GTB – an online genome tolerance browser

Background Accurate methods capable of predicting the impact of single nucleotide variants (SNVs) are assuming ever increasing importance. There exists a plethora of in silico algorithms designed to help identify and prioritize SNVs across the human genome for further investigation. However, no tool...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC bioinformatics Jg. 18; H. 1; S. 20
Hauptverfasser: Shihab, Hashem A., Rogers, Mark F., Ferlaino, Michael, Campbell, Colin, Gaunt, Tom R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 06.01.2017
BioMed Central Ltd
Springer Nature B.V
Schlagworte:
ISSN:1471-2105, 1471-2105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background Accurate methods capable of predicting the impact of single nucleotide variants (SNVs) are assuming ever increasing importance. There exists a plethora of in silico algorithms designed to help identify and prioritize SNVs across the human genome for further investigation. However, no tool exists to visualize the predicted tolerance of the genome to mutation, or the similarities between these methods. Results We present the Genome Tolerance Browser (GTB, http://gtb.biocompute.org.uk ): an online genome browser for visualizing the predicted tolerance of the genome to mutation. The server summarizes several in silico prediction algorithms and conservation scores: including 13 genome-wide prediction algorithms and conservation scores, 12 non-synonymous prediction algorithms and four cancer-specific algorithms. Conclusion The GTB enables users to visualize the similarities and differences between several prediction algorithms and to upload their own data as additional tracks; thereby facilitating the rapid identification of potential regions of interest.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1471-2105
1471-2105
DOI:10.1186/s12859-016-1436-4