Active Sampling: A Machine-Learning-Assisted Framework for Finite Population Inference with Optimal Subsamples

Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technometrics Jg. 67; H. 1; S. 46 - 57
Hauptverfasser: Imberg, Henrik, Yang, Xiaomi, Flannagan, Carol, Bärgman, Jonas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Alexandria Taylor & Francis 02.01.2025
American Society for Quality
Schlagworte:
ISSN:0040-1706, 1537-2723, 1537-2723
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Data subsampling has become widely recognized as a tool to overcome computational and economic bottlenecks in analyzing massive datasets. We contribute to the development of adaptive design for estimation of finite population characteristics, using active learning and adaptive importance sampling. We propose an active sampling strategy that iterates between estimation and data collection with optimal subsamples, guided by machine learning predictions on yet unseen data. The method is illustrated on virtual simulation-based safety assessment of advanced driver assistance systems. Substantial performance improvements are demonstrated compared to traditional sampling methods.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0040-1706
1537-2723
1537-2723
DOI:10.1080/00401706.2024.2374554