Properties of Novel Polyesters Made from Renewable 1,4‐Pentanediol
Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formati...
Gespeichert in:
| Veröffentlicht in: | ChemSusChem Jg. 13; H. 3; S. 556 - 563 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Germany
Wiley Subscription Services, Inc
07.02.2020
John Wiley and Sons Inc |
| Schlagworte: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Adhesives are going green! 1,4‐Pentanediol obtained through hydrogenation of γ‐valerolactone can be efficiently converted to 100 % biobased polyester polyols. These oligomers provide added value beyond renewability in adhesive and polyurethane applications. |
|---|---|
| AbstractList | Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Adhesives are going green! 1,4‐Pentanediol obtained through hydrogenation of γ‐valerolactone can be efficiently converted to 100 % biobased polyester polyols. These oligomers provide added value beyond renewability in adhesive and polyurethane applications. Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C 12 ) were used as the diacid building block. The low melting point of the C 12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C ) were used as the diacid building block. The low melting point of the C diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. |
| Author | Beck, Horst Brandt, Adrian Vries, Johannes G. Stadler, Bernhard M. Kux, Alexander |
| AuthorAffiliation | 2 Henkel AG & Co. KGaA Henkel-Str. 67 40589 Düsseldorf Germany 1 Leibniz Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Strasse 29a 18055 Rostock Germany |
| AuthorAffiliation_xml | – name: 2 Henkel AG & Co. KGaA Henkel-Str. 67 40589 Düsseldorf Germany – name: 1 Leibniz Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Strasse 29a 18055 Rostock Germany |
| Author_xml | – sequence: 1 givenname: Bernhard M. orcidid: 0000-0002-6171-6921 surname: Stadler fullname: Stadler, Bernhard M. organization: Universität Rostock – sequence: 2 givenname: Adrian surname: Brandt fullname: Brandt, Adrian email: adrian.brandt@henkel.de organization: Henkel AG & Co. KGaA – sequence: 3 givenname: Alexander surname: Kux fullname: Kux, Alexander organization: Henkel AG & Co. KGaA – sequence: 4 givenname: Horst surname: Beck fullname: Beck, Horst organization: Henkel AG & Co. KGaA – sequence: 5 givenname: Johannes G. orcidid: 0000-0001-5245-7748 surname: Vries fullname: Vries, Johannes G. email: johannes.devries@catalysis.de organization: Universität Rostock |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31794106$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctuEzEYha2qVW-wZYlGYsOCBN_Glw0SCtBWaiGiXbCzPJ5_wJUzDvakVXY8Qp-xT1JHadNSCbGyJX_n6ByfA7Tdxx4QekXwmGBM37uc3ZhiojHVSm2hfaIEH9WC_9je3BnZQwc5X2IssBZiF-0xIjUnWOyjT9MU55AGD7mKXfU1XkGopjEsIQ-QcnVmW6i6FGfVd-jh2jYBKvKO3_65mUI_2B5aH8MLtNPZkOHl_XmILr58vpgcj06_HZ1MPp6OXC2JGoHmgtUaW-o4xbZpWedkR7BirVa6aRrd8k7yjtha09pxi61yinAJgraKsUP0YW07XzQzaF0JkGww8-RnNi1NtN78_dL7X-ZnvDISUynruhi8vTdI8feiNDQznx2EUHrERTaUUawkY1oU9M0z9DIuUl_aFaompUmpUqjXTxNtojz8bwH4GnAp5pygM84PdvBxFdAHQ7BZzWhWM5rNjEU2fiZ7cP6nQK8F1z7A8j-0mZyfTx61d9bCsKY |
| CitedBy_id | crossref_primary_10_1016_j_isci_2025_112734 crossref_primary_10_1002_ange_202506438 crossref_primary_10_1016_j_cej_2021_128902 crossref_primary_10_1016_j_progpolymsci_2021_101430 crossref_primary_10_1039_D4CY00266K crossref_primary_10_1002_chem_202300119 crossref_primary_10_1002_cctc_202100032 crossref_primary_10_1039_D3CY00544E crossref_primary_10_1021_acs_biomac_5c00765 crossref_primary_10_1021_acssuschemeng_5c02541 crossref_primary_10_1016_j_polymdegradstab_2025_111426 crossref_primary_10_1039_D1RA06135F crossref_primary_10_1039_D4RE00245H crossref_primary_10_1016_j_mcat_2022_112462 crossref_primary_10_3390_catal13040697 crossref_primary_10_1002_cssc_202202353 crossref_primary_10_1016_j_polymdegradstab_2023_110514 crossref_primary_10_1016_j_mattod_2021_07_024 crossref_primary_10_1111_gcbb_13058 crossref_primary_10_1002_anie_202506438 crossref_primary_10_1002_pen_70073 crossref_primary_10_1016_j_mcat_2021_111936 crossref_primary_10_1016_j_cattod_2022_06_016 crossref_primary_10_3390_nano12193414 crossref_primary_10_1016_j_jiec_2023_10_053 crossref_primary_10_1080_02773813_2021_1873388 crossref_primary_10_1039_D3RA03642A crossref_primary_10_3390_chemengineering9040074 |
| Cites_doi | 10.1002/anie.201810914 10.1007/s10965-015-0661-2 10.1039/c3cs35489j 10.1002/anie.201207334 10.1016/j.polymdegradstab.2017.10.005 10.1039/C6SC02842J 10.1016/j.eurpolymj.2018.12.026 10.1039/C4GC00835A 10.1039/C5RA08297H 10.1039/C8CY00379C 10.1039/C7GC00067G 10.1021/jacs.7b10173 10.1021/ja506023f 10.1021/acscatal.9b01665 10.1002/bbb.267 10.1002/app.47558 10.1039/C9GC02462J 10.1002/anie.201812954 10.1039/c3cc48236g 10.1016/j.rser.2015.07.021 10.1021/cr300182k 10.1002/cssc.201801700 10.1371/journal.pone.0199231 10.1039/C5PY00263J 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M 10.1039/C7FD00057J 10.1021/acscatal.7b01753 10.1021/acscatal.6b00189 10.1016/j.ymben.2019.03.005 10.1039/c2gc16599f 10.1021/acs.chemrev.5b00264 10.1002/14356007.a21_665.pub2 10.1002/1521-3757(20020617)114:12<2138::AID-ANGE2138>3.0.CO;2-T 10.1039/c3gc37071b 10.1021/bm2000378 10.1039/C4GC01728E 10.1039/C7PY01171G 10.1039/C7PY01223C 10.1021/acs.chemrev.5b00242 10.1002/mame.201700416 10.1002/cssc.201501405 10.1016/j.bej.2015.08.015 10.1002/biot.201000135 10.1007/s11746-015-2727-z 10.1021/acscatal.7b00623 10.1002/pol.1970.150080310 10.1039/c3gc37065h 10.1002/polb.23990 10.1002/adsc.201500930 10.1039/C8GC03746A 10.1021/bm060713v 10.1002/cssc.201200825 10.1002/ange.201310991 10.1002/ange.201812954 10.1002/adsc.201701607 10.1038/s41578-018-0078-8 10.1021/acs.chemrev.7b00329 10.3390/polym11020256 10.1021/acs.chemrev.5b00355 10.3390/polym9120693 10.1002/cssc.201601271 10.1002/cctc.201600710 10.1002/pola.26789 10.1039/C6GC00605A 10.1021/acssuschemeng.8b06796 10.1039/C9RA01583C 10.1002/pola.29074 10.1002/14356007.a21_227.pub2 10.1021/acs.chemrev.5b00354 10.1002/app.40579 10.1073/pnas.1301895110 10.1002/ange.201810914 10.1039/C5GC01878A 10.1002/ange.201207334 10.1039/b615954k 10.1021/acs.iecr.8b05936 10.1021/es061511 10.1002/anie.201310991 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. 2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. – notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| DOI | 10.1002/cssc.201902988 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 563 |
| ExternalDocumentID | PMC7027755 31794106 10_1002_cssc_201902988 CSSC201902988 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: European Commission funderid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes). – fundername: European Commission grantid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes). – fundername: ; grantid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes). |
| GroupedDBID | --- 05W 0R~ 1OC 24P 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 5PM |
| ID | FETCH-LOGICAL-c5718-e9463590a2c420abd3fc7f1083d989bbb9d4f74f1a5925c4a0a8c8147e62d833 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514575700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Tue Nov 04 01:50:59 EST 2025 Fri Jul 11 10:25:33 EDT 2025 Sat Nov 29 14:31:57 EST 2025 Thu Apr 03 06:58:59 EDT 2025 Tue Nov 18 22:37:39 EST 2025 Sat Nov 29 07:14:18 EST 2025 Wed Jan 22 16:39:38 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | renewable resources polyester adhesives 1,4-pentanediol mechanical properties |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5718-e9463590a2c420abd3fc7f1083d989bbb9d4f74f1a5925c4a0a8c8147e62d833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6171-6921 0000-0001-5245-7748 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902988 |
| PMID | 31794106 |
| PQID | 2351946635 |
| PQPubID | 986333 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7027755 proquest_miscellaneous_2320873396 proquest_journals_2351946635 pubmed_primary_31794106 crossref_citationtrail_10_1002_cssc_201902988 crossref_primary_10_1002_cssc_201902988 wiley_primary_10_1002_cssc_201902988_CSSC201902988 |
| PublicationCentury | 2000 |
| PublicationDate | February 7, 2020 |
| PublicationDateYYYYMMDD | 2020-02-07 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 7, 2020 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
| References | 2014 2014; 53 126 1970; 8 2017; 7 2017; 8 2018; 360 2019; 11 2019; 58 2016; 105 2011; 12 2012; 14 2013; 6 2014; 131 2014; 136 2017; 9 2013 2013; 52 125 2018; 8 2013; 15 2002 2002; 41 114 2019; 21 2013; 51 2014; 16 2013; 113 2016; 116 2016; 358 2013; 110 2014; 50 2010; 5 2017; 202 2019; 112 2007; 17 2019; 7 2019; 9 2015; 6 2015; 17 2019; 4 2015; 5 2018; 140 2012 2018; 303 2015; 92 2015; 51 2013; 42 2006; 7 2016; 54 2016; 18 2011; 5 2019 2019; 58 131 2016; 6 2015; 115 2018; 118 2017; 10 2015; 22 2019; 136 2017; 19 2016 2007; 41 2013 2018; 56 2018; 11 2017; 146 2016; 8 2016; 9 2018; 13 e_1_2_6_72_2 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_30_2 e_1_2_6_91_2 e_1_2_6_19_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_38_2 e_1_2_6_15_1 e_1_2_6_57_2 e_1_2_6_41_1 e_1_2_6_83_1 e_1_2_6_60_2 e_1_2_6_9_2 e_1_2_6_5_2 e_1_2_6_1_1 e_1_2_6_49_2 e_1_2_6_22_1 e_1_2_6_87_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_54_1 e_1_2_6_92_2 e_1_2_6_31_1 e_1_2_6_12_2 e_1_2_6_58_2 e_1_2_6_35_1 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_77_1 e_1_2_6_61_2 e_1_2_6_84_1 e_1_2_6_42_2 e_1_2_6_80_1 e_1_2_6_6_2 e_1_2_6_69_3 e_1_2_6_69_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_65_2 e_1_2_6_88_2 e_1_2_6_27_2 e_1_2_6_46_2 e_1_2_6_51_1 e_1_2_6_74_2 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_13_1 e_1_2_6_59_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_17_2 e_1_2_6_36_3 e_1_2_6_36_2 e_1_2_6_62_2 e_1_2_6_62_3 e_1_2_6_85_2 e_1_2_6_20_2 e_1_2_6_81_3 e_1_2_6_81_2 e_1_2_6_7_2 e_1_2_6_3_2 e_1_2_6_47_2 e_1_2_6_24_1 e_1_2_6_43_2 e_1_2_6_28_1 e_1_2_6_66_2 e_1_2_6_89_2 e_1_2_6_52_1 e_1_2_6_75_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_18_2 e_1_2_6_14_1 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_79_1 e_1_2_6_63_2 e_1_2_6_86_2 e_1_2_6_82_2 e_1_2_6_40_1 Boussie T. R. (e_1_2_6_64_2) 2016 e_1_2_6_8_2 e_1_2_6_8_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_25_1 e_1_2_6_48_2 e_1_2_6_21_2 e_1_2_6_44_1 e_1_2_6_67_2 |
| References_xml | – volume: 110 start-page: 12555 year: 2013 end-page: 12559 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 6619 year: 2017 end-page: 6634 publication-title: ACS Catal. – volume: 41 start-page: 1560 year: 2007 end-page: 1563 publication-title: Environ. Sci. Technol. – volume: 6 start-page: 4497 year: 2015 end-page: 4559 publication-title: Polym. Chem. – volume: 8 start-page: 6099 year: 2017 end-page: 6105 publication-title: Polym. Chem. – volume: 14 start-page: 935 year: 2012 publication-title: Green Chem. – volume: 202 start-page: 61 year: 2017 end-page: 77 publication-title: Faraday Discuss. – volume: 8 start-page: 2661 year: 2018 end-page: 2671 publication-title: Catal. Sci. Technol. – volume: 41 114 start-page: 2034 2138 year: 2002 2002 end-page: 2057 2162 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 13 year: 2018 publication-title: PLoS One – volume: 9 start-page: 13104 year: 2019 end-page: 13111 publication-title: RSC Adv. – volume: 112 start-page: 1 year: 2019 end-page: 14 publication-title: Eur. Polym. J. – volume: 10 start-page: 166 year: 2017 end-page: 170 publication-title: ChemSusChem – volume: 136 start-page: 13217 year: 2014 end-page: 13225 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 256 year: 2019 publication-title: Polymers – volume: 358 start-page: 820 year: 2016 end-page: 825 publication-title: Adv. Synth. Catal. – volume: 22 start-page: 17 year: 2015 publication-title: J. Polym. Res. – volume: 15 start-page: 584 year: 2013 end-page: 595 publication-title: Green Chem. – volume: 115 start-page: 12407 year: 2015 end-page: 12439 publication-title: Chem. Rev. – volume: 303 start-page: 1700416 year: 2018 publication-title: Macromol. Mater. Eng. – volume: 131 start-page: 40579 year: 2014 publication-title: J. Appl. Polym. Sci. – volume: 15 start-page: 1218 year: 2013 end-page: 1225 publication-title: Green Chem. – volume: 116 start-page: 1600 year: 2016 end-page: 1636 publication-title: Chem. Rev. – volume: 53 126 start-page: 4200 4284 year: 2014 2014 end-page: 4204 4288 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 679 year: 1970 end-page: 682 publication-title: J. Polym. Sci. – volume: 7 start-page: 3735 year: 2017 end-page: 3740 publication-title: ACS Catal. – volume: 4 start-page: 116 year: 2019 end-page: 133 publication-title: Nat. Rev. Mater. – volume: 116 start-page: 1540 year: 2016 end-page: 1599 publication-title: Chem. Rev. – volume: 42 start-page: 7244 year: 2013 end-page: 7256 publication-title: Chem. Soc. Rev. – volume: 92 start-page: 1701 year: 2015 end-page: 1707 publication-title: J. Am. Oil Chem. Soc. – volume: 11 start-page: 3836 year: 2018 end-page: 3870 publication-title: ChemSusChem – volume: 50 start-page: 1414 year: 2014 end-page: 1416 publication-title: Chem. Commun. – volume: 7 start-page: 3406 year: 2006 end-page: 3416 publication-title: Biomacromolecules – volume: 9 start-page: 693 year: 2017 publication-title: Polymers – volume: 21 start-page: 1866 year: 2019 end-page: 1888 publication-title: Green Chem. – volume: 116 start-page: 1637 year: 2016 end-page: 1669 publication-title: Chem. Rev. – volume: 18 start-page: 2922 year: 2016 end-page: 2934 publication-title: Green Chem. – volume: 21 start-page: 4919 year: 2019 end-page: 4926 publication-title: Green Chem. – volume: 136 start-page: 47558 year: 2019 publication-title: J. Appl. Polym. Sci. – volume: 8 start-page: 6895 year: 2017 end-page: 6908 publication-title: Polym. Chem. – volume: 7 start-page: 5501 year: 2019 end-page: 5514 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 8012 year: 2019 end-page: 8067 publication-title: ACS Catal. – volume: 8 start-page: 3031 year: 2016 end-page: 3035 publication-title: ChemCatChem – volume: 118 start-page: 839 year: 2018 end-page: 885 publication-title: Chem. Rev. – volume: 8 start-page: 1406 year: 2017 end-page: 1413 publication-title: Chem. Sci. – volume: 146 start-page: 174 year: 2017 end-page: 183 publication-title: Polym. Degrad. Stab. – volume: 58 131 start-page: 3346 3384 year: 2019 2019 end-page: 3350 3388 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 start-page: 1903 year: 2018 end-page: 1906 publication-title: J. Polym. Sci. Part A – volume: 105 start-page: 16 year: 2016 end-page: 26 publication-title: Biochem. Eng. J. – volume: 51 start-page: 986 year: 2015 end-page: 997 publication-title: Renewable Sustainable Energy Rev. – start-page: 153 year: 2016 end-page: 172 – volume: 9 start-page: 562 year: 2016 end-page: 582 publication-title: ChemSusChem – volume: 17 start-page: 1071 year: 2015 end-page: 1076 publication-title: Green Chem. – volume: 52 125 start-page: 1270 1308 year: 2013 2013 end-page: 1274 1312 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 72529 year: 2015 end-page: 72535 publication-title: RSC Adv. – year: 2012 – volume: 51 start-page: 3881 year: 2013 end-page: 3891 publication-title: J. Polym. Sci. Part A – volume: 5 start-page: 198 year: 2011 end-page: 214 publication-title: Biofuels Bioprod. Biorefin. – volume: 17 start-page: 1543 year: 2007 end-page: 1558 publication-title: J. Mater. Chem. – volume: 58 start-page: 5195 year: 2019 publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 1397 year: 2016 end-page: 1404 publication-title: J. Polym. Sci. Part B – volume: 16 start-page: 4081 year: 2014 publication-title: Green Chem. – volume: 6 start-page: 1001 year: 2013 end-page: 1005 publication-title: ChemSusChem – volume: 6 start-page: 2802 year: 2016 end-page: 2810 publication-title: ACS Catal. – volume: 113 start-page: 1499 year: 2013 end-page: 1597 publication-title: Chem. Rev. – volume: 360 start-page: 1151 year: 2018 end-page: 1158 publication-title: Adv. Synth. Catal. – volume: 58 131 start-page: 3486 3524 year: 2019 2019 end-page: 3490 3528 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 17 start-page: 5136 year: 2015 end-page: 5139 publication-title: Green Chem. – volume: 5 start-page: 1125 year: 2010 end-page: 1136 publication-title: Biotechnol. J. – volume: 19 start-page: 1601 year: 2017 end-page: 1612 publication-title: Green Chem. – volume: 140 start-page: 963 year: 2018 end-page: 973 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 1312 year: 2011 end-page: 1321 publication-title: Biomacromolecules – year: 2013 – ident: e_1_2_6_8_2 doi: 10.1002/anie.201810914 – ident: e_1_2_6_33_2 doi: 10.1007/s10965-015-0661-2 – ident: e_1_2_6_83_1 doi: 10.1039/c3cs35489j – ident: e_1_2_6_28_1 – ident: e_1_2_6_59_1 – ident: e_1_2_6_36_2 doi: 10.1002/anie.201207334 – ident: e_1_2_6_78_1 doi: 10.1016/j.polymdegradstab.2017.10.005 – ident: e_1_2_6_66_2 doi: 10.1039/C6SC02842J – ident: e_1_2_6_9_2 doi: 10.1016/j.eurpolymj.2018.12.026 – ident: e_1_2_6_46_2 doi: 10.1039/C4GC00835A – ident: e_1_2_6_37_2 doi: 10.1039/C5RA08297H – ident: e_1_2_6_80_1 – ident: e_1_2_6_68_2 doi: 10.1039/C8CY00379C – ident: e_1_2_6_44_1 – ident: e_1_2_6_38_2 doi: 10.1039/C7GC00067G – ident: e_1_2_6_75_1 doi: 10.1021/jacs.7b10173 – ident: e_1_2_6_48_2 doi: 10.1021/ja506023f – ident: e_1_2_6_21_2 doi: 10.1021/acscatal.9b01665 – ident: e_1_2_6_29_2 doi: 10.1002/bbb.267 – ident: e_1_2_6_10_2 doi: 10.1002/app.47558 – ident: e_1_2_6_7_2 doi: 10.1039/C9GC02462J – ident: e_1_2_6_15_1 – ident: e_1_2_6_69_2 doi: 10.1002/anie.201812954 – ident: e_1_2_6_42_2 doi: 10.1039/c3cc48236g – start-page: 153 volume-title: Chemicals and Fuels from Bio-Based Building Blocks year: 2016 ident: e_1_2_6_64_2 – ident: e_1_2_6_30_2 doi: 10.1016/j.rser.2015.07.021 – ident: e_1_2_6_26_2 doi: 10.1021/cr300182k – ident: e_1_2_6_20_2 doi: 10.1002/cssc.201801700 – ident: e_1_2_6_90_1 – ident: e_1_2_6_34_2 doi: 10.1371/journal.pone.0199231 – ident: e_1_2_6_16_2 doi: 10.1039/C5PY00263J – ident: e_1_2_6_81_2 doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M – ident: e_1_2_6_12_2 doi: 10.1039/C7FD00057J – ident: e_1_2_6_67_2 doi: 10.1021/acscatal.7b01753 – ident: e_1_2_6_63_2 doi: 10.1021/acscatal.6b00189 – ident: e_1_2_6_70_1 doi: 10.1016/j.ymben.2019.03.005 – ident: e_1_2_6_73_2 – ident: e_1_2_6_31_1 doi: 10.1039/c2gc16599f – ident: e_1_2_6_17_2 doi: 10.1021/acs.chemrev.5b00264 – ident: e_1_2_6_79_1 doi: 10.1002/14356007.a21_665.pub2 – ident: e_1_2_6_2_1 – ident: e_1_2_6_81_3 doi: 10.1002/1521-3757(20020617)114:12<2138::AID-ANGE2138>3.0.CO;2-T – ident: e_1_2_6_5_2 doi: 10.1039/c3gc37071b – ident: e_1_2_6_89_2 doi: 10.1021/bm2000378 – ident: e_1_2_6_39_2 doi: 10.1039/C4GC01728E – ident: e_1_2_6_54_1 doi: 10.1039/C7PY01171G – ident: e_1_2_6_84_1 – ident: e_1_2_6_24_1 doi: 10.1039/C7PY01223C – ident: e_1_2_6_18_2 doi: 10.1021/acs.chemrev.5b00242 – ident: e_1_2_6_22_1 doi: 10.1002/mame.201700416 – ident: e_1_2_6_27_2 doi: 10.1002/cssc.201501405 – ident: e_1_2_6_65_2 doi: 10.1016/j.bej.2015.08.015 – ident: e_1_2_6_76_1 doi: 10.1002/biot.201000135 – ident: e_1_2_6_57_2 doi: 10.1007/s11746-015-2727-z – ident: e_1_2_6_61_2 – ident: e_1_2_6_71_1 – ident: e_1_2_6_50_2 doi: 10.1021/acscatal.7b00623 – ident: e_1_2_6_72_2 doi: 10.1002/pol.1970.150080310 – ident: e_1_2_6_40_1 doi: 10.1039/c3gc37065h – ident: e_1_2_6_87_2 doi: 10.1002/polb.23990 – ident: e_1_2_6_45_2 doi: 10.1002/adsc.201500930 – ident: e_1_2_6_13_1 doi: 10.1039/C8GC03746A – ident: e_1_2_6_3_2 doi: 10.1021/bm060713v – ident: e_1_2_6_49_2 doi: 10.1002/cssc.201200825 – ident: e_1_2_6_62_3 doi: 10.1002/ange.201310991 – ident: e_1_2_6_69_3 doi: 10.1002/ange.201812954 – ident: e_1_2_6_47_2 doi: 10.1002/adsc.201701607 – ident: e_1_2_6_55_1 – ident: e_1_2_6_85_2 doi: 10.1038/s41578-018-0078-8 – ident: e_1_2_6_58_2 doi: 10.1021/acs.chemrev.7b00329 – ident: e_1_2_6_91_2 doi: 10.3390/polym11020256 – ident: e_1_2_6_60_2 – ident: e_1_2_6_23_1 doi: 10.1021/acs.chemrev.5b00355 – ident: e_1_2_6_74_2 doi: 10.3390/polym9120693 – ident: e_1_2_6_52_1 doi: 10.1002/cssc.201601271 – ident: e_1_2_6_1_1 – ident: e_1_2_6_77_1 doi: 10.1002/cctc.201600710 – ident: e_1_2_6_4_2 doi: 10.1002/pola.26789 – ident: e_1_2_6_6_2 doi: 10.1039/C6GC00605A – ident: e_1_2_6_11_2 doi: 10.1021/acssuschemeng.8b06796 – ident: e_1_2_6_86_2 doi: 10.1039/C9RA01583C – ident: e_1_2_6_51_1 doi: 10.1002/pola.29074 – ident: e_1_2_6_14_1 doi: 10.1002/14356007.a21_227.pub2 – ident: e_1_2_6_19_2 doi: 10.1021/acs.chemrev.5b00354 – ident: e_1_2_6_25_1 – ident: e_1_2_6_56_2 doi: 10.1002/app.40579 – ident: e_1_2_6_88_2 doi: 10.1073/pnas.1301895110 – ident: e_1_2_6_41_1 – ident: e_1_2_6_8_3 doi: 10.1002/ange.201810914 – ident: e_1_2_6_43_2 doi: 10.1039/C5GC01878A – ident: e_1_2_6_32_1 – ident: e_1_2_6_36_3 doi: 10.1002/ange.201207334 – ident: e_1_2_6_35_1 – ident: e_1_2_6_82_2 doi: 10.1039/b615954k – ident: e_1_2_6_92_2 doi: 10.1021/acs.iecr.8b05936 – ident: e_1_2_6_53_1 doi: 10.1021/es061511 – ident: e_1_2_6_62_2 doi: 10.1002/anie.201310991 |
| SSID | ssj0060966 |
| Score | 2.4564035 |
| Snippet | Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These... Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 556 |
| SubjectTerms | 1,4-pentanediol Adhesives Aliphatic compounds Butanediol Chemical industry Hydroxyl groups mechanical properties Melting points Oligomers Phosphoric acid polyester Polyester resins Polyols Polyurethane resins renewable resources Sealants Shape memory Thermodynamic properties |
| Title | Properties of Novel Polyesters Made from Renewable 1,4‐Pentanediol |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902988 https://www.ncbi.nlm.nih.gov/pubmed/31794106 https://www.proquest.com/docview/2351946635 https://www.proquest.com/docview/2320873396 https://pubmed.ncbi.nlm.nih.gov/PMC7027755 |
| Volume | 13 |
| WOSCitedRecordID | wos000514575700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oK-iL90u0lhEEXxyauWQuj7J18aEuoa2yb2EySejCspFNW_HNn-Bv9Jc4Z7KJXYoI-hIIc4ZJzpzbXM53AF6jCzbeM8pLlVGpjKJlaRXNWCMqx4wz8fL45yM9m5n53OZXsvh7fIhxww01I9prVHBXdge_QUN91yEEYXBo3BpzE3YZEwaLN3CZD7ZYhQA95hcZJWmmBBtgG1N-sN1_2y1dizWvX5m8GspGXzS99_9_cR_ubuJQ8q4XnAdwo149hNuTofzbIzjMcZt-jXirpG3IrL2slyRvl98itEJHPrqqJpicQo6DufyKGViEvZU_v__I8Tp6sN6LdvkYTqfvTycf6KbkAvVZ8FK0tjJEIDZ13EueurISjdcNC3FaZY0twzRWstGyYS6zPPPSpc74MJ26VrwyQjyBnVW7qp8B8TXnZSYarQM9pkrJIBJhLRgjzMo3CdCB4YXfwJFjVYxl0QMp8wJZU4ysSeDNSP-lB-L4I-XeMH_FRiG7gmMhQonhVQKvxubAUjwfCTxpL5CGp0YLYVUCT_vpHocSaLjC8jkBvSUIIwHCdG-3rBZnEa5b4zF5FsblURD-8vXF5ORkMr49_5dOL-AOx10BvFuu92DnfH1Rv4Rb_vJ80a33o4KEp56bfdg9PJ5-OvoFMKYTCA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SpJBemvSR1E3SqlDopSK2JOtxLNuEhG4W0ywlN2PLNllY1mWdpPTWn9Df2F9SjfxolxAKoUejEbJH87I08w3AW3TB2tqIslzGVEgtaZ4bSeOo4kUW6Uz75PEvYzWZ6IsLk3TZhFgL0-JDDAduqBneXqOC44H04R_UUNs0iEHoPBozWj-ADeFcDYo6E0lvjKWL0H2BkZaCxpJHPW5jyA5X56_6pVvB5u2cyb9jWe-Mjrf-w2dsw-MuEiUfWtF5Amvl4ilsjvoGcM_gY4IH9UtEXCV1RSb1TTknST3_7sEVGnKWFSXB8hTy2RnMb1iDRaL34tePnwkmpDv7Pavnz2F6fDQdndCu6QK1sfNTtDTCxSAmzJgVLMzygldWVZGL1AqjTe42shCVElWUxYbFVmRhpq3bUFVKVmjOd2B9US_KF0BsyVge80opR4_FUsIJhfsb9DFmYasAaM_x1HaA5NgXY562UMosRdakA2sCeDfQf22hOO6k3O83MO1UskkZtiIUGGAF8GYYdizFGxLHk_oaaVioFedGBrDb7vewFEfT5X6gA1ArkjAQIFD36shidukBuxVelMduXeYl4R9vn47Oz0fD08v7THoNmyfTs3E6Pp182oNHDM8IMNNc7cP61fK6PICH9uZq1ixfeW35DXz0FGs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFlEuvNumFDASEheiJrbjxxHtsgKxrKK2oN6ixLHFSqtNtWmLuPET-I38knryglWFkBDHyJPXzHhmbM98A_ASXbAyJg5pIZKQCyXCotAiTGLHyjxWuWqSxz_P5HyuTk912mUTYi1Miw8xbLjhzGjsNU5we1a6w1-ooaauEYPQezSqlboJWxw7yYxga3I0_TTrzbHwMXpTYqQEDxPB4h65MaKHm0_Y9EzXws3rWZO_R7ONO5re-w8_ch_udrEoedMqzwO4YVcPYXvct4B7BJMUt-rXiLlKKkfm1aVdkrRafmvgFWryMS8twQIVcuRN5leswiLxa_7z-48UU9K9BV9Uy8dwMn17Mn4Xdm0XQpN4TxVazX0UoqOcGk6jvCiZM9LFPlYrtdKFF2XJneQuzhNNE8PzKFfGi1RaQUvF2A6MVtXK7gExltIiYU5KT4_lUtyrhV8PNlFmaVwAYc_xzHSQ5NgZY5m1YMo0Q9ZkA2sCeDXQn7VgHH-kPOgFmHWTss4oNiPkGGIF8GIY9izFMxLPk-oCaWikJGNaBLDbynt4FUPj5ZfQAcgNTRgIEKp7c2S1-NJAdks8Kk_8e2mjCX_5-mx8fDwervb_5abncDudTLPZ-_mHJ3CH4iYBpprLAxidry_sU7hlLs8X9fpZN12uAPh6FYE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Novel+Polyesters+Made+from+Renewable+1%2C4%E2%80%90Pentanediol&rft.jtitle=ChemSusChem&rft.au=Stadler%2C+Bernhard+M.&rft.au=Brandt%2C+Adrian&rft.au=Kux%2C+Alexander&rft.au=Beck%2C+Horst&rft.date=2020-02-07&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=13&rft.issue=3&rft.spage=556&rft.epage=563&rft_id=info:doi/10.1002%2Fcssc.201902988&rft.externalDBID=10.1002%252Fcssc.201902988&rft.externalDocID=CSSC201902988 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |