Active Sampling: A Machine-Learning-Assisted Framework for Finite Population Inference with Optimal Subsamples

Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Technometrics Ročník 67; číslo 1; s. 46 - 57
Hlavní autoři: Imberg, Henrik, Yang, Xiaomi, Flannagan, Carol, Bärgman, Jonas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 02.01.2025
American Society for Quality
Témata:
ISSN:0040-1706, 1537-2723, 1537-2723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. We propose an active sampling strategy that iterates between estimation and data collection with optimal subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance improvements are demonstrated compared to traditional sampling methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0040-1706
1537-2723
1537-2723
DOI:10.1080/00401706.2024.2374554