An SVM-Based Solution for Fault Detection in Wind Turbines

Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors (Basel, Switzerland) Ročník 15; číslo 3; s. 5627 - 5648
Hlavní autoři: Santos, Pedro, Villa, Luisa, Reñones, Aníbal, Bustillo, Andres, Maudes, Jesús
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland MDPI AG 09.03.2015
MDPI
Témata:
ISSN:1424-8220, 1424-8220
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.
AbstractList Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.
Author Bustillo, Andres
Maudes, Jesús
Reñones, Aníbal
Villa, Luisa
Santos, Pedro
AuthorAffiliation 2 CARTIF Foundation, Parque Tecnológico de Boecillo, Boecillo 47151, Spain; E-Mails: lvillamo@eafit.edu.co (L.F.V.); aniren@cartif.es (A.R.)
1 Department of Civil Engineering, University of Burgos, C/ Francisco de Vitoria s/n, Burgos 09006, Spain; E-Mails: psgonzalez@ubu.es (P.S.); jmaudes@ubu.es (J.M.)
AuthorAffiliation_xml – name: 2 CARTIF Foundation, Parque Tecnológico de Boecillo, Boecillo 47151, Spain; E-Mails: lvillamo@eafit.edu.co (L.F.V.); aniren@cartif.es (A.R.)
– name: 1 Department of Civil Engineering, University of Burgos, C/ Francisco de Vitoria s/n, Burgos 09006, Spain; E-Mails: psgonzalez@ubu.es (P.S.); jmaudes@ubu.es (J.M.)
Author_xml – sequence: 1
  givenname: Pedro
  surname: Santos
  fullname: Santos, Pedro
– sequence: 2
  givenname: Luisa
  surname: Villa
  fullname: Villa, Luisa
– sequence: 3
  givenname: Aníbal
  surname: Reñones
  fullname: Reñones, Aníbal
– sequence: 4
  givenname: Andres
  surname: Bustillo
  fullname: Bustillo, Andres
– sequence: 5
  givenname: Jesús
  surname: Maudes
  fullname: Maudes, Jesús
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25760051$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEQwINU7Ide_ANkwYsITyffWQ-FtlotVDy06jEk2dmax76kJrsF_3v39dXaFg-eEia__GaSmV2ylXJCQp5TeMN5C28rlcBBKqYfkR0qmFgYxmDrzn6b7Na6BGCcc_OEbDOpFYCkO-TdQWrOvn1eHLqKXXOWh2mMOTV9Ls2xm4axeY8jhutYTM33mLrmfCo-JqxPyePeDRWf3ax75Ovxh_OjT4vTLx9Pjg5OF0FqOi6M6FF30DHUXAN0Dnopem2U6kynOBVtUFKhZOA909x75VUIOoBnrZTB8D1ysvF22S3tZYkrV37Z7KK9DuRyYV0ZYxjQomGtk0ZxL4xA2nvTehOMZIFSgQxm1_7GdTn5FXYB01jccE96_yTFH_YiX1khuKSUzYJXN4KSf05YR7uKNeAwuIR5qpYqI3UrWqH_A1VcSa3ZGn35AF3mqaT5V2dKKwpUm3XuF3eLv636Tzdn4PUGCCXXWrC_RSjY9ajYv6Myw_AADnF0607PD4_Dv678Bnxtu_0
CitedBy_id crossref_primary_10_3390_en18071680
crossref_primary_10_1049_iet_rpg_2018_5313
crossref_primary_10_1109_TMAG_2025_3557261
crossref_primary_10_1088_1755_1315_1334_1_012040
crossref_primary_10_1109_ACCESS_2022_3149756
crossref_primary_10_3390_app11031280
crossref_primary_10_1007_s13198_024_02678_0
crossref_primary_10_3390_en14227529
crossref_primary_10_1007_s40860_017_0053_y
crossref_primary_10_3390_s25103167
crossref_primary_10_1007_s00170_021_06873_2
crossref_primary_10_1155_2016_5341970
crossref_primary_10_3390_fractalfract8080484
crossref_primary_10_1016_j_engappai_2025_111316
crossref_primary_10_1088_1742_6596_1104_1_012016
crossref_primary_10_1088_1757_899X_274_1_012002
crossref_primary_10_3390_en9080607
crossref_primary_10_1016_j_nucengdes_2023_112258
crossref_primary_10_1177_1077546319889859
crossref_primary_10_3390_app10238685
crossref_primary_10_3390_en14061601
crossref_primary_10_1016_j_oceaneng_2023_116563
crossref_primary_10_32604_ee_2023_040743
crossref_primary_10_1016_j_renene_2018_10_031
crossref_primary_10_3390_s16040549
crossref_primary_10_1002_er_7100
crossref_primary_10_1016_j_measurement_2021_110009
crossref_primary_10_1016_j_ymssp_2022_109567
crossref_primary_10_3390_s21175755
