Properties of Novel Polyesters Made from Renewable 1,4‐Pentanediol

Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem Jg. 13; H. 3; S. 556 - 563
Hauptverfasser: Stadler, Bernhard M., Brandt, Adrian, Kux, Alexander, Beck, Horst, Vries, Johannes G.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Germany Wiley Subscription Services, Inc 07.02.2020
John Wiley and Sons Inc
Schlagworte:
ISSN:1864-5631, 1864-564X, 1864-564X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. Adhesives are going green! 1,4‐Pentanediol obtained through hydrogenation of γ‐valerolactone can be efficiently converted to 100 % biobased polyester polyols. These oligomers provide added value beyond renewability in adhesive and polyurethane applications.
AbstractList Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators. Adhesives are going green! 1,4‐Pentanediol obtained through hydrogenation of γ‐valerolactone can be efficiently converted to 100 % biobased polyester polyols. These oligomers provide added value beyond renewability in adhesive and polyurethane applications.
Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C12) were used as the diacid building block. The low melting point of the C12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil‐based 1,4‐butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long‐chain diacids (>C 12 ) were used as the diacid building block. The low melting point of the C 12 diacid‐based material allows the development of biobased shape‐memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature‐sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4‐pentanediol cannot be regarded as a direct substitute for 1,4‐butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C12 ) were used as the diacid building block. The low melting point of the C12 diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These oligomers are terminated with hydroxyl groups and have low residual acid content, making them suitable for use in adhesives by polyurethane formation. The thermal behavior of the polyols was studied by differential scanning calorimetry, and tensile testing was performed on the derived polyurethanes. The results were compared with those of polyurethanes obtained with fossil-based 1,4-butanediol polyester polyols. Surprisingly, it was found that a crystalline polyester was obtained when aliphatic long-chain diacids (>C ) were used as the diacid building block. The low melting point of the C diacid-based material allows the development of biobased shape-memory polymers with very low switching temperatures (<0 °C), an effect that has not yet been reported for a material based on a simple binary polyester. This might find application as thermosensitive adhesives in the packaging of temperature-sensitive goods such as pharmaceuticals. Furthermore, these results indicate that, although 1,4-pentanediol cannot be regarded as a direct substitute for 1,4-butanediol, its novel structure expands the toolbox of the adhesives, coatings, or sealants formulators.
Author Beck, Horst
Brandt, Adrian
Vries, Johannes G.
Stadler, Bernhard M.
Kux, Alexander
AuthorAffiliation 2 Henkel AG & Co. KGaA Henkel-Str. 67 40589 Düsseldorf Germany
1 Leibniz Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Strasse 29a 18055 Rostock Germany
AuthorAffiliation_xml – name: 2 Henkel AG & Co. KGaA Henkel-Str. 67 40589 Düsseldorf Germany
– name: 1 Leibniz Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Strasse 29a 18055 Rostock Germany
Author_xml – sequence: 1
  givenname: Bernhard M.
  orcidid: 0000-0002-6171-6921
  surname: Stadler
  fullname: Stadler, Bernhard M.
  organization: Universität Rostock
– sequence: 2
  givenname: Adrian
  surname: Brandt
  fullname: Brandt, Adrian
  email: adrian.brandt@henkel.de
  organization: Henkel AG & Co. KGaA
– sequence: 3
  givenname: Alexander
  surname: Kux
  fullname: Kux, Alexander
  organization: Henkel AG & Co. KGaA
– sequence: 4
  givenname: Horst
  surname: Beck
  fullname: Beck, Horst
  organization: Henkel AG & Co. KGaA
– sequence: 5
  givenname: Johannes G.
  orcidid: 0000-0001-5245-7748
  surname: Vries
  fullname: Vries, Johannes G.
  email: johannes.devries@catalysis.de
  organization: Universität Rostock
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31794106$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuEzEYha2qVW-wZYlGYsOCBN_Glw0SCtBWaiGiXbCzPJ5_wJUzDvakVXY8Qp-xT1JHadNSCbGyJX_n6ByfA7Tdxx4QekXwmGBM37uc3ZhiojHVSm2hfaIEH9WC_9je3BnZQwc5X2IssBZiF-0xIjUnWOyjT9MU55AGD7mKXfU1XkGopjEsIQ-QcnVmW6i6FGfVd-jh2jYBKvKO3_65mUI_2B5aH8MLtNPZkOHl_XmILr58vpgcj06_HZ1MPp6OXC2JGoHmgtUaW-o4xbZpWedkR7BirVa6aRrd8k7yjtha09pxi61yinAJgraKsUP0YW07XzQzaF0JkGww8-RnNi1NtN78_dL7X-ZnvDISUynruhi8vTdI8feiNDQznx2EUHrERTaUUawkY1oU9M0z9DIuUl_aFaompUmpUqjXTxNtojz8bwH4GnAp5pygM84PdvBxFdAHQ7BZzWhWM5rNjEU2fiZ7cP6nQK8F1z7A8j-0mZyfTx61d9bCsKY
CitedBy_id crossref_primary_10_1016_j_isci_2025_112734
crossref_primary_10_1002_ange_202506438
crossref_primary_10_1016_j_cej_2021_128902
crossref_primary_10_1016_j_progpolymsci_2021_101430
crossref_primary_10_1039_D4CY00266K
crossref_primary_10_1002_chem_202300119
crossref_primary_10_1002_cctc_202100032
crossref_primary_10_1039_D3CY00544E
crossref_primary_10_1021_acs_biomac_5c00765
crossref_primary_10_1021_acssuschemeng_5c02541
crossref_primary_10_1016_j_polymdegradstab_2025_111426
crossref_primary_10_1039_D1RA06135F
crossref_primary_10_1039_D4RE00245H
crossref_primary_10_1016_j_mcat_2022_112462
crossref_primary_10_3390_catal13040697
crossref_primary_10_1002_cssc_202202353
crossref_primary_10_1016_j_polymdegradstab_2023_110514
crossref_primary_10_1016_j_mattod_2021_07_024
crossref_primary_10_1111_gcbb_13058
crossref_primary_10_1002_anie_202506438
crossref_primary_10_1002_pen_70073
crossref_primary_10_1016_j_mcat_2021_111936
crossref_primary_10_1016_j_cattod_2022_06_016
crossref_primary_10_3390_nano12193414
crossref_primary_10_1016_j_jiec_2023_10_053
crossref_primary_10_1080_02773813_2021_1873388
crossref_primary_10_1039_D3RA03642A
crossref_primary_10_3390_chemengineering9040074
Cites_doi 10.1002/anie.201810914
10.1007/s10965-015-0661-2
10.1039/c3cs35489j
10.1002/anie.201207334
10.1016/j.polymdegradstab.2017.10.005
10.1039/C6SC02842J
10.1016/j.eurpolymj.2018.12.026
10.1039/C4GC00835A
10.1039/C5RA08297H
10.1039/C8CY00379C
10.1039/C7GC00067G
10.1021/jacs.7b10173
10.1021/ja506023f
10.1021/acscatal.9b01665
10.1002/bbb.267
10.1002/app.47558
10.1039/C9GC02462J
10.1002/anie.201812954
10.1039/c3cc48236g
10.1016/j.rser.2015.07.021
10.1021/cr300182k
10.1002/cssc.201801700
10.1371/journal.pone.0199231
10.1039/C5PY00263J
10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
10.1039/C7FD00057J
10.1021/acscatal.7b01753
10.1021/acscatal.6b00189
10.1016/j.ymben.2019.03.005
10.1039/c2gc16599f
10.1021/acs.chemrev.5b00264
10.1002/14356007.a21_665.pub2
10.1002/1521-3757(20020617)114:12<2138::AID-ANGE2138>3.0.CO;2-T
10.1039/c3gc37071b
10.1021/bm2000378
10.1039/C4GC01728E
10.1039/C7PY01171G
10.1039/C7PY01223C
10.1021/acs.chemrev.5b00242
10.1002/mame.201700416
10.1002/cssc.201501405
10.1016/j.bej.2015.08.015
10.1002/biot.201000135
10.1007/s11746-015-2727-z
10.1021/acscatal.7b00623
10.1002/pol.1970.150080310
10.1039/c3gc37065h
10.1002/polb.23990
10.1002/adsc.201500930
10.1039/C8GC03746A
10.1021/bm060713v
10.1002/cssc.201200825
10.1002/ange.201310991
10.1002/ange.201812954
10.1002/adsc.201701607
10.1038/s41578-018-0078-8
10.1021/acs.chemrev.7b00329
10.3390/polym11020256
10.1021/acs.chemrev.5b00355
10.3390/polym9120693
10.1002/cssc.201601271
10.1002/cctc.201600710
10.1002/pola.26789
10.1039/C6GC00605A
10.1021/acssuschemeng.8b06796
10.1039/C9RA01583C
10.1002/pola.29074
10.1002/14356007.a21_227.pub2
10.1021/acs.chemrev.5b00354
10.1002/app.40579
10.1073/pnas.1301895110
10.1002/ange.201810914
10.1039/C5GC01878A
10.1002/ange.201207334
10.1039/b615954k
10.1021/acs.iecr.8b05936
10.1021/es061511
10.1002/anie.201310991
ContentType Journal Article
Copyright 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
– notice: 2019. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
DOI 10.1002/cssc.201902988
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 563
ExternalDocumentID PMC7027755
31794106
10_1002_cssc_201902988
CSSC201902988
Genre article
Journal Article
GrantInformation_xml – fundername: European Commission
  funderid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes).
– fundername: European Commission
  grantid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes).
– fundername: ;
  grantid: Bio-Based Industries program under grant agreement No 720695 (GreenSolRes).
GroupedDBID ---
05W
0R~
1OC
24P
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
5PM
ID FETCH-LOGICAL-c5718-e9463590a2c420abd3fc7f1083d989bbb9d4f74f1a5925c4a0a8c8147e62d833
IEDL.DBID 24P
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000514575700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Tue Nov 04 01:50:59 EST 2025
Fri Jul 11 10:25:33 EDT 2025
Sat Nov 29 14:31:57 EST 2025
Thu Apr 03 06:58:59 EDT 2025
Tue Nov 18 22:37:39 EST 2025
Sat Nov 29 07:14:18 EST 2025
Wed Jan 22 16:39:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords renewable resources
polyester
adhesives
1,4-pentanediol
mechanical properties
Language English
License Attribution-NonCommercial-NoDerivs
2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5718-e9463590a2c420abd3fc7f1083d989bbb9d4f74f1a5925c4a0a8c8147e62d833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6171-6921
0000-0001-5245-7748
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902988
PMID 31794106
PQID 2351946635
PQPubID 986333
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7027755
proquest_miscellaneous_2320873396
proquest_journals_2351946635
pubmed_primary_31794106
crossref_citationtrail_10_1002_cssc_201902988
crossref_primary_10_1002_cssc_201902988
wiley_primary_10_1002_cssc_201902988_CSSC201902988
PublicationCentury 2000
PublicationDate February 7, 2020
PublicationDateYYYYMMDD 2020-02-07
PublicationDate_xml – month: 02
  year: 2020
  text: February 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2014 2014; 53 126
1970; 8
2017; 7
2017; 8
2018; 360
2019; 11
2019; 58
2016; 105
2011; 12
2012; 14
2013; 6
2014; 131
2014; 136
2017; 9
2013 2013; 52 125
2018; 8
2013; 15
2002 2002; 41 114
2019; 21
2013; 51
2014; 16
2013; 113
2016; 116
2016; 358
2013; 110
2014; 50
2010; 5
2017; 202
2019; 112
2007; 17
2019; 7
2019; 9
2015; 6
2015; 17
2019; 4
2015; 5
2018; 140
2012
2018; 303
2015; 92
2015; 51
2013; 42
2006; 7
2016; 54
2016; 18
2011; 5
2019 2019; 58 131
2016; 6
2015; 115
2018; 118
2017; 10
2015; 22
2019; 136
2017; 19
2016
2007; 41
2013
2018; 56
2018; 11
2017; 146
2016; 8
2016; 9
2018; 13
e_1_2_6_72_2
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_30_2
e_1_2_6_91_2
e_1_2_6_19_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_38_2
e_1_2_6_15_1
e_1_2_6_57_2
e_1_2_6_41_1
e_1_2_6_83_1
e_1_2_6_60_2
e_1_2_6_9_2
e_1_2_6_5_2
e_1_2_6_1_1
e_1_2_6_49_2
e_1_2_6_22_1
e_1_2_6_87_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_54_1
e_1_2_6_92_2
e_1_2_6_31_1
e_1_2_6_12_2
e_1_2_6_58_2
e_1_2_6_35_1
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_77_1
e_1_2_6_61_2
e_1_2_6_84_1
e_1_2_6_42_2
e_1_2_6_80_1
e_1_2_6_6_2
e_1_2_6_69_3
e_1_2_6_69_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_65_2
e_1_2_6_88_2
e_1_2_6_27_2
e_1_2_6_46_2
e_1_2_6_51_1
e_1_2_6_74_2
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_17_2
e_1_2_6_36_3
e_1_2_6_36_2
e_1_2_6_62_2
e_1_2_6_62_3
e_1_2_6_85_2
e_1_2_6_20_2
e_1_2_6_81_3
e_1_2_6_81_2
e_1_2_6_7_2
e_1_2_6_3_2
e_1_2_6_47_2
e_1_2_6_24_1
e_1_2_6_43_2
e_1_2_6_28_1
e_1_2_6_66_2
e_1_2_6_89_2
e_1_2_6_52_1
e_1_2_6_75_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_18_2
e_1_2_6_14_1
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_79_1
e_1_2_6_63_2
e_1_2_6_86_2
e_1_2_6_82_2
e_1_2_6_40_1
Boussie T. R. (e_1_2_6_64_2) 2016
e_1_2_6_8_2
e_1_2_6_8_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_25_1
e_1_2_6_48_2
e_1_2_6_21_2
e_1_2_6_44_1
e_1_2_6_67_2
References_xml – volume: 110
  start-page: 12555
  year: 2013
  end-page: 12559
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 6619
  year: 2017
  end-page: 6634
  publication-title: ACS Catal.
– volume: 41
  start-page: 1560
  year: 2007
  end-page: 1563
  publication-title: Environ. Sci. Technol.
– volume: 6
  start-page: 4497
  year: 2015
  end-page: 4559
  publication-title: Polym. Chem.
– volume: 8
  start-page: 6099
  year: 2017
  end-page: 6105
  publication-title: Polym. Chem.
– volume: 14
  start-page: 935
  year: 2012
  publication-title: Green Chem.
– volume: 202
  start-page: 61
  year: 2017
  end-page: 77
  publication-title: Faraday Discuss.
– volume: 8
  start-page: 2661
  year: 2018
  end-page: 2671
  publication-title: Catal. Sci. Technol.
– volume: 41 114
  start-page: 2034 2138
  year: 2002 2002
  end-page: 2057 2162
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 13
  year: 2018
  publication-title: PLoS One
– volume: 9
  start-page: 13104
  year: 2019
  end-page: 13111
  publication-title: RSC Adv.
– volume: 112
  start-page: 1
  year: 2019
  end-page: 14
  publication-title: Eur. Polym. J.
– volume: 10
  start-page: 166
  year: 2017
  end-page: 170
  publication-title: ChemSusChem
– volume: 136
  start-page: 13217
  year: 2014
  end-page: 13225
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 256
  year: 2019
  publication-title: Polymers
– volume: 358
  start-page: 820
  year: 2016
  end-page: 825
  publication-title: Adv. Synth. Catal.
– volume: 22
  start-page: 17
  year: 2015
  publication-title: J. Polym. Res.
– volume: 15
  start-page: 584
  year: 2013
  end-page: 595
  publication-title: Green Chem.
– volume: 115
  start-page: 12407
  year: 2015
  end-page: 12439
  publication-title: Chem. Rev.
– volume: 303
  start-page: 1700416
  year: 2018
  publication-title: Macromol. Mater. Eng.
– volume: 131
  start-page: 40579
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 15
  start-page: 1218
  year: 2013
  end-page: 1225
  publication-title: Green Chem.
– volume: 116
  start-page: 1600
  year: 2016
  end-page: 1636
  publication-title: Chem. Rev.
– volume: 53 126
  start-page: 4200 4284
  year: 2014 2014
  end-page: 4204 4288
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 679
  year: 1970
  end-page: 682
  publication-title: J. Polym. Sci.
– volume: 7
  start-page: 3735
  year: 2017
  end-page: 3740
  publication-title: ACS Catal.
– volume: 4
  start-page: 116
  year: 2019
  end-page: 133
  publication-title: Nat. Rev. Mater.
– volume: 116
  start-page: 1540
  year: 2016
  end-page: 1599
  publication-title: Chem. Rev.
– volume: 42
  start-page: 7244
  year: 2013
  end-page: 7256
  publication-title: Chem. Soc. Rev.
– volume: 92
  start-page: 1701
  year: 2015
  end-page: 1707
  publication-title: J. Am. Oil Chem. Soc.
– volume: 11
  start-page: 3836
  year: 2018
  end-page: 3870
  publication-title: ChemSusChem
– volume: 50
  start-page: 1414
  year: 2014
  end-page: 1416
  publication-title: Chem. Commun.
– volume: 7
  start-page: 3406
  year: 2006
  end-page: 3416
  publication-title: Biomacromolecules
– volume: 9
  start-page: 693
  year: 2017
  publication-title: Polymers
– volume: 21
  start-page: 1866
  year: 2019
  end-page: 1888
  publication-title: Green Chem.
– volume: 116
  start-page: 1637
  year: 2016
  end-page: 1669
  publication-title: Chem. Rev.
– volume: 18
  start-page: 2922
  year: 2016
  end-page: 2934
  publication-title: Green Chem.
– volume: 21
  start-page: 4919
  year: 2019
  end-page: 4926
  publication-title: Green Chem.
– volume: 136
  start-page: 47558
  year: 2019
  publication-title: J. Appl. Polym. Sci.
– volume: 8
  start-page: 6895
  year: 2017
  end-page: 6908
  publication-title: Polym. Chem.
– volume: 7
  start-page: 5501
  year: 2019
  end-page: 5514
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 8012
  year: 2019
  end-page: 8067
  publication-title: ACS Catal.
– volume: 8
  start-page: 3031
  year: 2016
  end-page: 3035
  publication-title: ChemCatChem
– volume: 118
  start-page: 839
  year: 2018
  end-page: 885
  publication-title: Chem. Rev.
– volume: 8
  start-page: 1406
  year: 2017
  end-page: 1413
  publication-title: Chem. Sci.
– volume: 146
  start-page: 174
  year: 2017
  end-page: 183
  publication-title: Polym. Degrad. Stab.
– volume: 58 131
  start-page: 3346 3384
  year: 2019 2019
  end-page: 3350 3388
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56
  start-page: 1903
  year: 2018
  end-page: 1906
  publication-title: J. Polym. Sci. Part A
– volume: 105
  start-page: 16
  year: 2016
  end-page: 26
  publication-title: Biochem. Eng. J.
– volume: 51
  start-page: 986
  year: 2015
  end-page: 997
  publication-title: Renewable Sustainable Energy Rev.
– start-page: 153
  year: 2016
  end-page: 172
– volume: 9
  start-page: 562
  year: 2016
  end-page: 582
  publication-title: ChemSusChem
– volume: 17
  start-page: 1071
  year: 2015
  end-page: 1076
  publication-title: Green Chem.
– volume: 52 125
  start-page: 1270 1308
  year: 2013 2013
  end-page: 1274 1312
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 72529
  year: 2015
  end-page: 72535
  publication-title: RSC Adv.
– year: 2012
– volume: 51
  start-page: 3881
  year: 2013
  end-page: 3891
  publication-title: J. Polym. Sci. Part A
– volume: 5
  start-page: 198
  year: 2011
  end-page: 214
  publication-title: Biofuels Bioprod. Biorefin.
– volume: 17
  start-page: 1543
  year: 2007
  end-page: 1558
  publication-title: J. Mater. Chem.
– volume: 58
  start-page: 5195
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– volume: 54
  start-page: 1397
  year: 2016
  end-page: 1404
  publication-title: J. Polym. Sci. Part B
– volume: 16
  start-page: 4081
  year: 2014
  publication-title: Green Chem.
– volume: 6
  start-page: 1001
  year: 2013
  end-page: 1005
  publication-title: ChemSusChem
– volume: 6
  start-page: 2802
  year: 2016
  end-page: 2810
  publication-title: ACS Catal.
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  publication-title: Chem. Rev.
– volume: 360
  start-page: 1151
  year: 2018
  end-page: 1158
  publication-title: Adv. Synth. Catal.
– volume: 58 131
  start-page: 3486 3524
  year: 2019 2019
  end-page: 3490 3528
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 17
  start-page: 5136
  year: 2015
  end-page: 5139
  publication-title: Green Chem.
– volume: 5
  start-page: 1125
  year: 2010
  end-page: 1136
  publication-title: Biotechnol. J.
– volume: 19
  start-page: 1601
  year: 2017
  end-page: 1612
  publication-title: Green Chem.
– volume: 140
  start-page: 963
  year: 2018
  end-page: 973
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1312
  year: 2011
  end-page: 1321
  publication-title: Biomacromolecules
– year: 2013
– ident: e_1_2_6_8_2
  doi: 10.1002/anie.201810914
– ident: e_1_2_6_33_2
  doi: 10.1007/s10965-015-0661-2
– ident: e_1_2_6_83_1
  doi: 10.1039/c3cs35489j
– ident: e_1_2_6_28_1
– ident: e_1_2_6_59_1
– ident: e_1_2_6_36_2
  doi: 10.1002/anie.201207334
– ident: e_1_2_6_78_1
  doi: 10.1016/j.polymdegradstab.2017.10.005
– ident: e_1_2_6_66_2
  doi: 10.1039/C6SC02842J
– ident: e_1_2_6_9_2
  doi: 10.1016/j.eurpolymj.2018.12.026
– ident: e_1_2_6_46_2
  doi: 10.1039/C4GC00835A
– ident: e_1_2_6_37_2
  doi: 10.1039/C5RA08297H
– ident: e_1_2_6_80_1
– ident: e_1_2_6_68_2
  doi: 10.1039/C8CY00379C
– ident: e_1_2_6_44_1
– ident: e_1_2_6_38_2
  doi: 10.1039/C7GC00067G
– ident: e_1_2_6_75_1
  doi: 10.1021/jacs.7b10173
– ident: e_1_2_6_48_2
  doi: 10.1021/ja506023f
– ident: e_1_2_6_21_2
  doi: 10.1021/acscatal.9b01665
– ident: e_1_2_6_29_2
  doi: 10.1002/bbb.267
– ident: e_1_2_6_10_2
  doi: 10.1002/app.47558
– ident: e_1_2_6_7_2
  doi: 10.1039/C9GC02462J
– ident: e_1_2_6_15_1
– ident: e_1_2_6_69_2
  doi: 10.1002/anie.201812954
– ident: e_1_2_6_42_2
  doi: 10.1039/c3cc48236g
– start-page: 153
  volume-title: Chemicals and Fuels from Bio-Based Building Blocks
  year: 2016
  ident: e_1_2_6_64_2
– ident: e_1_2_6_30_2
  doi: 10.1016/j.rser.2015.07.021
– ident: e_1_2_6_26_2
  doi: 10.1021/cr300182k
– ident: e_1_2_6_20_2
  doi: 10.1002/cssc.201801700
– ident: e_1_2_6_90_1
– ident: e_1_2_6_34_2
  doi: 10.1371/journal.pone.0199231
– ident: e_1_2_6_16_2
  doi: 10.1039/C5PY00263J
– ident: e_1_2_6_81_2
  doi: 10.1002/1521-3773(20020617)41:12<2034::AID-ANIE2034>3.0.CO;2-M
– ident: e_1_2_6_12_2
  doi: 10.1039/C7FD00057J
– ident: e_1_2_6_67_2
  doi: 10.1021/acscatal.7b01753
– ident: e_1_2_6_63_2
  doi: 10.1021/acscatal.6b00189
– ident: e_1_2_6_70_1
  doi: 10.1016/j.ymben.2019.03.005
– ident: e_1_2_6_73_2
– ident: e_1_2_6_31_1
  doi: 10.1039/c2gc16599f
– ident: e_1_2_6_17_2
  doi: 10.1021/acs.chemrev.5b00264
– ident: e_1_2_6_79_1
  doi: 10.1002/14356007.a21_665.pub2
– ident: e_1_2_6_2_1
– ident: e_1_2_6_81_3
  doi: 10.1002/1521-3757(20020617)114:12<2138::AID-ANGE2138>3.0.CO;2-T
– ident: e_1_2_6_5_2
  doi: 10.1039/c3gc37071b
– ident: e_1_2_6_89_2
  doi: 10.1021/bm2000378
– ident: e_1_2_6_39_2
  doi: 10.1039/C4GC01728E
– ident: e_1_2_6_54_1
  doi: 10.1039/C7PY01171G
– ident: e_1_2_6_84_1
– ident: e_1_2_6_24_1
  doi: 10.1039/C7PY01223C
– ident: e_1_2_6_18_2
  doi: 10.1021/acs.chemrev.5b00242
– ident: e_1_2_6_22_1
  doi: 10.1002/mame.201700416
– ident: e_1_2_6_27_2
  doi: 10.1002/cssc.201501405
– ident: e_1_2_6_65_2
  doi: 10.1016/j.bej.2015.08.015
– ident: e_1_2_6_76_1
  doi: 10.1002/biot.201000135
– ident: e_1_2_6_57_2
  doi: 10.1007/s11746-015-2727-z
– ident: e_1_2_6_61_2
– ident: e_1_2_6_71_1
– ident: e_1_2_6_50_2
  doi: 10.1021/acscatal.7b00623
– ident: e_1_2_6_72_2
  doi: 10.1002/pol.1970.150080310
– ident: e_1_2_6_40_1
  doi: 10.1039/c3gc37065h
– ident: e_1_2_6_87_2
  doi: 10.1002/polb.23990
– ident: e_1_2_6_45_2
  doi: 10.1002/adsc.201500930
– ident: e_1_2_6_13_1
  doi: 10.1039/C8GC03746A
– ident: e_1_2_6_3_2
  doi: 10.1021/bm060713v
– ident: e_1_2_6_49_2
  doi: 10.1002/cssc.201200825
– ident: e_1_2_6_62_3
  doi: 10.1002/ange.201310991
– ident: e_1_2_6_69_3
  doi: 10.1002/ange.201812954
– ident: e_1_2_6_47_2
  doi: 10.1002/adsc.201701607
– ident: e_1_2_6_55_1
– ident: e_1_2_6_85_2
  doi: 10.1038/s41578-018-0078-8
– ident: e_1_2_6_58_2
  doi: 10.1021/acs.chemrev.7b00329
– ident: e_1_2_6_91_2
  doi: 10.3390/polym11020256
– ident: e_1_2_6_60_2
– ident: e_1_2_6_23_1
  doi: 10.1021/acs.chemrev.5b00355
– ident: e_1_2_6_74_2
  doi: 10.3390/polym9120693
– ident: e_1_2_6_52_1
  doi: 10.1002/cssc.201601271
– ident: e_1_2_6_1_1
– ident: e_1_2_6_77_1
  doi: 10.1002/cctc.201600710
– ident: e_1_2_6_4_2
  doi: 10.1002/pola.26789
– ident: e_1_2_6_6_2
  doi: 10.1039/C6GC00605A
– ident: e_1_2_6_11_2
  doi: 10.1021/acssuschemeng.8b06796
– ident: e_1_2_6_86_2
  doi: 10.1039/C9RA01583C
– ident: e_1_2_6_51_1
  doi: 10.1002/pola.29074
– ident: e_1_2_6_14_1
  doi: 10.1002/14356007.a21_227.pub2
– ident: e_1_2_6_19_2
  doi: 10.1021/acs.chemrev.5b00354
– ident: e_1_2_6_25_1
– ident: e_1_2_6_56_2
  doi: 10.1002/app.40579
– ident: e_1_2_6_88_2
  doi: 10.1073/pnas.1301895110
– ident: e_1_2_6_41_1
– ident: e_1_2_6_8_3
  doi: 10.1002/ange.201810914
– ident: e_1_2_6_43_2
  doi: 10.1039/C5GC01878A
– ident: e_1_2_6_32_1
– ident: e_1_2_6_36_3
  doi: 10.1002/ange.201207334
– ident: e_1_2_6_35_1
– ident: e_1_2_6_82_2
  doi: 10.1039/b615954k
– ident: e_1_2_6_92_2
  doi: 10.1021/acs.iecr.8b05936
– ident: e_1_2_6_53_1
  doi: 10.1021/es061511
– ident: e_1_2_6_62_2
  doi: 10.1002/anie.201310991
SSID ssj0060966
Score 2.4564035
Snippet Novel polyester polyols were prepared in high yields from biobased 1,4‐pentanediol catalyzed by non‐toxic phosphoric acid without using a solvent. These...
Novel polyester polyols were prepared in high yields from biobased 1,4-pentanediol catalyzed by non-toxic phosphoric acid without using a solvent. These...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 556
SubjectTerms 1,4-pentanediol
Adhesives
Aliphatic compounds
Butanediol
Chemical industry
Hydroxyl groups
mechanical properties
Melting points
Oligomers
Phosphoric acid
polyester
Polyester resins
Polyols
Polyurethane resins
renewable resources
Sealants
Shape memory
Thermodynamic properties
Title Properties of Novel Polyesters Made from Renewable 1,4‐Pentanediol
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902988
https://www.ncbi.nlm.nih.gov/pubmed/31794106
https://www.proquest.com/docview/2351946635
https://www.proquest.com/docview/2320873396
https://pubmed.ncbi.nlm.nih.gov/PMC7027755
Volume 13
WOSCitedRecordID wos000514575700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD5oK-iL90u0lhEEXxyauWQuj7J18aEuoa2yb2EySejCspFNW_HNn-Bv9Jc4Z7KJXYoI-hIIc4ZJzpzbXM53AF6jCzbeM8pLlVGpjKJlaRXNWCMqx4wz8fL45yM9m5n53OZXsvh7fIhxww01I9prVHBXdge_QUN91yEEYXBo3BpzE3YZEwaLN3CZD7ZYhQA95hcZJWmmBBtgG1N-sN1_2y1dizWvX5m8GspGXzS99_9_cR_ubuJQ8q4XnAdwo149hNuTofzbIzjMcZt-jXirpG3IrL2slyRvl98itEJHPrqqJpicQo6DufyKGViEvZU_v__I8Tp6sN6LdvkYTqfvTycf6KbkAvVZ8FK0tjJEIDZ13EueurISjdcNC3FaZY0twzRWstGyYS6zPPPSpc74MJ26VrwyQjyBnVW7qp8B8TXnZSYarQM9pkrJIBJhLRgjzMo3CdCB4YXfwJFjVYxl0QMp8wJZU4ysSeDNSP-lB-L4I-XeMH_FRiG7gmMhQonhVQKvxubAUjwfCTxpL5CGp0YLYVUCT_vpHocSaLjC8jkBvSUIIwHCdG-3rBZnEa5b4zF5FsblURD-8vXF5ORkMr49_5dOL-AOx10BvFuu92DnfH1Rv4Rb_vJ80a33o4KEp56bfdg9PJ5-OvoFMKYTCA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7SpJBemvSR1E3SqlDopSK2JOtxLNuEhG4W0ywlN2PLNllY1mWdpPTWn9Df2F9SjfxolxAKoUejEbJH87I08w3AW3TB2tqIslzGVEgtaZ4bSeOo4kUW6Uz75PEvYzWZ6IsLk3TZhFgL0-JDDAduqBneXqOC44H04R_UUNs0iEHoPBozWj-ADeFcDYo6E0lvjKWL0H2BkZaCxpJHPW5jyA5X56_6pVvB5u2cyb9jWe-Mjrf-w2dsw-MuEiUfWtF5Amvl4ilsjvoGcM_gY4IH9UtEXCV1RSb1TTknST3_7sEVGnKWFSXB8hTy2RnMb1iDRaL34tePnwkmpDv7Pavnz2F6fDQdndCu6QK1sfNTtDTCxSAmzJgVLMzygldWVZGL1AqjTe42shCVElWUxYbFVmRhpq3bUFVKVmjOd2B9US_KF0BsyVge80opR4_FUsIJhfsb9DFmYasAaM_x1HaA5NgXY562UMosRdakA2sCeDfQf22hOO6k3O83MO1UskkZtiIUGGAF8GYYdizFGxLHk_oaaVioFedGBrDb7vewFEfT5X6gA1ArkjAQIFD36shidukBuxVelMduXeYl4R9vn47Oz0fD08v7THoNmyfTs3E6Pp182oNHDM8IMNNc7cP61fK6PICH9uZq1ixfeW35DXz0FGs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BFlEuvNumFDASEheiJrbjxxHtsgKxrKK2oN6ixLHFSqtNtWmLuPET-I38knryglWFkBDHyJPXzHhmbM98A_ASXbAyJg5pIZKQCyXCotAiTGLHyjxWuWqSxz_P5HyuTk912mUTYi1Miw8xbLjhzGjsNU5we1a6w1-ooaauEYPQezSqlboJWxw7yYxga3I0_TTrzbHwMXpTYqQEDxPB4h65MaKHm0_Y9EzXws3rWZO_R7ONO5re-w8_ch_udrEoedMqzwO4YVcPYXvct4B7BJMUt-rXiLlKKkfm1aVdkrRafmvgFWryMS8twQIVcuRN5leswiLxa_7z-48UU9K9BV9Uy8dwMn17Mn4Xdm0XQpN4TxVazX0UoqOcGk6jvCiZM9LFPlYrtdKFF2XJneQuzhNNE8PzKFfGi1RaQUvF2A6MVtXK7gExltIiYU5KT4_lUtyrhV8PNlFmaVwAYc_xzHSQ5NgZY5m1YMo0Q9ZkA2sCeDXQn7VgHH-kPOgFmHWTss4oNiPkGGIF8GIY9izFMxLPk-oCaWikJGNaBLDbynt4FUPj5ZfQAcgNTRgIEKp7c2S1-NJAdks8Kk_8e2mjCX_5-mx8fDwervb_5abncDudTLPZ-_mHJ3CH4iYBpprLAxidry_sU7hlLs8X9fpZN12uAPh6FYE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+Novel+Polyesters+Made+from+Renewable+1%2C4%E2%80%90Pentanediol&rft.jtitle=ChemSusChem&rft.au=Stadler%2C+Bernhard+M.&rft.au=Brandt%2C+Adrian&rft.au=Kux%2C+Alexander&rft.au=Beck%2C+Horst&rft.date=2020-02-07&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=13&rft.issue=3&rft.spage=556&rft.epage=563&rft_id=info:doi/10.1002%2Fcssc.201902988&rft.externalDBID=10.1002%252Fcssc.201902988&rft.externalDocID=CSSC201902988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon