless mutants via perturbations solely on planar differential growth in silico.
Author Duda, Maria
Kirkland, Natalie J
Burden, Jemima J
Barrientos, Ricardo
Mao, Yanlan
Muñoz, José J
Tozluoǧlu, Melda
Author_xml – sequence: 1
  givenname: Melda
  surname: Tozluoǧlu
  fullname: Tozluoǧlu, Melda
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
– sequence: 2
  givenname: Maria
  surname: Duda
  fullname: Duda, Maria
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
– sequence: 3
  givenname: Natalie J
  surname: Kirkland
  fullname: Kirkland, Natalie J
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
– sequence: 4
  givenname: Ricardo
  surname: Barrientos
  fullname: Barrientos, Ricardo
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
– sequence: 5
  givenname: Jemima J
  surname: Burden
  fullname: Burden, Jemima J
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
– sequence: 6
  givenname: José J
  surname: Muñoz
  fullname: Muñoz, José J
  organization: Mathematical and Computational Modeling (LaCàN), Universitat Politècnica de Catalunya, Barcelona, Spain
– sequence: 7
  givenname: Yanlan
  surname: Mao
  fullname: Mao, Yanlan
  email: y.mao@ucl.ac.uk
  organization: MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK; College of Information and Control, Nanjing University of Information Science and Technology, Nanjing, Jiangsu 210044, China. Electronic address: y.mao@ucl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31607650$$D View this record in MEDLINE/PubMed
BookMark eNpNUNtKw0AUXKRiL_oHIvvoS-Jespc8Sm1roWAR-xw22RO6JcnWbOrl712wgnDgHIaZYc5M0ajzHSB0S0lKCZUPh9TCRwVNygjNUxKH5BdoQrXSCRWCjv7dYzQN4UCijGpyhcacSqKkIBO02zamMz1-cnUNPXSDMw1e9f5z2ONXM0DA685FcAC87aFyAfDSNxZvfYiw7wJ2HZ779tjAF14c3bCHxplrdFmbJsDNec_Qbrl4mz8nm5fVev64SSqh6JDYTNKs1tLmHHilGRGgS8ZEJpVkJYmJuJWqtDlQVdeG87w0mlqSZxoqxRWboftf32Pv308QhqJ1IXYSfwJ_CgXjRGQqE5xE6t2ZeipbsMWxd63pv4u_KtgP2jdj2g
CitedBy_id crossref_primary_10_1242_dev_184713
crossref_primary_10_1002_advs_202104301
crossref_primary_10_1088_1367_2630_abe9d6
crossref_primary_10_1038_s41556_021_00699_6
crossref_primary_10_1016_j_devcel_2020_07_019
crossref_primary_10_1016_j_semcdb_2021_05_026
crossref_primary_10_1016_j_mbs_2024_109367
crossref_primary_10_1016_j_semcdb_2021_05_027
crossref_primary_10_1016_j_cell_2024_04_045
crossref_primary_10_1371_journal_pcbi_1008105
crossref_primary_10_1098_rsob_200360
crossref_primary_10_1016_j_sbi_2021_05_009
crossref_primary_10_1016_j_cois_2020_08_008
crossref_primary_10_1016_j_gde_2020_02_014
crossref_primary_10_1042_BST20220826
crossref_primary_10_1016_j_actbio_2021_07_044
crossref_primary_10_1146_annurev_cellbio_012820_103850
crossref_primary_10_1063_5_0275439
crossref_primary_10_3389_fcell_2024_1354132
crossref_primary_10_1088_1758_5090_ad5b1b
crossref_primary_10_1016_j_actbio_2022_03_022
crossref_primary_10_1016_j_devcel_2020_08_010
crossref_primary_10_1242_dev_175596
crossref_primary_10_1111_joa_13680
crossref_primary_10_1016_j_semcdb_2022_05_019
crossref_primary_10_1016_j_ydbio_2024_07_012
crossref_primary_10_1038_s44318_025_00384_6
crossref_primary_10_1002_dvdy_70056
crossref_primary_10_1038_s41467_023_36739_y
crossref_primary_10_1242_dev_185868
crossref_primary_10_1016_j_devcel_2020_01_017
crossref_primary_10_1038_s41467_024_46698_7
crossref_primary_10_3390_ijms232415953
crossref_primary_10_1007_s00466_024_02546_5
crossref_primary_10_1016_j_cub_2021_07_078
crossref_primary_10_1038_s41580_024_00719_x
crossref_primary_10_1016_j_ydbio_2021_05_003
crossref_primary_10_1039_D0BM00763C
crossref_primary_10_1038_s41467_023_36305_6
crossref_primary_10_1038_s41420_023_01769_4
crossref_primary_10_3389_fbioe_2020_00405
crossref_primary_10_1016_j_cub_2022_05_041
crossref_primary_10_1016_j_semcdb_2025_103640
crossref_primary_10_1093_icb_icad033
crossref_primary_10_1038_s41467_025_61303_1
crossref_primary_10_1242_dev_202384
crossref_primary_10_1371_journal_pcbi_1010940
crossref_primary_10_1002_adfm_202302145
crossref_primary_10_1016_j_semcdb_2021_07_001
crossref_primary_10_15252_embr_202357739
crossref_primary_10_1093_genetics_iyac020
crossref_primary_10_1016_j_actbio_2025_05_069
crossref_primary_10_1007_s00285_025_02257_2
crossref_primary_10_1016_j_semcdb_2023_06_008
crossref_primary_10_1016_j_devcel_2022_04_017
crossref_primary_10_1091_mbc_E19_12_0673
crossref_primary_10_1371_journal_pone_0313067
ContentType Journal Article
Copyright Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.devcel.2019.09.009
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1878-1551
ExternalDocumentID 31607650
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L009056/1
– fundername: Medical Research Council
  grantid: MC_U12266B
GroupedDBID ---
--K
0R~
1~5
2WC
4.4
457
4G.
53G
5GY
62-
7-5
AAEDT
AAEDW
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACNCT
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFFNX
AFPUW
AFTJW
AGCQF
AGKMS
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
ASPBG
AVWKF
AZFZN
BAWUL
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IHE
IXB
J1W
JIG
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c571t-d4614f86d93e3c8205e8b22546762b0ffe3d67bd9e17ffa339ba81d0948ec7372
IEDL.DBID 7X8
ISICitedReferencesCount 68
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000494831600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1878-1551
IngestDate Sun Sep 28 12:30:40 EDT 2025
Mon Jul 21 05:42:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords morphogenesis
computational modeling
finite element
folding
tissue mechanics
Language English
License Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-d4614f86d93e3c8205e8b22546762b0ffe3d67bd9e17ffa339ba81d0948ec7372
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6838681
PMID 31607650
PQID 2305474530
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2305474530
pubmed_primary_31607650
PublicationCentury 2000
PublicationDate 2019-11-04
PublicationDateYYYYMMDD 2019-11-04
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Developmental cell
PublicationTitleAlternate Dev Cell
PublicationYear 2019
SSID ssj0016180
Score 2.5596588
Snippet Tissue folding is a fundamental process that shapes epithelia into complex 3D organs. The initial positioning of folds is the foundation for the emergence of...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 299
SubjectTerms Animals
Basement Membrane - ultrastructure
Clone Cells
Computer Simulation
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - genetics
Epithelium - anatomy & histology
Epithelium - growth & development
Epithelium - ultrastructure
Imaginal Discs - anatomy & histology
Imaginal Discs - ultrastructure
Models, Biological
Morphogenesis
Mutation - genetics
Time Factors
Wings, Animal - anatomy & histology
Wings, Animal - ultrastructure
Wnt1 Protein - genetics
Title Planar Differential Growth Rates Initiate Precise Fold Positions in Complex Epithelia
URI https://www.ncbi.nlm.nih.gov/pubmed/31607650
https://www.proquest.com/docview/2305474530
Volume 51
WOSCitedRecordID wos000494831600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7UKnjx_agvVvAaTLJ5nkTUqqAliJXeymZ3FgshqU0t-u-dyYPeRPAScgksk9nZb3Zmvo-xC5m6hhqnLPB8jQmKLa0UhLEEOK5CjwlVxVPw9hT2-9FwGCfNhVvZtFW2MbEK1LpQdEd-iVDZ90LPF_bV5MMi1SiqrjYSGsusIxDKkFeHw0UVIXAq5TQnokwJoUE7Olf1d2mYK6DigxNXTKf2LyCzOmx6m_9d5hbbaGAmv679YpstQb7D1mrhye9dNiCtIjnlt408Cm7zjN9jRj575y-EPvkjNRXhG0-I_qIE3isyzZO2xYuPc06hJIMvfjehuY5sLPfYoHf3evNgNQILlvJDZ2ZpDw9nEwU6FiAUYgEfotQlhnwMkamNKxA6CFMdgxMaI4WIU4n4FjPCCBTp2-yzlbzI4ZDxOLI1-EZHPrhehFFBqtA4sVaONEGqZZedt_YaoQNTVULmUHyWo4XFuuygNvpoUjNtjATR3yGGPPrD18dsnf5lNSfonbCOwe0Lp2xVzWfjcnpWeQY--8nzDzmMwzA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Planar+Differential+Growth+Rates+Initiate+Precise+Fold+Positions+in+Complex+Epithelia&rft.jtitle=Developmental+cell&rft.au=Tozluo%C7%A7lu%2C+Melda&rft.au=Duda%2C+Maria&rft.au=Kirkland%2C+Natalie+J&rft.au=Barrientos%2C+Ricardo&rft.date=2019-11-04&rft.eissn=1878-1551&rft.volume=51&rft.issue=3&rft.spage=299&rft_id=info:doi/10.1016%2Fj.devcel.2019.09.009&rft_id=info%3Apmid%2F31607650&rft_id=info%3Apmid%2F31607650&rft.externalDocID=31607650
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-1551&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-1551&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-1551&client=summon