crossref_primary_10_1016_j_sftr_2025_100638
crossref_primary_10_3390_en11040723
crossref_primary_10_1016_j_apacoust_2020_107402
crossref_primary_10_32604_EE_2021_014177
crossref_primary_10_3390_wevj13110208
crossref_primary_10_3390_s16050659
crossref_primary_10_1007_s00521_018_3690_z
crossref_primary_10_1016_j_isatra_2016_05_003
crossref_primary_10_1088_1742_6596_1222_1_012045
crossref_primary_10_1016_j_energy_2025_137903
crossref_primary_10_3390_s18103222
crossref_primary_10_3390_s18041298
crossref_primary_10_3390_s22114091
crossref_primary_10_1016_j_asoc_2017_04_012
crossref_primary_10_3390_pr10091722
crossref_primary_10_1016_j_renene_2018_10_088
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_1007_s12652_021_03253_2
crossref_primary_10_3390_s17020263
crossref_primary_10_1016_j_renene_2020_12_116
crossref_primary_10_3390_s17020425
crossref_primary_10_3390_pr9020300
crossref_primary_10_3390_app11178030
crossref_primary_10_1007_s11804_022_00298_3
crossref_primary_10_1016_j_renene_2017_12_102
crossref_primary_10_1016_j_ymssp_2020_107605
crossref_primary_10_1016_j_ymssp_2019_106445
crossref_primary_10_3390_s22041516
crossref_primary_10_1088_1361_6501_ab2295
crossref_primary_10_3390_machines7040069
crossref_primary_10_3390_s19092205
crossref_primary_10_1016_j_oceaneng_2024_118176
crossref_primary_10_3390_en15030826
crossref_primary_10_1109_ACCESS_2019_2912621
crossref_primary_10_3390_sym10090402
crossref_primary_10_3390_s17102202
crossref_primary_10_1002_we_2510
crossref_primary_10_1177_0020294018789202
crossref_primary_10_1088_1361_6501_acd8e1
crossref_primary_10_3390_s20082339
crossref_primary_10_1007_s42835_020_00561_z
crossref_primary_10_3390_en16062628
crossref_primary_10_1007_s12555_021_0234_6
crossref_primary_10_3390_s19143191
crossref_primary_10_1016_j_renene_2015_10_061
crossref_primary_10_3390_e22020209
crossref_primary_10_1007_s40684_018_0055_0
crossref_primary_10_3390_s18103521
crossref_primary_10_3390_s23135970
crossref_primary_10_1007_s11356_022_23893_x
crossref_primary_10_1007_s12652_022_04330_w
crossref_primary_10_1016_j_neucom_2025_129830
crossref_primary_10_3390_s16020185
crossref_primary_10_1109_ACCESS_2023_3330690
crossref_primary_10_3390_s19153273
crossref_primary_10_1007_s42979_024_03599_2
crossref_primary_10_1109_TIM_2020_3024048
crossref_primary_10_3390_s16081336
crossref_primary_10_1088_1361_6501_abf30b
crossref_primary_10_1007_s12652_022_04484_7
crossref_primary_10_3390_s16060816
crossref_primary_10_3390_en17051010
crossref_primary_10_1088_1757_899X_1043_2_022066
crossref_primary_10_3390_app112311429
crossref_primary_10_1016_j_isatra_2020_10_024
crossref_primary_10_3390_s22228730
crossref_primary_10_1007_s11265_019_01461_w
crossref_primary_10_3390_e23060692
crossref_primary_10_1007_s42417_022_00687_6
crossref_primary_10_1016_j_ijepes_2025_110972
crossref_primary_10_1007_s12206_021_1105_z
crossref_primary_10_1109_ACCESS_2021_3090434
crossref_primary_10_3390_en81012100
crossref_primary_10_3390_s18093087
crossref_primary_10_1016_j_rser_2016_07_071
crossref_primary_10_1007_s10489_024_05373_6
crossref_primary_10_1007_s13198_022_01843_7
crossref_primary_10_1109_ACCESS_2022_3229617
crossref_primary_10_26748_KSOE_2021_018
crossref_primary_10_1002_cpe_7600
crossref_primary_10_1016_j_renene_2018_10_047
crossref_primary_10_1016_j_renene_2020_07_083
crossref_primary_10_3390_machines6040048
crossref_primary_10_1016_j_ymssp_2020_106961
crossref_primary_10_1038_s41598_023_45675_2
crossref_primary_10_3390_s21227762
crossref_primary_10_1007_s41060_023_00440_6
crossref_primary_10_1016_j_measurement_2018_01_036
crossref_primary_10_1007_s42417_022_00844_x
crossref_primary_10_1007_s12541_019_00082_4
crossref_primary_10_3390_en12224224
crossref_primary_10_1016_j_jenvman_2024_120392
crossref_primary_10_3390_electronics9050751
crossref_primary_10_1109_ACCESS_2019_2947501
crossref_primary_10_1177_1748006X20965434
crossref_primary_10_1109_TPEL_2020_3034190
crossref_primary_10_3390_en11113018
crossref_primary_10_1016_j_iswa_2023_200251
crossref_primary_10_1088_1755_1315_157_1_012037
crossref_primary_10_1109_TIE_2018_2798633
crossref_primary_10_1016_j_neucom_2023_126847
crossref_primary_10_1080_15567036_2019_1677815
crossref_primary_10_1109_ACCESS_2021_3062496
crossref_primary_10_3390_s16040529
crossref_primary_10_3390_s18103312
crossref_primary_10_1016_j_nexres_2025_100785
crossref_primary_10_1155_2016_2727684
crossref_primary_10_3390_s19051055
crossref_primary_10_3390_electronics10010049
crossref_primary_10_1088_1742_6596_1964_5_052015
crossref_primary_10_1002_tee_23153
Cites_doi 10.1002/we.1508
10.1007/978-94-011-4924-2
10.1016/j.energy.2010.06.001
10.1080/0951192X.2011.574155
10.1016/j.ymssp.2011.12.013
10.1016/j.renene.2012.06.013
10.1016/j.mechatronics.2011.02.001
10.1007/s00170-011-3300-z
10.1016/j.patcog.2011.05.004
10.1023/A:1024068626366
10.1016/j.mechatronics.2006.01.002
10.1016/j.ymssp.2011.01.022
10.1016/j.aei.2007.12.001
10.1016/j.patcog.2011.10.019
10.1145/130385.130401
10.1016/j.csl.2012.01.008
10.1016/j.sna.2014.01.004
10.1002/we.204
10.1016/j.ymssp.2008.07.001
10.1016/j.renene.2012.04.019
10.1145/1656274.1656278
10.1002/0471660264
10.1016/0893-6080(89)90020-8
10.1016/j.rser.2007.05.008
10.1080/00207721.2013.775378
10.1016/j.rser.2005.08.004
10.4028/www.scientific.net/AMM.575.493
10.1109/TKDE.2003.1245283
10.1016/j.ymssp.2004.08.004
10.3390/s141121588
10.1049/ip-vis:19982013
10.1016/j.jsv.2004.02.058
10.1016/S0031-3203(03)00175-4
10.3390/s110302773
ContentType Journal Article
Copyright Copyright MDPI AG 2015
2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
Copyright_xml – notice: Copyright MDPI AG 2015
– notice: 2015 by the authors; licensee MDPI, Basel, Switzerland. 2015
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
7SP
7TB
7U5
8FD
FR3
H8D
L7M
5PM
DOA
DOI 10.3390/s150305627
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
MEDLINE - Academic
Aerospace Database

CrossRef
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
EndPage 5648
ExternalDocumentID oai_doaj_org_article_e829a5863b484e1fb89b8c852c114e20
PMC4435112
3667404991
25760051
10_3390_s150305627
Genre Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
7SP
7TB
7U5
8FD
FR3
H8D
L7M
5PM
ID FETCH-LOGICAL-c571t-84fe7d0d2e73700da0f54f7866d8d63149c656e520bb273bb6b6cc7c0b2955c83
IEDL.DBID PIMPY
ISICitedReferencesCount 159
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000354160900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1424-8220
IngestDate Tue Oct 14 19:05:32 EDT 2025
Tue Nov 04 01:54:45 EST 2025
Wed Oct 01 13:25:54 EDT 2025
Fri Sep 05 13:42:55 EDT 2025
Sat Nov 29 14:30:27 EST 2025
Mon Jul 21 06:01:22 EDT 2025
Sat Nov 29 07:17:24 EST 2025
Tue Nov 18 21:19:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-84fe7d0d2e73700da0f54f7866d8d63149c656e520bb273bb6b6cc7c0b2955c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/publiccontent/docview/1676101782?pq-origsite=%requestingapplication%
PMID 25760051
PQID 1676101782
PQPubID 2032333
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_e829a5863b484e1fb89b8c852c114e20
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4435112
proquest_miscellaneous_1685794947
proquest_miscellaneous_1663657727
proquest_journals_1676101782
pubmed_primary_25760051
crossref_primary_10_3390_s150305627
crossref_citationtrail_10_3390_s150305627
PublicationCentury 2000
PublicationDate 2015-03-09
PublicationDateYYYYMMDD 2015-03-09
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-09
  day: 09
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2015
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Iniyan (ref_2) 2007; 11
Simani (ref_7) 2006; 16
Feng (ref_8) 2012; 47
Bustillo (ref_32) 2011; 24
Khan (ref_27) 2011; 45
Hameed (ref_4) 2009; 13
ref_36
ref_12
Villa (ref_33) 2012; 29
ref_11
Hmeidi (ref_29) 2008; 22
Wang (ref_22) 2014; 209
Hall (ref_40) 2003; 15
Zhan (ref_14) 2006; 20
ref_19
ref_18
ref_39
ref_38
Garg (ref_21) 2014; 575
ref_37
Chen (ref_17) 2012; 124
Bustillo (ref_31) 2014; 45
Yang (ref_3) 2012; 17
Combet (ref_9) 2009; 23
Samuel (ref_13) 2005; 282
Nadeau (ref_44) 2003; 52
Sloth (ref_1) 2011; 21
Jeffries (ref_10) 1998; 145
Verikas (ref_26) 2011; 45
Bustillo (ref_30) 2011; 11
Villa (ref_34) 2011; 25
Wenyi (ref_15) 2013; 50
Hornik (ref_35) 1989; 2
Tavner (ref_5) 2007; 10
Hall (ref_42) 2009; 11
ref_43
Santos (ref_20) 2012; 7377
Bustillo (ref_24) 2011; 57
ref_41
Wang (ref_23) 2014; 14
Li (ref_28) 2012; 27
Salahshoor (ref_16) 2010; 35
Kim (ref_25) 2003; 36
ref_6
22163766 - Sensors (Basel). 2011;11(3):2773-95
25405514 - Sensors (Basel). 2014 Nov 14;14(11):21588-602
References_xml – volume: 17
  start-page: 673
  year: 2012
  ident: ref_3
  article-title: Wind turbine condition monitoring: technical and commercial challenges
  publication-title: Wind Energy
  doi: 10.1002/we.1508
– ident: ref_6
  doi: 10.1007/978-94-011-4924-2
– volume: 35
  start-page: 5472
  year: 2010
  ident: ref_16
  article-title: Fault detection and diagnosis of an industrial steam turbine using fusion of SVM (support vector machine) and ANFIS (adaptive neuro-fuzzy inference system) classifiers
  publication-title: Energy
  doi: 10.1016/j.energy.2010.06.001
– volume: 24
  start-page: 735
  year: 2011
  ident: ref_32
  article-title: Modelling of process parameters in laser polishing of steel components using ensembles of regression trees
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2011.574155
– volume: 29
  start-page: 436
  year: 2012
  ident: ref_33
  article-title: Statistical fault diagnosis based on vibration analysis for gear test-bench under non-stationary conditions of speed and load
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.12.013
– volume: 50
  start-page: 1
  year: 2013
  ident: ref_15
  article-title: Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.06.013
– ident: ref_11
– volume: 21
  start-page: 645
  year: 2011
  ident: ref_1
  article-title: Robust and fault-tolerant linear parameter-varying control of wind turbines
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2011.02.001
– volume: 57
  start-page: 521
  year: 2011
  ident: ref_24
  article-title: Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-011-3300-z
– volume: 45
  start-page: 66
  year: 2011
  ident: ref_27
  article-title: A novel SVM + NDA model for classification with an application to face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.05.004
– volume: 52
  start-page: 239
  year: 2003
  ident: ref_44
  article-title: Inference for the generalization error
  publication-title: Mach. Learn.
  doi: 10.1023/A:1024068626366
– volume: 16
  start-page: 341
  year: 2006
  ident: ref_7
  article-title: Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2006.01.002
– volume: 25
  start-page: 2157
  year: 2011
  ident: ref_34
  article-title: Angular resampling for vibration analysis in wind turbines under non-linear speed fluctuation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.01.022
– ident: ref_18
– volume: 124
  start-page: 217
  year: 2012
  ident: ref_17
  article-title: Research on the Fault Diagnosis of Wind Turbine Gearbox Based on Bayesian Networks
  publication-title: Pract. Appl. Intell. Syst.
– volume: 7377
  start-page: 67
  year: 2012
  ident: ref_20
  article-title: Wind turbines fault diagnosis using ensemble classifiers
  publication-title: Adv. Data Min. Appl. Theor. Asp.
– volume: 22
  start-page: 106
  year: 2008
  ident: ref_29
  article-title: Performance of KNN and SVM classifiers on full word Arabic articles
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2007.12.001
– volume: 45
  start-page: 1659
  year: 2011
  ident: ref_26
  article-title: Phase congruency-based detection of circular objects applied to analysis of phytoplankton images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2011.10.019
– ident: ref_37
  doi: 10.1145/130385.130401
– volume: 27
  start-page: 151
  year: 2012
  ident: ref_28
  article-title: Automatic speaker age and gender recognition using acoustic and prosodic level information fusion
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2012.01.008
– volume: 209
  start-page: 24
  year: 2014
  ident: ref_22
  article-title: Vibration sensor based tool condition monitoring using ν support vector machine and locality preserving projection
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2014.01.004
– volume: 10
  start-page: 1
  year: 2007
  ident: ref_5
  article-title: Reliability analysis for wind turbines
  publication-title: Wind Energy
  doi: 10.1002/we.204
– volume: 23
  start-page: 1382
  year: 2009
  ident: ref_9
  article-title: A new method for the estimation of the instantaneous speed relative fluctuation in a vibration signal based on the short time scale transform
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2008.07.001
– volume: 47
  start-page: 112
  year: 2012
  ident: ref_8
  article-title: Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.04.019
– volume: 11
  start-page: 10
  year: 2009
  ident: ref_42
  article-title: The WEKA data mining software: An update
  publication-title: ACM SIGKDD Explor. Newsl.
  doi: 10.1145/1656274.1656278
– ident: ref_39
  doi: 10.1002/0471660264
– ident: ref_12
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_35
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 13
  start-page: 1
  year: 2009
  ident: ref_4
  article-title: Condition monitoring and fault detection of wind turbines and related algorithms: A review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2007.05.008
– volume: 45
  start-page: 2590
  year: 2014
  ident: ref_31
  article-title: Online breakage detection of multitooth tools using classifier ensembles for imbalanced data
  publication-title: Int. J. Syst. Sci.
  doi: 10.1080/00207721.2013.775378
– volume: 11
  start-page: 1117
  year: 2007
  ident: ref_2
  article-title: A review of wind energy technologies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2005.08.004
– ident: ref_41
– volume: 575
  start-page: 493
  year: 2014
  ident: ref_21
  article-title: An Ensemble Approach of Machine Learning in Evaluation of Mechanical Property of the Rapid Prototyping Fabricated Prototype
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.575.493
– ident: ref_38
– ident: ref_36
– volume: 15
  start-page: 1437
  year: 2003
  ident: ref_40
  article-title: Benchmarking attribute selection techniques for discrete class data mining
  publication-title: IEEE T. Knowl. Data. Eng.
  doi: 10.1109/TKDE.2003.1245283
– ident: ref_19
– ident: ref_43
– volume: 20
  start-page: 188
  year: 2006
  ident: ref_14
  article-title: Adaptive state detection of gearboxes under varying load conditions based on parametric modelling
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2004.08.004
– volume: 14
  start-page: 21588
  year: 2014
  ident: ref_23
  article-title: Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model
  publication-title: Sensors
  doi: 10.3390/s141121588
– volume: 145
  start-page: 141
  year: 1998
  ident: ref_10
  article-title: Experience with bicoherence of electrical power for condition monitoring of wind turbine blades
  publication-title: IEE Pro.-Vis. Image Sign.
  doi: 10.1049/ip-vis:19982013
– volume: 282
  start-page: 475
  year: 2005
  ident: ref_13
  article-title: A review of vibration-based techniques for helicopter transmission diagnostics
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2004.02.058
– volume: 36
  start-page: 2757
  year: 2003
  ident: ref_25
  article-title: Constructing support vector machine ensemble
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(03)00175-4
– volume: 11
  start-page: 2773
  year: 2011
  ident: ref_30
  article-title: A Virtual Sensor for Online Fault Detection of Multitooth-Tools
  publication-title: Sensors
  doi: 10.3390/s110302773
– reference: 22163766 - Sensors (Basel). 2011;11(3):2773-95
– reference: 25405514 - Sensors (Basel). 2014 Nov 14;14(11):21588-602
SSID ssj0023338
Score 2.5444407
Snippet Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5627
SubjectTerms Accelerometers
Bibliographic literature
Classification
Data mining
Diagnosis
Failure
Fault diagnosis
Kernels
Maintenance costs
Neural networks
Sensors
Support vector machines
Turbines
Vibration
Wind farms
Wind turbines
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB4h1AM9VBRoa0jRInrhYGHve7mFR8QFhFSg3Czvw2okZFDi8PuZtZ00qVB74eqdw-6MZ-f77NE3AD-k9ZSXmGkycyzllTepptangpUIZxmXXJXtsAl1fa0fHszN0qiv2BPWyQN3jjsOmppSaMks1zzkldXGaqcFdYjkA23ZeqbMnEz1VIsh8-rESBmS-uMpwp6IlePsmKXy06r0vwUt_-6QXCo5o0341GNFMuz2-BnWQr0FH5cUBLfhZFiTn_dX6SkWI0_m37gIIlEyKmePDTkPTdtsVZNxTX4hASe3s4mNve47cDe6uD27TPtxCKkTKm9SzaugfOZpUExlmS-zSvBKaSm99pIh1XEIzoKgmbUISqyVVjqnXGapEcJp9gXW66c6fANCGRd54JZFgS1bRtW3ILHQU5NjoEKVwNHcS4XrtcLjyIrHAjlD9Gjxx6MJHC5snzuFjDetTqOzFxZR1bp9gLEu-lgX_4t1AoN5qIo-1aZFLpWM94qmCRwsljFJ4p-Psg5Ps2gjmRRIJNS_bLTAy8lwtPnaRX-x28jK4vWVgFp5L1aOs7pSj3-3Yt2cx1-1dPc9zr8HG4jXRNsCZwaw3kxm4Tt8cC_NeDrZbzPgFZEdB8M
  priority: 102
  providerName: Directory of Open Access Journals
Title An SVM-Based Solution for Fault Detection in Wind Turbines
URI https://www.ncbi.nlm.nih.gov/pubmed/25760051
https://www.proquest.com/docview/1676101782
https://www.proquest.com/docview/1663657727
https://www.proquest.com/docview/1685794947
https://pubmed.ncbi.nlm.nih.gov/PMC4435112
https://doaj.org/article/e829a5863b484e1fb89b8c852c114e20
Volume 15
WOSCitedRecordID wos000354160900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: PIMPY
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9NAEB5xCQUUvA8MR2QEDYUVe9-mQRdIBEWiCA4IleV9GCKdnCNxKPntzNqOL0Gnq2hc2FOsPTuz37c7_gbgldCWsBwjTcSGRqywaaSIthGnOcJZygSTed1sQs5marFI5-3v0Zu2rHKXE-tE3ag9-7ptTMJDuzJ-x3yYCKTfvrM8eXvxK_I9pPxZa9tQ4wj6Xngr7kF__nE6_94RMIp8rJEopUj1hxsEQx5B-44ye4tSrd1_FeD8t25ybyGa3P2_r3AP7rSANDxtZtB9uOHKB3B7T6bwIbw5LcPPX6fRCFc8G-420kKEu-Ek355X4XtX1RVdZbgsw2_I8sOz7Vr7gvpH8GUyPnv3IWp7LkSGy6SKFCuctLElTlIZxzaPC84KqYSwygqKfMogAnScxFoj8tFaaGGMNLEmKedG0WPolavSPYGQUMYTxzT1Kl4699JyTiCaIGmCs8EVAbzeffTMtILkvi_GeYbExDsou3RQAC8724tGhuNKq5H3XWfhpbPrG6v1j6yNxMwpkuZcCaqZYi4ptEq1MooTg9TQkTiAk533sjaeN9mlswJ40T3GSPTHK3npVltvI6jgyFbkdTaKYwZMGdo8biZTN1pP_XyODEAeTLOD1zl8Ui5_1orgjPnzYPL0-qE_g1sI93hdQZeeQK9ab91zuGl-V8vNegBHciHrqxpAfzSezT8N6h0KvE7_jAdtMP0FosEo2Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48H4ECiwCDhys2vvyGgmhlhI1ahNFIkA5Ge_DEKlySuKA-FP8Rmb9SBNU9dYDV-_IWnu_nf2-3dkZgBdSW8oznGkyNCzguU0CRbUNBMuQzjIueZxVxSbi4VAdHSWjDfjT3oXxYZWtT6wctZ0av0e-HUkU3L6WPH178iPwVaP86WpbQqOGxYH7_Qsl2_xNfw_H9yWlvffjd_tBU1UgMCKOykDx3MU2tNTFLA5Dm4W54HmspLTKSoaKwSDHcYKGWuParrXU0pjYhJomQhjF8L2XYJMj2MMObI76g9GXpcRjqPjqJKiMJeH2HOmW5-i-Zs3KsldVBziL0v4bmbmy1PVu_G8_6SZcb0g12alnwS3YcMVtuLaSavEOvN4pyIdPg2AXV21L2s1AgpSd9LLFcUn2XFlFpRVkUpDPk8KS8WKm_aWAu_DxQjp_DzrFtHAPgFDGReS4Zj4Tmc58ejwnkRHRJEJEu7wLr9phTU2TVN3X9jhOUVx5CKSnEOjC86XtSZ1K5EyrXY-OpYVP_109mM6-pY03SZ2iSSaUZJor7qJcq0QrowQ1KG8dDbuw1eIjbXzSPD0FRxeeLZvRm_gjoqxw04W3kUwKVFzxeTZKoBdPONrcr-G67K2Xr97PdyFeA_La56y3FJPvVVZzzv2ZNn14ftefwpX98eAwPewPDx7BVaSvoooITLagU84W7jFcNj_LyXz2pJmaBL5eNND_Ah--dAM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFKFy4F0IFFgEHDhYcfZtJIQa0oiqEEVQoDfjfRgiVU5JHBB_jV_HrGOnCap664Grd2Stvd_Oft_u7AzAM2kc5RnONBlbFvHcJZGmxkWCZUhnGZdcZVWxCTUc6qOjZLQBf5q7MCGssvGJlaN2Exv2yDtdiYI71JKnnbwOixj1B69PfkShglQ4aW3KaSwgcuB__0L5Nnu138exfk7pYO_wzduorjAQWaG6ZaR57pWLHfWKqTh2WZwLnistpdNOMlQPFvmOFzQ2Btd5Y6SR1iobG5oIYTXD916CTcVQ9LRgs7c3HH1Yyj2G6m-REJWxJO7MkHoFvh7q16wsgVWlgLPo7b9RmivL3uD6__zDbsC1mmyT3cXsuAkbvrgFV1dSMN6Gl7sF-fj5fdTD1dyRZpOQIJUng2x-XJK-L6totYKMC_JlXDhyOJ-acFngDny6kM5vQ6uYFP4eEMq46HpuWMhQZrKQNs9LZEo06SLSfd6GF80Qp7ZOth5qfhynKLoCHNJTOLTh6dL2ZJFi5EyrXkDK0iKkBa8eTKbf0trLpF7TJBNaMsM1993c6MRoqwW1KHs9jduw02AlrX3VLD0FShueLJvRy4Sjo6zwk3mwkUwKVGLqPBst0LsnHG3uLqC77G2QtcH_t0GtgXrtc9ZbivH3Kts55-Gsm94_v-uP4QqiO323Pzx4AFvIakUVKJjsQKuczv1DuGx_luPZ9FE9Swl8vWic_wWOqXyd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SVM-Based+Solution+for+Fault+Detection+in+Wind+Turbines&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Santos%2C+Pedro&rft.au=Villa%2C+Luisa+F.&rft.au=Re%C3%B1ones%2C+An%C3%ADbal&rft.au=Bustillo%2C+Andres&rft.date=2015-03-09&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=15&rft.issue=3&rft.spage=5627&rft.epage=5648&rft_id=info:doi/10.3390%2Fs150305627&rft_id=info%3Apmid%2F25760051&rft.externalDocID=PMC4435112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon