Active Sampling: A Machine-Learning-Assisted Framework for Finite Population Inference with Optimal Subsamples

Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. W...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Technometrics Ročník 67; číslo 1; s. 46 - 57
Hlavní autoři: Imberg, Henrik, Yang, Xiaomi, Flannagan, Carol, Bärgman, Jonas
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 02.01.2025
American Society for Quality
Témata:
ISSN:0040-1706, 1537-2723, 1537-2723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. We propose an active sampling strategy that iterates between estimation and data collection with optimal subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance improvements are demonstrated compared to traditional sampling methods.
AbstractList Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. We propose an active sampling strategy that iterates between estimation and data collection with optimal subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance improvements are demonstrated compared to traditional sampling methods.
Author Flannagan, Carol
Yang, Xiaomi
Bärgman, Jonas
Imberg, Henrik
Author_xml – sequence: 1
  givenname: Henrik
  orcidid: 0000-0001-9447-663X
  surname: Imberg
  fullname: Imberg, Henrik
  organization: Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg
– sequence: 2
  givenname: Xiaomi
  orcidid: 0000-0003-1641-9634
  surname: Yang
  fullname: Yang, Xiaomi
  organization: Division of Vehicle Safety, Chalmers University of Technology
– sequence: 3
  givenname: Carol
  orcidid: 0000-0001-8484-4187
  surname: Flannagan
  fullname: Flannagan, Carol
  organization: University of Michigan Transportation Research Institute
– sequence: 4
  givenname: Jonas
  orcidid: 0000-0002-3578-2546
  surname: Bärgman
  fullname: Bärgman, Jonas
  organization: Division of Vehicle Safety, Chalmers University of Technology
BackLink https://gup.ub.gu.se/publication/341566$$DView record from Swedish Publication Index (Göteborgs universitet)
https://research.chalmers.se/publication/543038$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNqFkV-L1DAUxYus4OzqRxAKPnfMnyZN9cVh2dGFkRVGn0Oa3MxkbdOapA777U2d3RdBfbpw-Z3DufdcFhd-9FAUrzFaYyTQW4RqhBvE1wSRek1oUzNWPytWmNGmIg2hF8VqYaoFelFcxniPEKZENKvCb3RyP6Hcq2HqnT-8KzflZ6WPzkO1AxV83lWbGF1MYMptUAOcxvC9tGMot867BOWXcZp7ldzoy1tvIYDXUJ5cOpZ3U3KD6sv93MXFH-LL4rlVfYRXj_Oq-La9-Xr9qdrdfby93uwqzRqcqoYarlsqFBGCYiEsrS0xTauoErg2pLG6aw3jBIzlrdWU5wdoW1vcamiEolfF_uwbTzDNnZxCDhIe5KicDBDzYfoo9VH1A4QoI8iOGWxEqyTpAGTNmZXKaC2BC65qayx0bXat_up6mCeZV4d5caM1Zpxn_s2Zn8L4Y4aY5P04B58PlxQ3rBWMI5qp92dKhzHGAFZql37_MwXleomRXGqWTzXLpWb5WHNWsz_UT6n-p_tw1jmfuxxUbrU3MqmHfgw2KK_dEvKfFr8ALdXDKg
CitedBy_id crossref_primary_10_3390_app15179588
crossref_primary_10_1007_s11222_025_10660_4
Cites_doi 10.2200/S00429ED1V01Y201207AIM018
10.5705/ss.202017.0384
10.1080/00401706.2023.2271091
10.1017/CBO9780511802843
10.1007/s13171-020-00224-1
10.1214/aos/1176344552
10.1145/3472291
10.1214/aoms/1177731356
10.1016/j.aap.2020.105932
10.1016/0167-4730(88)90020-3
10.1137/18M1170157
10.1016/j.trf.2015.10.011
10.1111/j.2517-6161.1953.tb00140.x
10.1109/TITS.2021.3130040
10.1109/TITS.2020.2972211
10.1162/neco.1992.4.4.590
10.1007/978-1-4757-2553-7
10.1111/sjos.12356
10.1080/01621459.1952.10483446
10.1002/nav.21938
10.1023/A:1010933404324
10.1016/j.jco.2020.101512
10.1002/wics.1374
10.1145/1553374.1553381
10.1080/01621459.2020.1773832
10.1093/biomet/63.3.615
10.1145/2939672.2939785
10.1038/s41524-021-00662-x
10.1109/ICCV48922.2021.00957
10.1080/10618600.2014.914442
10.1080/00401706.2022.2127915
10.3390/app11020775
10.1214/aoms/1177693494
10.1016/j.aap.2017.10.009
10.1109/TKDE.2023.3297167
10.1007/978-1-4899-4491-7
10.1007/s00362-018-01068-6
10.1080/10618600.2022.2084404
10.1080/00401706.2021.2008505
10.1214/16-STS589
10.1080/10618600.2020.1844215
10.1198/004017006000000453
10.1109/TITS.2020.3038180
10.1080/01621459.1992.10475217
10.1080/00949659208810398
10.1038/s41524-019-0153-8
10.1115/1.4046610
10.1002/9780470523551
10.1002/cjs.11717
10.1016/0893-6080(95)00137-9
10.1155/2021/4430730
10.1080/00401706.2014.947005
10.1002/aisy.202100101
10.1080/01621459.2017.1292914
10.1080/00401706.2017.1317291
10.5705/ss.202018.0439
10.1080/10618600.2020.1778483
ContentType Journal Article
Copyright 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024
Copyright American Society for Quality Feb 2025
Copyright_xml – notice: 2024 The Author(s). Published with license by Taylor & Francis Group, LLC. 2024
– notice: Copyright American Society for Quality Feb 2025
DBID 0YH
AAYXX
CITATION
ADTPV
AOWAS
F1U
ABBSD
D8T
F1S
ZZAVC
DOI 10.1080/00401706.2024.2374554
DatabaseName Taylor & Francis Journals
CrossRef
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola full text
SWEPUB Freely available online
SWEPUB Chalmers tekniska högskola
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList



Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Journals
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1537-2723
EndPage 57
ExternalDocumentID oai_research_chalmers_se_b5d1d89a_2bee_465f_adcc_e686a4fdfeb9
oai_gup_ub_gu_se_341566
10_1080_00401706_2024_2374554
2374554
Genre Research Article
GrantInformation_xml – fundername: Marie Skłodowska-Curie grant agreement
  grantid: 860410
GroupedDBID -ET
-~X
..I
.7F
.DC
.QJ
07G
0BK
0R~
0YH
123
29Q
30N
4.4
5RE
7WY
85S
8FL
96U
AAAVZ
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFAZI
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMXXU
AQRUH
AQTUD
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DU5
DWIFK
EBS
E~A
E~B
F5P
GTTXZ
H13
HFX
HF~
HZ~
H~P
IHF
IPNFZ
J.P
JAA
K60
K6~
KYCEM
LJTGL
M4Z
MS~
MW2
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SNACF
TAE
TAQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UT5
UU3
WH7
WZA
YNT
ZGOLN
~02
~S~
AAYXX
CITATION
.-4
.GJ
2AX
3R3
41~
88I
8AO
8C1
8FE
8FG
AAIKQ
AAKBW
AAWIL
AAYJJ
ABAWQ
ABBHK
ABEFU
ABJCF
ABQDR
ABUWG
ABXSQ
ACAGQ
ACDIW
ACGEE
ACHJO
ACTCW
ADBBV
ADODI
ADTPV
ADULT
AEUMN
AEUPB
AFFHD
AFKRA
AGCQS
AGLEN
AGLNM
AGROQ
AHMOU
AIHAF
ALCKM
ALRMG
AMATQ
AMEWO
AMVHM
AOWAS
AZQEC
BENPR
BES
BEZIV
BGLVJ
BPHCQ
CCPQU
CRFIH
DMQIW
DQDLB
DSRWC
DWQXO
ECEWR
EJD
F1U
FEDTE
FRNLG
FYUFA
GIFXF
GNUQQ
HCIFZ
HGD
HQ6
HVGLF
I-F
IPSME
IVXBP
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
L6V
M0C
M2P
M7S
MVM
NHB
NUSFT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
QCRFL
S0X
SA0
TFMCV
UAP
UKHRP
VOH
YHZ
YXB
YYP
ZCG
ZE2
ZXP
ZY4
ABBSD
D8T
F1S
ZZAVC
ID FETCH-LOGICAL-c571t-73d6c938a2883188f34f2d79a3a814d27fcb9d562edf69fc36017cf4f19ce78a3
IEDL.DBID TFW
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001314373400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-1706
1537-2723
IngestDate Wed Nov 05 04:06:11 EST 2025
Tue Nov 04 16:52:18 EST 2025
Mon Nov 10 02:48:46 EST 2025
Sat Nov 29 08:06:27 EST 2025
Tue Nov 18 20:43:19 EST 2025
Mon Oct 20 23:45:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-73d6c938a2883188f34f2d79a3a814d27fcb9d562edf69fc36017cf4f19ce78a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3578-2546
0000-0001-8484-4187
0000-0003-1641-9634
0000-0001-9447-663X
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/00401706.2024.2374554
PQID 3175985603
PQPubID 24108
PageCount 12
ParticipantIDs crossref_citationtrail_10_1080_00401706_2024_2374554
swepub_primary_oai_research_chalmers_se_b5d1d89a_2bee_465f_adcc_e686a4fdfeb9
informaworld_taylorfrancis_310_1080_00401706_2024_2374554
proquest_journals_3175985603
crossref_primary_10_1080_00401706_2024_2374554
swepub_primary_oai_gup_ub_gu_se_341566
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Technometrics
PublicationYear 2025
Publisher Taylor & Francis
American Society for Quality
Publisher_xml – name: Taylor & Francis
– name: American Society for Quality
References e_1_3_5_29_1
e_1_3_5_27_1
e_1_3_5_25_1
e_1_3_5_23_1
Bach F. R. (e_1_3_5_4_1) 2007; 19
e_1_3_5_44_1
e_1_3_5_67_1
e_1_3_5_46_1
e_1_3_5_69_1
e_1_3_5_3_1
e_1_3_5_61_1
e_1_3_5_40_1
e_1_3_5_63_1
Isaksson-Hellman I. (e_1_3_5_32_1) 2005; 49
e_1_3_5_65_1
Duoba M. (e_1_3_5_20_1) 2023
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_5_1
e_1_3_5_7_1
e_1_3_5_18_1
e_1_3_5_39_1
e_1_3_5_16_1
e_1_3_5_37_1
e_1_3_5_14_1
e_1_3_5_35_1
e_1_3_5_12_1
Ma P. (e_1_3_5_42_1) 2015; 16
e_1_3_5_56_1
e_1_3_5_50_1
Särndal C.-E. (e_1_3_5_58_1) 2003
e_1_3_5_71_1
e_1_3_5_54_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_28_1
e_1_3_5_26_1
e_1_3_5_22_1
Ma P. (e_1_3_5_41_1) 2022; 23
e_1_3_5_45_1
e_1_3_5_66_1
e_1_3_5_47_1
e_1_3_5_68_1
e_1_3_5_49_1
Imberg H. (e_1_3_5_30_1) 2020
e_1_3_5_2_1
e_1_3_5_62_1
Core Team R (e_1_3_5_48_1) 2023
e_1_3_5_43_1
e_1_3_5_64_1
e_1_3_5_8_1
Sen A. (e_1_3_5_52_1) 1953; 5
e_1_3_5_6_1
Feng S. (e_1_3_5_24_1) 2021; 12
e_1_3_5_17_1
e_1_3_5_38_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_36_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_55_1
Kern C. (e_1_3_5_33_1) 2019; 13
e_1_3_5_57_1
e_1_3_5_59_1
Tillé Y. (e_1_3_5_60_1) 2006
e_1_3_5_19_1
e_1_3_5_70_1
e_1_3_5_51_1
e_1_3_5_53_1
References_xml – ident: e_1_3_5_54_1
  doi: 10.2200/S00429ED1V01Y201207AIM018
– ident: e_1_3_5_59_1
  doi: 10.5705/ss.202017.0384
– volume-title: Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics
  year: 2020
  ident: e_1_3_5_30_1
– ident: e_1_3_5_71_1
  doi: 10.1080/00401706.2023.2271091
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2023
  ident: e_1_3_5_48_1
– ident: e_1_3_5_18_1
  doi: 10.1017/CBO9780511802843
– ident: e_1_3_5_50_1
  doi: 10.1007/s13171-020-00224-1
– ident: e_1_3_5_21_1
  doi: 10.1214/aos/1176344552
– volume: 16
  start-page: 861
  year: 2015
  ident: e_1_3_5_42_1
  article-title: “A Statistical Perspective on Algorithmic Leveraging,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_5_49_1
  doi: 10.1145/3472291
– ident: e_1_3_5_28_1
  doi: 10.1214/aoms/1177731356
– volume: 49
  start-page: 63
  year: 2005
  ident: e_1_3_5_32_1
  article-title: “How Thirty Years of Focused Safety Development Has Influenced Injury Outcome in Volvo Cars,”
  publication-title: Annual Proceedings. Association for the Advancement of Automotive Medicine
– ident: e_1_3_5_37_1
  doi: 10.1016/j.aap.2020.105932
– volume: 23
  start-page: 1
  year: 2022
  ident: e_1_3_5_41_1
  article-title: “Asymptotic Analysis of Sampling Estimators for Randomized Numerical Linear Algebra Algorithms,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_5_12_1
  doi: 10.1016/0167-4730(88)90020-3
– ident: e_1_3_5_56_1
  doi: 10.1137/18M1170157
– ident: e_1_3_5_5_1
  doi: 10.1016/j.trf.2015.10.011
– ident: e_1_3_5_66_1
  doi: 10.1111/j.2517-6161.1953.tb00140.x
– ident: e_1_3_5_57_1
  doi: 10.1109/TITS.2021.3130040
– ident: e_1_3_5_23_1
  doi: 10.1109/TITS.2020.2972211
– ident: e_1_3_5_43_1
  doi: 10.1162/neco.1992.4.4.590
– ident: e_1_3_5_25_1
  doi: 10.1007/978-1-4757-2553-7
– ident: e_1_3_5_44_1
  doi: 10.1111/sjos.12356
– ident: e_1_3_5_29_1
  doi: 10.1080/01621459.1952.10483446
– ident: e_1_3_5_47_1
  doi: 10.1002/nav.21938
– ident: e_1_3_5_10_1
  doi: 10.1023/A:1010933404324
– ident: e_1_3_5_2_1
  doi: 10.1016/j.jco.2020.101512
– ident: e_1_3_5_63_1
– ident: e_1_3_5_34_1
  doi: 10.1002/wics.1374
– ident: e_1_3_5_8_1
  doi: 10.1145/1553374.1553381
– ident: e_1_3_5_67_1
  doi: 10.1080/01621459.2020.1773832
– ident: e_1_3_5_13_1
  doi: 10.1093/biomet/63.3.615
– ident: e_1_3_5_14_1
  doi: 10.1145/2939672.2939785
– ident: e_1_3_5_36_1
  doi: 10.1038/s41524-021-00662-x
– ident: e_1_3_5_22_1
  doi: 10.1109/ICCV48922.2021.00957
– ident: e_1_3_5_27_1
  doi: 10.1080/10618600.2014.914442
– ident: e_1_3_5_17_1
  doi: 10.1080/00401706.2022.2127915
– ident: e_1_3_5_6_1
  doi: 10.3390/app11020775
– ident: e_1_3_5_11_1
  doi: 10.1214/aoms/1177693494
– volume-title: Tesla Model 3 Autopilot On-Road Data,”
  year: 2023
  ident: e_1_3_5_20_1
– ident: e_1_3_5_35_1
  doi: 10.1016/j.aap.2017.10.009
– ident: e_1_3_5_69_1
  doi: 10.1109/TKDE.2023.3297167
– ident: e_1_3_5_53_1
  doi: 10.1007/978-1-4899-4491-7
– ident: e_1_3_5_65_1
  doi: 10.1007/s00362-018-01068-6
– volume: 5
  start-page: 119
  year: 1953
  ident: e_1_3_5_52_1
  article-title: “On the Estimate of the Variance in Sampling with Varying Probabilities,”
  publication-title: Journal of the Indian Society of Agricultural Statistics
– ident: e_1_3_5_68_1
  doi: 10.1080/10618600.2022.2084404
– ident: e_1_3_5_51_1
  doi: 10.1080/00401706.2021.2008505
– volume: 13
  start-page: 73
  year: 2019
  ident: e_1_3_5_33_1
  article-title: “Tree-based Machine Learning Methods for Survey Research,”
  publication-title: Survey Research Methods
– volume-title: Sampling Algorithms
  year: 2006
  ident: e_1_3_5_60_1
– ident: e_1_3_5_9_1
  doi: 10.1214/16-STS589
– ident: e_1_3_5_45_1
  doi: 10.1080/10618600.2020.1844215
– ident: e_1_3_5_15_1
  doi: 10.1198/004017006000000453
– ident: e_1_3_5_31_1
  doi: 10.1109/TITS.2020.3038180
– volume-title: Model Assisted Survey Sampling
  year: 2003
  ident: e_1_3_5_58_1
– ident: e_1_3_5_19_1
  doi: 10.1080/01621459.1992.10475217
– ident: e_1_3_5_46_1
  doi: 10.1080/00949659208810398
– ident: e_1_3_5_40_1
  doi: 10.1038/s41524-019-0153-8
– ident: e_1_3_5_62_1
  doi: 10.1115/1.4046610
– ident: e_1_3_5_26_1
  doi: 10.1002/9780470523551
– ident: e_1_3_5_7_1
  doi: 10.1002/cjs.11717
– ident: e_1_3_5_16_1
  doi: 10.1016/0893-6080(95)00137-9
– ident: e_1_3_5_55_1
  doi: 10.1155/2021/4430730
– ident: e_1_3_5_39_1
  doi: 10.1080/00401706.2014.947005
– ident: e_1_3_5_38_1
  doi: 10.1002/aisy.202100101
– ident: e_1_3_5_61_1
  doi: 10.1080/01621459.2017.1292914
– ident: e_1_3_5_64_1
  doi: 10.1080/00401706.2017.1317291
– volume: 19
  year: 2007
  ident: e_1_3_5_4_1
  article-title: “Active Learning for Misspecified Generalized Linear Models,” in
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_3_5_3_1
  doi: 10.5705/ss.202018.0439
– ident: e_1_3_5_70_1
  doi: 10.1080/10618600.2020.1778483
– volume: 12
  start-page: 1
  year: 2021
  ident: e_1_3_5_24_1
  article-title: “Intelligent Driving Intelligence Test for Autonomous Vehicles with Naturalistic and Adversarial Environment,”
  publication-title: Nature Communitations
SSID ssj0013287
Score 2.4214137
Snippet Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the...
SourceID swepub
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 46
SubjectTerms Active learning
Adaptive importance sampling
Adaptive sampling
Adaptiveimportance sampling
Advanced driver assistance systems
Bayesian analysis
Computer and Information Sciences
Computer simulation experiments
Computer simulationexperiments
Data collection
Data- och informationsvetenskap (Datateknik)
Estimating techniques
Importance sampling
Inverse probability weighting
Inverseprobability weighting
Machine learning
Massive data points
Optimal design
Sampling methods
Simulation
Software
Traffic safety assessment
Traffic safetyassessment
Title Active Sampling: A Machine-Learning-Assisted Framework for Finite Population Inference with Optimal Subsamples
URI https://www.tandfonline.com/doi/abs/10.1080/00401706.2024.2374554
https://www.proquest.com/docview/3175985603
https://gup.ub.gu.se/publication/341566
https://research.chalmers.se/publication/543038
Volume 67
WOSCitedRecordID wos001314373400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 1537-2723
  databaseCode: TFW
  dateStart: 19590201
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4lAOpRRQF0rlA-KWKvEjtrmtEFErtaUSRZST5fixRaJp1ezy-_E4TrQrgXqAY6KM5cd4Hs74-xB6pwinNbdV4aK3jglK3HNt4KSwJTe2DT5UIV0UPhXn5_LqSl3kasI-l1VCDh0GoIhkq2Fzm7YfK-IAjyehvsTsjrAjQgWLPjFa4ej6gcPgsvm29h9BirFuDkTGOzx_a2XDO21gl25GoOuooskTNc_-wxh20U4OQ_F80Jvn6JHv9tDTNXDC-HQ2Ibr2e2gbotIB1PkF6ubJSuIvBurRu8UHPMdnqSrTFxmwdVHEhQcVcrgZ679wHCdufkCUiy8m4jB8Mt45xHAojD9HI3YT-wYmDdr3_Uv0tfl0-fG4yMQNheWiWhaCutoqKg1QGVdSBsoCcUIZamTFHBHBtsrFyMu7UKtgacwKhQ0sVMp6IQ19hba6287vI0wBUN464kqvWCh5WzohuCWURU2SjMwQGxdM24xqDuQaP3U1gZ8OM61hpnWe6Rk6msTuBliPhwTUujboZTpPCQP5iaYPyB6MqqOzhQARwZWM8SadofeDOk09AcjvxepOx1eLle69pinNnqHTP3yYQaGutb1OjDs9CLTcVU4qo0nrvWY1D9o4a7WvZW1YcMG36vU_DOkN2iZAhAxnUeQAbS3vV_4temJ_RU28P0SPy-_Hh2kn_gYhES9j
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BgsRy4LGAKCzgA-KWVeJHbHOrEFVXtAWJRVpOVuJHFwnCatvy-_E4D6USaA9wTJSx_BjPKzPfALzWVLBS2CJzUVtHByXeuToImtlcVLYOPhQhFQov5Gqlzs_1uBYG0yrRhw4tUESS1Xi5MRjdp8QhIE-CfYnuHeUnlEkeleJNuCWwc3bk6fzrfPQnQck-cw5p-iqevw2zp5_20Ev3bdAxrmjSRbP7_2MVD-BeZ4mSacs6D-GGb47g7gifMD4tB1DXzREcomHa4jo_gmaaBCX5XGFKerN-S6ZkmRIzfdZhtq6zePbIRY7M-hQwEhdKZt_Q0CWfht5h5LQvOyQYFyYfoxz7EeeGUg3H95vH8GX2_uzdPOt6N2RWyGKbSeZKq5mqsJtxoVRgPFAndcUqVXBHZbC1dtH48i6UOlgWHUNpAw-Ftl6qij2Bg-Zn458CYYgpbx11udc85KLOnZTCUsYjMylOJ8D7EzO2AzbH_hrfTTHgn7Y7bXCnTbfTEzgZyC5bZI_rCPSYHcw2hVRC2__EsGtoj3veMZ2QQBIptIomJ5vAm5afhpkg6vd6d2niq_XObLxhydOewOIPH3a4UBfGXqSmOxskqIUrnNKVobX3hpcimMpZa3ypyooHF3ytn_3Dkl7BnfnZcmEWp6sPz-GQYl9kDE3RYzjYXu38C7htf0WuvHqZLuRvtXwyYA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQagceJRWLBTwAXFLtfEjtrmtgIiK7bISRfRmJX5skWhYNbv8fjxOstqVQD3AMVHG8mM8D-fzNwCvNRWsEDbPXPTWMUGJe64OgmZ2LCpbBx_ykC4KT-Vspi4u9LxHE7Y9rBJz6NARRSRbjZt76cKAiEM-nsT6ErM7yk8okzz6xNtwJ4bOBeZf5-W3rR8JSg7AOZQZLvH8rZkd97RDXrobgm7TiiZXVD78D4N4BA_6OJRMOsV5DLd8cwD3t9gJ49PZhtK1PYB9DEs7Vucn0EySmSRfKgSkN4u3ZELOEizTZz1j6yKLK4865Eg5AMBIHCcpv2OYS-abymHkdLh0SPBUmHyOVuwq9g1tGrbv20P4Wn44f_cx6ys3ZFbIfJVJ5gqrmaqwlnGuVGA8UCd1xSqVc0dlsLV2MfTyLhQ6WBbTQmkDD7m2XqqKHcFe87PxT4EwZJS3jrqx1zyMRT12UgpLGY-qpDgdAR8WzNie1hyra_ww-Yb9tJtpgzNt-pkewclGbNnxetwkoLe1wazSgUroqp8YdoPs8aA6pjcRKCKFVjHgZCN406nTpifI-b1YL018tVib1huW8uwRTP_wYc8KdWnsZSq506JALVzulK4Mrb03vBDBVM5a4wtVVDy44Gv97B-G9Aruzd-XZno6-_Qc9ikWRcZzKXoMe6vrtX8Bd-2vqJTXL9N2_A1PoTFN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+Sampling%3A+A+Machine-Learning-Assisted+Framework+for+Finite+Population+Inference+with+Optimal+Subsamples&rft.jtitle=Technometrics&rft.au=Imberg%2C+Henrik&rft.au=Yang%2C+Xiaomi&rft.au=Flannagan%2C+Carol&rft.au=B%C3%A4rgman%2C+Jonas&rft.date=2025-01-02&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=67&rft.issue=1&rft.spage=46&rft.epage=57&rft_id=info:doi/10.1080%2F00401706.2024.2374554&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00401706_2024_2374554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon