An SVM-Based Solution for Fault Detection in Wind Turbines
Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A su...
Uloženo v:
| Vydáno v: | Sensors (Basel, Switzerland) Ročník 15; číslo 3; s. 5627 - 5648 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Switzerland
MDPI AG
09.03.2015
MDPI |
| Témata: | |
| ISSN: | 1424-8220, 1424-8220 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. |
|---|---|
| AbstractList | Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets. |
| Author | Bustillo, Andres Maudes, Jesús Reñones, Aníbal Villa, Luisa Santos, Pedro |
| AuthorAffiliation | 2 CARTIF Foundation, Parque Tecnológico de Boecillo, Boecillo 47151, Spain; E-Mails: lvillamo@eafit.edu.co (L.F.V.); aniren@cartif.es (A.R.) 1 Department of Civil Engineering, University of Burgos, C/ Francisco de Vitoria s/n, Burgos 09006, Spain; E-Mails: psgonzalez@ubu.es (P.S.); jmaudes@ubu.es (J.M.) |
| AuthorAffiliation_xml | – name: 2 CARTIF Foundation, Parque Tecnológico de Boecillo, Boecillo 47151, Spain; E-Mails: lvillamo@eafit.edu.co (L.F.V.); aniren@cartif.es (A.R.) – name: 1 Department of Civil Engineering, University of Burgos, C/ Francisco de Vitoria s/n, Burgos 09006, Spain; E-Mails: psgonzalez@ubu.es (P.S.); jmaudes@ubu.es (J.M.) |
| Author_xml | – sequence: 1 givenname: Pedro surname: Santos fullname: Santos, Pedro – sequence: 2 givenname: Luisa surname: Villa fullname: Villa, Luisa – sequence: 3 givenname: Aníbal surname: Reñones fullname: Reñones, Aníbal – sequence: 4 givenname: Andres surname: Bustillo fullname: Bustillo, Andres – sequence: 5 givenname: Jesús surname: Maudes fullname: Maudes, Jesús |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25760051$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1rFTEQwINU7Ide_ANkwYsITyffWQ-FtlotVDy06jEk2dmax76kJrsF_3v39dXaFg-eEia__GaSmV2ylXJCQp5TeMN5C28rlcBBKqYfkR0qmFgYxmDrzn6b7Na6BGCcc_OEbDOpFYCkO-TdQWrOvn1eHLqKXXOWh2mMOTV9Ls2xm4axeY8jhutYTM33mLrmfCo-JqxPyePeDRWf3ax75Ovxh_OjT4vTLx9Pjg5OF0FqOi6M6FF30DHUXAN0Dnopem2U6kynOBVtUFKhZOA909x75VUIOoBnrZTB8D1ysvF22S3tZYkrV37Z7KK9DuRyYV0ZYxjQomGtk0ZxL4xA2nvTehOMZIFSgQxm1_7GdTn5FXYB01jccE96_yTFH_YiX1khuKSUzYJXN4KSf05YR7uKNeAwuIR5qpYqI3UrWqH_A1VcSa3ZGn35AF3mqaT5V2dKKwpUm3XuF3eLv636Tzdn4PUGCCXXWrC_RSjY9ajYv6Myw_AADnF0607PD4_Dv678Bnxtu_0 |
| CitedBy_id | crossref_primary_10_3390_en18071680 crossref_primary_10_1049_iet_rpg_2018_5313 crossref_primary_10_1109_TMAG_2025_3557261 crossref_primary_10_1088_1755_1315_1334_1_012040 crossref_primary_10_1109_ACCESS_2022_3149756 crossref_primary_10_3390_app11031280 crossref_primary_10_1007_s13198_024_02678_0 crossref_primary_10_3390_en14227529 crossref_primary_10_1007_s40860_017_0053_y crossref_primary_10_3390_s25103167 crossref_primary_10_1007_s00170_021_06873_2 crossref_primary_10_1155_2016_5341970 crossref_primary_10_3390_fractalfract8080484 crossref_primary_10_1016_j_engappai_2025_111316 crossref_primary_10_1088_1742_6596_1104_1_012016 crossref_primary_10_1088_1757_899X_274_1_012002 crossref_primary_10_3390_en9080607 crossref_primary_10_1016_j_nucengdes_2023_112258 crossref_primary_10_1177_1077546319889859 crossref_primary_10_3390_app10238685 crossref_primary_10_3390_en14061601 crossref_primary_10_1016_j_oceaneng_2023_116563 crossref_primary_10_32604_ee_2023_040743 crossref_primary_10_1016_j_renene_2018_10_031 crossref_primary_10_3390_s16040549 crossref_primary_10_1002_er_7100 crossref_primary_10_1016_j_measurement_2021_110009 crossref_primary_10_1016_j_ymssp_2022_109567 crossref_primary_10_3390_s21175755 crossref_primary_10_1016_j_sftr_2025_100638 crossref_primary_10_3390_en11040723 crossref_primary_10_1016_j_apacoust_2020_107402 crossref_primary_10_32604_EE_2021_014177 crossref_primary_10_3390_wevj13110208 crossref_primary_10_3390_s16050659 crossref_primary_10_1007_s00521_018_3690_z crossref_primary_10_1016_j_isatra_2016_05_003 crossref_primary_10_1088_1742_6596_1222_1_012045 crossref_primary_10_1016_j_energy_2025_137903 crossref_primary_10_3390_s18103222 crossref_primary_10_3390_s18041298 crossref_primary_10_3390_s22114091 crossref_primary_10_1016_j_asoc_2017_04_012 crossref_primary_10_3390_pr10091722 crossref_primary_10_1016_j_renene_2018_10_088 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_1007_s12652_021_03253_2 crossref_primary_10_3390_s17020263 crossref_primary_10_1016_j_renene_2020_12_116 crossref_primary_10_3390_s17020425 crossref_primary_10_3390_pr9020300 crossref_primary_10_3390_app11178030 crossref_primary_10_1007_s11804_022_00298_3 crossref_primary_10_1016_j_renene_2017_12_102 crossref_primary_10_1016_j_ymssp_2020_107605 crossref_primary_10_1016_j_ymssp_2019_106445 crossref_primary_10_3390_s22041516 crossref_primary_10_1088_1361_6501_ab2295 crossref_primary_10_3390_machines7040069 crossref_primary_10_3390_s19092205 crossref_primary_10_1016_j_oceaneng_2024_118176 crossref_primary_10_3390_en15030826 crossref_primary_10_1109_ACCESS_2019_2912621 crossref_primary_10_3390_sym10090402 crossref_primary_10_3390_s17102202 crossref_primary_10_1002_we_2510 crossref_primary_10_1177_0020294018789202 crossref_primary_10_1088_1361_6501_acd8e1 crossref_primary_10_3390_s20082339 crossref_primary_10_1007_s42835_020_00561_z crossref_primary_10_3390_en16062628 crossref_primary_10_1007_s12555_021_0234_6 crossref_primary_10_3390_s19143191 crossref_primary_10_1016_j_renene_2015_10_061 crossref_primary_10_3390_e22020209 crossref_primary_10_1007_s40684_018_0055_0 crossref_primary_10_3390_s18103521 crossref_primary_10_3390_s23135970 crossref_primary_10_1007_s11356_022_23893_x crossref_primary_10_1007_s12652_022_04330_w crossref_primary_10_1016_j_neucom_2025_129830 crossref_primary_10_3390_s16020185 crossref_primary_10_1109_ACCESS_2023_3330690 crossref_primary_10_3390_s19153273 crossref_primary_10_1007_s42979_024_03599_2 crossref_primary_10_1109_TIM_2020_3024048 crossref_primary_10_3390_s16081336 crossref_primary_10_1088_1361_6501_abf30b crossref_primary_10_1007_s12652_022_04484_7 crossref_primary_10_3390_s16060816 crossref_primary_10_3390_en17051010 crossref_primary_10_1088_1757_899X_1043_2_022066 crossref_primary_10_3390_app112311429 crossref_primary_10_1016_j_isatra_2020_10_024 crossref_primary_10_3390_s22228730 crossref_primary_10_1007_s11265_019_01461_w crossref_primary_10_3390_e23060692 crossref_primary_10_1007_s42417_022_00687_6 crossref_primary_10_1016_j_ijepes_2025_110972 crossref_primary_10_1007_s12206_021_1105_z crossref_primary_10_1109_ACCESS_2021_3090434 crossref_primary_10_3390_en81012100 crossref_primary_10_3390_s18093087 crossref_primary_10_1016_j_rser_2016_07_071 crossref_primary_10_1007_s10489_024_05373_6 crossref_primary_10_1007_s13198_022_01843_7 crossref_primary_10_1109_ACCESS_2022_3229617 crossref_primary_10_26748_KSOE_2021_018 crossref_primary_10_1002_cpe_7600 crossref_primary_10_1016_j_renene_2018_10_047 crossref_primary_10_1016_j_renene_2020_07_083 crossref_primary_10_3390_machines6040048 crossref_primary_10_1016_j_ymssp_2020_106961 crossref_primary_10_1038_s41598_023_45675_2 crossref_primary_10_3390_s21227762 crossref_primary_10_1007_s41060_023_00440_6 crossref_primary_10_1016_j_measurement_2018_01_036 crossref_primary_10_1007_s42417_022_00844_x crossref_primary_10_1007_s12541_019_00082_4 crossref_primary_10_3390_en12224224 crossref_primary_10_1016_j_jenvman_2024_120392 crossref_primary_10_3390_electronics9050751 crossref_primary_10_1109_ACCESS_2019_2947501 crossref_primary_10_1177_1748006X20965434 crossref_primary_10_1109_TPEL_2020_3034190 crossref_primary_10_3390_en11113018 crossref_primary_10_1016_j_iswa_2023_200251 crossref_primary_10_1088_1755_1315_157_1_012037 crossref_primary_10_1109_TIE_2018_2798633 crossref_primary_10_1016_j_neucom_2023_126847 crossref_primary_10_1080_15567036_2019_1677815 crossref_primary_10_1109_ACCESS_2021_3062496 crossref_primary_10_3390_s16040529 crossref_primary_10_3390_s18103312 crossref_primary_10_1016_j_nexres_2025_100785 crossref_primary_10_1155_2016_2727684 crossref_primary_10_3390_s19051055 crossref_primary_10_3390_electronics10010049 crossref_primary_10_1088_1742_6596_1964_5_052015 crossref_primary_10_1002_tee_23153 |
| Cites_doi | 10.1002/we.1508 10.1007/978-94-011-4924-2 10.1016/j.energy.2010.06.001 10.1080/0951192X.2011.574155 10.1016/j.ymssp.2011.12.013 10.1016/j.renene.2012.06.013 10.1016/j.mechatronics.2011.02.001 10.1007/s00170-011-3300-z 10.1016/j.patcog.2011.05.004 10.1023/A:1024068626366 10.1016/j.mechatronics.2006.01.002 10.1016/j.ymssp.2011.01.022 10.1016/j.aei.2007.12.001 10.1016/j.patcog.2011.10.019 10.1145/130385.130401 10.1016/j.csl.2012.01.008 10.1016/j.sna.2014.01.004 10.1002/we.204 10.1016/j.ymssp.2008.07.001 10.1016/j.renene.2012.04.019 10.1145/1656274.1656278 10.1002/0471660264 10.1016/0893-6080(89)90020-8 10.1016/j.rser.2007.05.008 10.1080/00207721.2013.775378 10.1016/j.rser.2005.08.004 10.4028/www.scientific.net/AMM.575.493 10.1109/TKDE.2003.1245283 10.1016/j.ymssp.2004.08.004 10.3390/s141121588 10.1049/ip-vis:19982013 10.1016/j.jsv.2004.02.058 10.1016/S0031-3203(03)00175-4 10.3390/s110302773 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2015 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
| Copyright_xml | – notice: Copyright MDPI AG 2015 – notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015 |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 7SP 7TB 7U5 8FD FR3 H8D L7M 5PM DOA |
| DOI | 10.3390/s150305627 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest One Academic ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database CrossRef PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| EndPage | 5648 |
| ExternalDocumentID | oai_doaj_org_article_e829a5863b484e1fb89b8c852c114e20 PMC4435112 3667404991 25760051 10_3390_s150305627 |
| Genre | Journal Article |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M ALIPV NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI 7X8 PUEGO 7SP 7TB 7U5 8FD FR3 H8D L7M 5PM |
| ID | FETCH-LOGICAL-c571t-84fe7d0d2e73700da0f54f7866d8d63149c656e520bb273bb6b6cc7c0b2955c83 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354160900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 19:05:32 EDT 2025 Tue Nov 04 01:54:45 EST 2025 Wed Oct 01 13:25:54 EDT 2025 Fri Sep 05 13:42:55 EDT 2025 Sat Nov 29 14:30:27 EST 2025 Mon Jul 21 06:01:22 EDT 2025 Sat Nov 29 07:17:24 EST 2025 Tue Nov 18 21:19:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c571t-84fe7d0d2e73700da0f54f7866d8d63149c656e520bb273bb6b6cc7c0b2955c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/1676101782?pq-origsite=%requestingapplication% |
| PMID | 25760051 |
| PQID | 1676101782 |
| PQPubID | 2032333 |
| PageCount | 22 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e829a5863b484e1fb89b8c852c114e20 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4435112 proquest_miscellaneous_1685794947 proquest_miscellaneous_1663657727 proquest_journals_1676101782 pubmed_primary_25760051 crossref_primary_10_3390_s150305627 crossref_citationtrail_10_3390_s150305627 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-09 |
| PublicationDateYYYYMMDD | 2015-03-09 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-09 day: 09 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2015 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Iniyan (ref_2) 2007; 11 Simani (ref_7) 2006; 16 Feng (ref_8) 2012; 47 Bustillo (ref_32) 2011; 24 Khan (ref_27) 2011; 45 Hameed (ref_4) 2009; 13 ref_36 ref_12 Villa (ref_33) 2012; 29 ref_11 Hmeidi (ref_29) 2008; 22 Wang (ref_22) 2014; 209 Hall (ref_40) 2003; 15 Zhan (ref_14) 2006; 20 ref_19 ref_18 ref_39 ref_38 Garg (ref_21) 2014; 575 ref_37 Chen (ref_17) 2012; 124 Bustillo (ref_31) 2014; 45 Yang (ref_3) 2012; 17 Combet (ref_9) 2009; 23 Samuel (ref_13) 2005; 282 Nadeau (ref_44) 2003; 52 Sloth (ref_1) 2011; 21 Jeffries (ref_10) 1998; 145 Verikas (ref_26) 2011; 45 Bustillo (ref_30) 2011; 11 Villa (ref_34) 2011; 25 Wenyi (ref_15) 2013; 50 Hornik (ref_35) 1989; 2 Tavner (ref_5) 2007; 10 Hall (ref_42) 2009; 11 ref_43 Santos (ref_20) 2012; 7377 Bustillo (ref_24) 2011; 57 ref_41 Wang (ref_23) 2014; 14 Li (ref_28) 2012; 27 Salahshoor (ref_16) 2010; 35 Kim (ref_25) 2003; 36 ref_6 22163766 - Sensors (Basel). 2011;11(3):2773-95 25405514 - Sensors (Basel). 2014 Nov 14;14(11):21588-602 |
| References_xml | – volume: 17 start-page: 673 year: 2012 ident: ref_3 article-title: Wind turbine condition monitoring: technical and commercial challenges publication-title: Wind Energy doi: 10.1002/we.1508 – ident: ref_6 doi: 10.1007/978-94-011-4924-2 – volume: 35 start-page: 5472 year: 2010 ident: ref_16 article-title: Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers publication-title: Energy doi: 10.1016/j.energy.2010.06.001 – volume: 24 start-page: 735 year: 2011 ident: ref_32 article-title: Modelling of process parameters in laser polishing of steel components using ensembles of regression trees publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2011.574155 – volume: 29 start-page: 436 year: 2012 ident: ref_33 article-title: Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.12.013 – volume: 50 start-page: 1 year: 2013 ident: ref_15 article-title: Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.013 – ident: ref_11 – volume: 21 start-page: 645 year: 2011 ident: ref_1 article-title: Robust and fault-tolerant linear parameter-varying control of wind turbines publication-title: Mechatronics doi: 10.1016/j.mechatronics.2011.02.001 – volume: 57 start-page: 521 year: 2011 ident: ref_24 article-title: Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3300-z – volume: 45 start-page: 66 year: 2011 ident: ref_27 article-title: A novel SVM + NDA model for classification with an application to face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.05.004 – volume: 52 start-page: 239 year: 2003 ident: ref_44 article-title: Inference for the generalization error publication-title: Mach. Learn. doi: 10.1023/A:1024068626366 – volume: 16 start-page: 341 year: 2006 ident: ref_7 article-title: Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype publication-title: Mechatronics doi: 10.1016/j.mechatronics.2006.01.002 – volume: 25 start-page: 2157 year: 2011 ident: ref_34 article-title: Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2011.01.022 – ident: ref_18 – volume: 124 start-page: 217 year: 2012 ident: ref_17 article-title: Research on the Fault Diagnosis of Wind Turbine Gearbox Based on Bayesian Networks publication-title: Pract. Appl. Intell. Syst. – volume: 7377 start-page: 67 year: 2012 ident: ref_20 article-title: Wind turbines fault diagnosis using ensemble classifiers publication-title: Adv. Data Min. Appl. Theor. Asp. – volume: 22 start-page: 106 year: 2008 ident: ref_29 article-title: Performance of KNN and SVM classifiers on full word Arabic articles publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2007.12.001 – volume: 45 start-page: 1659 year: 2011 ident: ref_26 article-title: Phase congruency-based detection of circular objects applied to analysis of phytoplankton images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2011.10.019 – ident: ref_37 doi: 10.1145/130385.130401 – volume: 27 start-page: 151 year: 2012 ident: ref_28 article-title: Automatic speaker age and gender recognition using acoustic and prosodic level information fusion publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2012.01.008 – volume: 209 start-page: 24 year: 2014 ident: ref_22 article-title: Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2014.01.004 – volume: 10 start-page: 1 year: 2007 ident: ref_5 article-title: Reliability analysis for wind turbines publication-title: Wind Energy doi: 10.1002/we.204 – volume: 23 start-page: 1382 year: 2009 ident: ref_9 article-title: A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2008.07.001 – volume: 47 start-page: 112 year: 2012 ident: ref_8 article-title: Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation publication-title: Renew. Energy doi: 10.1016/j.renene.2012.04.019 – volume: 11 start-page: 10 year: 2009 ident: ref_42 article-title: The WEKA data mining software: An update publication-title: ACM SIGKDD Explor. Newsl. doi: 10.1145/1656274.1656278 – ident: ref_39 doi: 10.1002/0471660264 – ident: ref_12 – volume: 2 start-page: 359 year: 1989 ident: ref_35 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 13 start-page: 1 year: 2009 ident: ref_4 article-title: Condition monitoring and fault detection of wind turbines and related algorithms: A review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2007.05.008 – volume: 45 start-page: 2590 year: 2014 ident: ref_31 article-title: Online breakage detection of multitooth tools using classifier ensembles for imbalanced data publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2013.775378 – volume: 11 start-page: 1117 year: 2007 ident: ref_2 article-title: A review of wind energy technologies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2005.08.004 – ident: ref_41 – volume: 575 start-page: 493 year: 2014 ident: ref_21 article-title: An Ensemble Approach of Machine Learning in Evaluation of Mechanical Property of the Rapid Prototyping Fabricated Prototype publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.575.493 – ident: ref_38 – ident: ref_36 – volume: 15 start-page: 1437 year: 2003 ident: ref_40 article-title: Benchmarking attribute selection techniques for discrete class data mining publication-title: IEEE T. Knowl. Data. Eng. doi: 10.1109/TKDE.2003.1245283 – ident: ref_19 – ident: ref_43 – volume: 20 start-page: 188 year: 2006 ident: ref_14 article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2004.08.004 – volume: 14 start-page: 21588 year: 2014 ident: ref_23 article-title: Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model publication-title: Sensors doi: 10.3390/s141121588 – volume: 145 start-page: 141 year: 1998 ident: ref_10 article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades publication-title: IEE Pro.-Vis. Image Sign. doi: 10.1049/ip-vis:19982013 – volume: 282 start-page: 475 year: 2005 ident: ref_13 article-title: A review of vibration-based techniques for helicopter transmission diagnostics publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2004.02.058 – volume: 36 start-page: 2757 year: 2003 ident: ref_25 article-title: Constructing support vector machine ensemble publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(03)00175-4 – volume: 11 start-page: 2773 year: 2011 ident: ref_30 article-title: A Virtual Sensor for Online Fault Detection of Multitooth-Tools publication-title: Sensors doi: 10.3390/s110302773 – reference: 22163766 - Sensors (Basel). 2011;11(3):2773-95 – reference: 25405514 - Sensors (Basel). 2014 Nov 14;14(11):21588-602 |
| SSID | ssj0023338 |
| Score | 2.5444407 |
| Snippet | Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 5627 |
| SubjectTerms | Accelerometers Bibliographic literature Classification Data mining Diagnosis Failure Fault diagnosis Kernels Maintenance costs Neural networks Sensors Support vector machines Turbines Vibration Wind farms Wind turbines |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4h1AM9VBRoa0jRInrhYGHve7mFR8QFhFSg3Czvw2okZFDi8PuZtZ00qVB74eqdw-6MZ-f77NE3AD-k9ZSXmGkycyzllTepptangpUIZxmXXJXtsAl1fa0fHszN0qiv2BPWyQN3jjsOmppSaMks1zzkldXGaqcFdYjkA23ZeqbMnEz1VIsh8-rESBmS-uMpwp6IlePsmKXy06r0vwUt_-6QXCo5o0341GNFMuz2-BnWQr0FH5cUBLfhZFiTn_dX6SkWI0_m37gIIlEyKmePDTkPTdtsVZNxTX4hASe3s4mNve47cDe6uD27TPtxCKkTKm9SzaugfOZpUExlmS-zSvBKaSm99pIh1XEIzoKgmbUISqyVVjqnXGapEcJp9gXW66c6fANCGRd54JZFgS1bRtW3ILHQU5NjoEKVwNHcS4XrtcLjyIrHAjlD9Gjxx6MJHC5snzuFjDetTqOzFxZR1bp9gLEu-lgX_4t1AoN5qIo-1aZFLpWM94qmCRwsljFJ4p-Psg5Ps2gjmRRIJNS_bLTAy8lwtPnaRX-x28jK4vWVgFp5L1aOs7pSj3-3Yt2cx1-1dPc9zr8HG4jXRNsCZwaw3kxm4Tt8cC_NeDrZbzPgFZEdB8M priority: 102 providerName: Directory of Open Access Journals |
| Title | An SVM-Based Solution for Fault Detection in Wind Turbines |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25760051 https://www.proquest.com/docview/1676101782 https://www.proquest.com/docview/1663657727 https://www.proquest.com/docview/1685794947 https://pubmed.ncbi.nlm.nih.gov/PMC4435112 https://doaj.org/article/e829a5863b484e1fb89b8c852c114e20 |
| Volume | 15 |
| WOSCitedRecordID | wos000354160900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: PIMPY dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9NAEB5xCQUUvA8MR2QEDYUVe9-mQRdIBEWiCA4IleV9GCKdnCNxKPntzNqOL0Gnq2hc2FOsPTuz37c7_gbgldCWsBwjTcSGRqywaaSIthGnOcJZygSTed1sQs5marFI5-3v0Zu2rHKXE-tE3ag9-7ptTMJDuzJ-x3yYCKTfvrM8eXvxK_I9pPxZa9tQ4wj6Xngr7kF__nE6_94RMIp8rJEopUj1hxsEQx5B-44ye4tSrd1_FeD8t25ybyGa3P2_r3AP7rSANDxtZtB9uOHKB3B7T6bwIbw5LcPPX6fRCFc8G-420kKEu-Ek355X4XtX1RVdZbgsw2_I8sOz7Vr7gvpH8GUyPnv3IWp7LkSGy6SKFCuctLElTlIZxzaPC84KqYSwygqKfMogAnScxFoj8tFaaGGMNLEmKedG0WPolavSPYGQUMYTxzT1Kl4699JyTiCaIGmCs8EVAbzeffTMtILkvi_GeYbExDsou3RQAC8724tGhuNKq5H3XWfhpbPrG6v1j6yNxMwpkuZcCaqZYi4ptEq1MooTg9TQkTiAk533sjaeN9mlswJ40T3GSPTHK3npVltvI6jgyFbkdTaKYwZMGdo8biZTN1pP_XyODEAeTLOD1zl8Ui5_1orgjPnzYPL0-qE_g1sI93hdQZeeQK9ab91zuGl-V8vNegBHciHrqxpAfzSezT8N6h0KvE7_jAdtMP0FosEo2Q |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4ECiwCDhys2vvyGgmhlhI1ahNFIkA5Ge_DEKlySuKA-FP8Rmb9SBNU9dYDV-_IWnu_nf2-3dkZgBdSW8oznGkyNCzguU0CRbUNBMuQzjIueZxVxSbi4VAdHSWjDfjT3oXxYZWtT6wctZ0av0e-HUkU3L6WPH178iPwVaP86WpbQqOGxYH7_Qsl2_xNfw_H9yWlvffjd_tBU1UgMCKOykDx3MU2tNTFLA5Dm4W54HmspLTKSoaKwSDHcYKGWuParrXU0pjYhJomQhjF8L2XYJMj2MMObI76g9GXpcRjqPjqJKiMJeH2HOmW5-i-Zs3KsldVBziL0v4bmbmy1PVu_G8_6SZcb0g12alnwS3YcMVtuLaSavEOvN4pyIdPg2AXV21L2s1AgpSd9LLFcUn2XFlFpRVkUpDPk8KS8WKm_aWAu_DxQjp_DzrFtHAPgFDGReS4Zj4Tmc58ejwnkRHRJEJEu7wLr9phTU2TVN3X9jhOUVx5CKSnEOjC86XtSZ1K5EyrXY-OpYVP_109mM6-pY03SZ2iSSaUZJor7qJcq0QrowQ1KG8dDbuw1eIjbXzSPD0FRxeeLZvRm_gjoqxw04W3kUwKVFzxeTZKoBdPONrcr-G67K2Xr97PdyFeA_La56y3FJPvVVZzzv2ZNn14ftefwpX98eAwPewPDx7BVaSvoooITLagU84W7jFcNj_LyXz2pJmaBL5eNND_Ah--dAM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4F0IFFgEHDhYcfZtJIQa0oiqEEVQoDfjfRgiVU5JHBB_jV_HrGOnCap664Grd2Stvd_Oft_u7AzAM2kc5RnONBlbFvHcJZGmxkWCZUhnGZdcZVWxCTUc6qOjZLQBf5q7MCGssvGJlaN2Exv2yDtdiYI71JKnnbwOixj1B69PfkShglQ4aW3KaSwgcuB__0L5Nnu138exfk7pYO_wzduorjAQWaG6ZaR57pWLHfWKqTh2WZwLnistpdNOMlQPFvmOFzQ2Btd5Y6SR1iobG5oIYTXD916CTcVQ9LRgs7c3HH1Yyj2G6m-REJWxJO7MkHoFvh7q16wsgVWlgLPo7b9RmivL3uD6__zDbsC1mmyT3cXsuAkbvrgFV1dSMN6Gl7sF-fj5fdTD1dyRZpOQIJUng2x-XJK-L6totYKMC_JlXDhyOJ-acFngDny6kM5vQ6uYFP4eEMq46HpuWMhQZrKQNs9LZEo06SLSfd6GF80Qp7ZOth5qfhynKLoCHNJTOLTh6dL2ZJFi5EyrXkDK0iKkBa8eTKbf0trLpF7TJBNaMsM1993c6MRoqwW1KHs9jduw02AlrX3VLD0FShueLJvRy4Sjo6zwk3mwkUwKVGLqPBst0LsnHG3uLqC77G2QtcH_t0GtgXrtc9ZbivH3Kts55-Gsm94_v-uP4QqiO323Pzx4AFvIakUVKJjsQKuczv1DuGx_luPZ9FE9Swl8vWic_wWOqXyd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SVM-Based+Solution+for+Fault+Detection+in+Wind+Turbines&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Santos%2C+Pedro&rft.au=Villa%2C+Luisa+F.&rft.au=Re%C3%B1ones%2C+An%C3%ADbal&rft.au=Bustillo%2C+Andres&rft.date=2015-03-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=15&rft.issue=3&rft.spage=5627&rft.epage=5648&rft_id=info:doi/10.3390%2Fs150305627&rft_id=info%3Apmid%2F25760051&rft.externalDocID=PMC4435112 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |