oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes
SCOPE: Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their saf...
Gespeichert in:
| Veröffentlicht in: | Molecular nutrition & food research Jg. 58; H. 3; S. 516 - 527 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Weinheim
Blackwell Publishing Ltd
01.03.2014
Wiley |
| Schlagworte: | |
| ISSN: | 1613-4125, 1613-4133, 1613-4133 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | SCOPE: Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex‐differences. METHODS AND RESULTS: In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration–time curve (AUC), the micronized curcumin was 14‐, 5‐, and 9‐fold and micellar curcumin 277‐, 114‐, and 185‐fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. CONCLUSION: Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. |
|---|---|
| AbstractList | Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences.
In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations.
Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. SCOPE: Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex‐differences. METHODS AND RESULTS: In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration–time curve (AUC), the micronized curcumin was 14‐, 5‐, and 9‐fold and micellar curcumin 277‐, 114‐, and 185‐fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. CONCLUSION: Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. Scope Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex‐differences. Methods and results In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration–time curve (AUC), the micronized curcumin was 14‐, 5‐, and 9‐fold and micellar curcumin 277‐, 114‐, and 185‐fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations. Conclusion Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences.SCOPECurcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences.In this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations.METHODS AND RESULTSIn this crossover study, healthy subjects (13 women, 10 men) took, in random order, a single oral dose of 500 mg curcuminoids as native powder, micronized powder, or liquid micelles. Blood and urine samples were collected for 24 h and total curcuminoids and safety parameters were quantified. Based on the area under the plasma concentration-time curve (AUC), the micronized curcumin was 14-, 5-, and 9-fold and micellar curcumin 277-, 114-, and 185-fold better bioavailable than native curcumin in women, men, and all subjects, respectively. Thus, women absorbed curcumin more efficiently than men. All safety parameters remained within the reference ranges following the consumption of all formulations.Both, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation.CONCLUSIONBoth, the micronized powder and in particular the liquid micellar formulation of curcumin significantly improved its oral bioavailability without altering safety parameters and may thus be ideally suited to deliver curcumin in human intervention trials. The observed sex differences in curcumin absorption warrant further investigation. |
| Author | Behnam, Dariush Jandasek, Josef Frank, Jan Kocher, Alexa Toelstede, Simone Schiborr, Christina |
| Author_xml | – sequence: 1 fullname: Schiborr, Christina – sequence: 2 fullname: Kocher, Alexa – sequence: 3 fullname: Behnam, Dariush – sequence: 4 fullname: Jandasek, Josef – sequence: 5 fullname: Toelstede, Simone – sequence: 6 fullname: Frank, Jan |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28275303$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24402825$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkktvEzEUhUeoiD5gyxK8QWKT1M95LFFFClIpFVCBurHu-NEYZuzUniENP4NfjNOkQUJC4I0t-Tvn6p57D4s9H7wpiqcETwnG9Lj3Nk4pJgzjivIHxQEpCZtwwtje7k3FfnGY0leMGaGcPSr2KeeY1lQcFD9DhA61LsB3cB20rnPDCgWL1BjV2DuPbAw96p2KwbsfRqNFWGoTEXiNOnczOr3-NF1nEnIJJXftnXUK_NCtkPMqGkhZlY3mBrphvkLzsQef7gy0s9bEhFozLI3xKJlbkx4XDy10yTzZ3kfF5ez1p5M3k7P3p29PXp1NlKiImChrNOhSN7XVbVWVVoAmui1bongjFKsZ2Ea0ltKaYJ0TYk1da1CNMiXnAOyoeLnxXcRwM5o0yN6ldSfgTRiTJII1PJ9a_AeKORc0B5zRZ1t0bHuj5SK6HuJK3keegRdbAJKCzkbwyqXfXE0rwe6M-IbLyacUjZXKDTC44IeYRyUJlusNkOsNkLsNyLLpH7J7578KtnWWrjOrf9Dy3fnsAyV83cZkI3NpMLc7GcRvsqxYJeTn81N5xWbll6uKy4vMP9_wFoKE65hbvvyYfTnOxjgPlP0CxaDeAA |
| CitedBy_id | crossref_primary_10_1080_01635581_2020_1771384 crossref_primary_10_1016_j_foodchem_2024_140706 crossref_primary_10_3390_nu13072385 crossref_primary_10_1097_NT_0000000000000392 crossref_primary_10_1097_JCP_0000000000000508 crossref_primary_10_1016_j_jnutbio_2017_11_006 crossref_primary_10_4103_pr_pr_24_19 crossref_primary_10_1016_j_jconrel_2019_04_014 crossref_primary_10_1080_01635581_2016_1187281 crossref_primary_10_3390_biomimetics10070426 crossref_primary_10_1016_j_dmpk_2017_10_005 crossref_primary_10_3390_ph14080777 crossref_primary_10_3390_ijms21186619 crossref_primary_10_1016_j_redox_2017_07_017 crossref_primary_10_3390_plants12091782 crossref_primary_10_1016_j_jcis_2019_09_045 crossref_primary_10_3390_ijms23073557 crossref_primary_10_1016_j_ejpb_2017_04_013 crossref_primary_10_1016_j_csite_2025_106066 crossref_primary_10_3390_pharmaceutics13122137 crossref_primary_10_14412_20742711_2025_3_11_18 crossref_primary_10_1016_j_nut_2018_03_055 crossref_primary_10_3390_jcm9020430 crossref_primary_10_3390_ijms20040905 crossref_primary_10_3390_cancers17142321 crossref_primary_10_1016_j_bioactmat_2025_03_007 crossref_primary_10_1089_jmf_2023_0185 crossref_primary_10_1038_s41430_018_0382_9 crossref_primary_10_1515_chem_2023_0171 crossref_primary_10_1002_jat_3903 crossref_primary_10_1002_mnfr_201901037 crossref_primary_10_1016_j_jddst_2024_106272 crossref_primary_10_1016_j_isci_2025_112575 crossref_primary_10_3389_fnut_2022_865497 crossref_primary_10_1007_s00210_025_04392_5 crossref_primary_10_3390_nu11092147 crossref_primary_10_1002_ptr_5931 crossref_primary_10_1080_00498254_2016_1236300 crossref_primary_10_1007_s00394_018_1766_2 crossref_primary_10_1007_s00394_019_02078_2 crossref_primary_10_1016_j_jcot_2020_09_006 crossref_primary_10_3390_ijms26062593 crossref_primary_10_1016_j_jconrel_2019_10_053 crossref_primary_10_1177_22799036221116177 crossref_primary_10_1111_cbdd_14439 crossref_primary_10_1002_mnfr_201800143 crossref_primary_10_1002_mnfr_201800267 crossref_primary_10_1002_mnfr_202100831 crossref_primary_10_1016_j_nfs_2015_03_002 crossref_primary_10_3390_ijms22073316 crossref_primary_10_1016_j_cis_2023_102933 crossref_primary_10_1016_j_joim_2018_07_001 crossref_primary_10_1016_j_cclet_2017_06_024 crossref_primary_10_3390_nu14245347 crossref_primary_10_1016_j_jddst_2024_105561 crossref_primary_10_3390_ijms22010138 crossref_primary_10_1016_j_ejphar_2019_172471 crossref_primary_10_1208_s12249_019_1364_5 crossref_primary_10_3892_ijo_2017_4037 crossref_primary_10_1080_09205063_2018_1541500 crossref_primary_10_1186_s12263_017_0563_5 crossref_primary_10_1016_j_jep_2018_04_029 crossref_primary_10_1007_s11130_016_0587_9 crossref_primary_10_3390_molecules25061397 crossref_primary_10_1039_c4pp00123k crossref_primary_10_1007_s12013_020_00922_5 crossref_primary_10_1007_s00432_020_03432_2 crossref_primary_10_1039_D3FO02665E crossref_primary_10_1007_s00210_023_02825_7 crossref_primary_10_1002_adhm_202400506 crossref_primary_10_2478_aoas_2023_0063 crossref_primary_10_1038_srep44967 crossref_primary_10_1016_j_jff_2015_01_049 crossref_primary_10_1016_j_jff_2015_01_045 crossref_primary_10_3109_1061186X_2016_1157883 crossref_primary_10_1002_biof_1828 crossref_primary_10_1002_mnfr_202200798 crossref_primary_10_1002_mnfr_201700838 crossref_primary_10_1016_j_jddst_2023_105159 crossref_primary_10_1002_dad2_12347 crossref_primary_10_1016_j_jff_2021_104443 crossref_primary_10_1111_php_13433 crossref_primary_10_1016_j_prostaglandins_2025_106994 crossref_primary_10_1039_D2RA03656H crossref_primary_10_3390_biomedicines9111562 crossref_primary_10_1016_j_heliyon_2023_e15540 crossref_primary_10_1007_s12603_021_1685_4 crossref_primary_10_1088_1612_202X_ac1742 crossref_primary_10_3390_nu14122481 crossref_primary_10_3390_antiox12030630 crossref_primary_10_1002_ptr_7190 crossref_primary_10_3390_nano7110349 crossref_primary_10_1007_s12247_019_09406_3 crossref_primary_10_14814_phy2_70504 crossref_primary_10_1007_s40495_024_00388_6 crossref_primary_10_1016_j_foodchem_2020_126653 crossref_primary_10_1017_S0954422423000033 crossref_primary_10_3390_pharmaceutics14051021 crossref_primary_10_3389_fnut_2022_846282 crossref_primary_10_3945_jn_115_226001 crossref_primary_10_3390_ijms25147710 crossref_primary_10_3390_nu13062004 crossref_primary_10_1002_mnfr_201501034 crossref_primary_10_1080_17425255_2019_1650914 crossref_primary_10_1016_j_nutres_2014_02_006 crossref_primary_10_1016_j_carbpol_2018_10_073 crossref_primary_10_1016_j_jnutbio_2019_07_003 crossref_primary_10_1039_D1FO02481G crossref_primary_10_13050_foodengprog_2017_21_3_273 crossref_primary_10_1002_fsn3_4534 crossref_primary_10_3390_jcm11102908 crossref_primary_10_1159_000521669 crossref_primary_10_1016_j_phymed_2020_153233 crossref_primary_10_1002_ptr_8023 crossref_primary_10_1080_1061186X_2024_2384071 crossref_primary_10_1039_C9FO01063G crossref_primary_10_3389_fphar_2021_707231 crossref_primary_10_1039_D1FO01156A crossref_primary_10_3390_molecules25122796 crossref_primary_10_1016_j_tifs_2019_07_029 crossref_primary_10_3389_fimmu_2025_1603018 crossref_primary_10_3390_molecules25122791 crossref_primary_10_2174_0929867331666230809100335 crossref_primary_10_1016_j_arabjc_2018_05_011 crossref_primary_10_1021_jm500308c crossref_primary_10_1080_14756366_2020_1801670 crossref_primary_10_3390_biology11020177 crossref_primary_10_1016_j_biochi_2017_08_007 crossref_primary_10_1016_j_toxrep_2014_10_025 crossref_primary_10_1007_s00394_016_1376_9 crossref_primary_10_2147_IJN_S210320 crossref_primary_10_1080_01635581_2020_1766092 crossref_primary_10_1016_j_cofs_2014_12_005 crossref_primary_10_1007_s13659_024_00445_z crossref_primary_10_1016_j_phrs_2019_104450 crossref_primary_10_1007_s10856_019_6351_6 crossref_primary_10_1080_10408398_2018_1546669 crossref_primary_10_1016_j_nutres_2018_08_003 crossref_primary_10_1016_j_biopha_2023_114758 crossref_primary_10_1007_s40199_021_00401_z crossref_primary_10_3390_ijms241914561 crossref_primary_10_1371_journal_pone_0149832 crossref_primary_10_1002_jcp_25961 crossref_primary_10_1080_1028415X_2020_1760531 crossref_primary_10_3390_biomedicines9101476 crossref_primary_10_3390_molecules28031297 crossref_primary_10_1016_j_phymed_2024_155863 crossref_primary_10_1186_s40478_018_0577_2 crossref_primary_10_3390_nu16213625 crossref_primary_10_3390_pharmaceutics13101715 crossref_primary_10_1016_j_jddst_2020_102082 crossref_primary_10_3390_molecules25010063 crossref_primary_10_3390_nu13020332 crossref_primary_10_1016_j_pdpdt_2019_07_010 crossref_primary_10_1002_ptr_6054 crossref_primary_10_1002_ptr_7264 crossref_primary_10_1002_ptr_6976 crossref_primary_10_3390_nu12082296 crossref_primary_10_1002_mnfr_202200139 crossref_primary_10_1002_biof_1603 crossref_primary_10_3390_antiox10111826 crossref_primary_10_1007_s00204_017_1939_4 crossref_primary_10_3390_cancers12020302 crossref_primary_10_2174_0113816128352935250116064725 crossref_primary_10_3390_nu10101553 crossref_primary_10_1080_17425255_2017_1360279 crossref_primary_10_1038_s41598_017_02747_4 crossref_primary_10_1016_j_jff_2015_04_026 crossref_primary_10_26538_tjnpr_v9i7_70 crossref_primary_10_1097_MD_0000000000026601 crossref_primary_10_3390_biomedicines9091086 crossref_primary_10_1208_s12248_016_0003_2 crossref_primary_10_3390_molecules25173846 crossref_primary_10_1007_s00394_022_02943_7 crossref_primary_10_3390_antiox13030331 crossref_primary_10_1002_mnfr_202100613 crossref_primary_10_1002_ptr_6037 crossref_primary_10_3390_nu14245249 crossref_primary_10_1016_j_semcancer_2017_06_003 crossref_primary_10_1016_j_jddst_2019_101201 crossref_primary_10_1016_j_jff_2016_01_039 crossref_primary_10_1016_j_neuroscience_2019_02_020 crossref_primary_10_1111_apt_15045 crossref_primary_10_1016_j_nutres_2020_05_007 crossref_primary_10_1016_j_addr_2019_02_007 crossref_primary_10_1002_ptr_7119 crossref_primary_10_1002_biof_1533 crossref_primary_10_2174_0113816128303514240517054617 crossref_primary_10_3390_metabo15040266 crossref_primary_10_1016_j_nut_2015_12_036 crossref_primary_10_1016_j_neuint_2015_07_026 crossref_primary_10_1016_j_jddst_2020_101871 crossref_primary_10_3389_fnut_2021_782912 crossref_primary_10_3390_cells8040359 crossref_primary_10_1002_ptr_6257 crossref_primary_10_1208_s12249_019_1295_1 crossref_primary_10_3390_nano14221836 crossref_primary_10_1093_bbb_zbac161 crossref_primary_10_1093_jn_nxab087 crossref_primary_10_3389_fnut_2023_1267035 |
| Cites_doi | 10.1248/bpb.34.660 10.1002/ptr.4639 10.1016/j.freeradbiomed.2008.08.014 10.1021/np1007262 10.3322/canjclin.55.1.10 10.1158/1055-9965.EPI-07-2693 10.1002/pros.21147 10.4103/0250-474X.44591 10.1002/jnr.20025 10.1016/j.nutres.2012.09.002 10.1021/jf9024807 10.1007/s00280-011-1673-1 10.1038/nrneurol.2012.194 10.1038/ajh.2012.24 10.1016/S0014-5793(98)00919-3 10.1016/j.ejphar.2010.11.008 10.1523/JNEUROSCI.21-21-08370.2001 10.1158/1940-6207.CAPR-10-0098 10.1158/1055-9965.120.14.1 10.1016/S1570-0232(02)00714-6 10.5402/2012/195727 10.1186/1472‐6882‐6‐10 10.1007/s11010-005-7717-2 10.1007/978-0-387-46401-5_20 10.1080/01635581.2012.686648 10.2165/00003088-200241050-00002 10.1007/978-90-481-2813-6_14 10.1146/annurev-chembioeng-073009-101311 10.1016/j.neuint.2013.02.014 10.1016/S0098-2997(02)00016-X 10.1053/j.jrn.2011.03.002 10.1186/1742‐2094‐8‐125 10.1186/1475‐2891‐11‐79 10.1055/s-2006-957450 10.1097/MCO.0b013e32834bfe94 10.1158/1078-0432.CCR-04-0744 10.1007/s00394-011-0188-1 10.2337/dc12-0116 10.2174/092986710790226165 10.1016/S0090-9556(24)15211-7 10.1371/journal.pone.0048075 10.1002/ajh.23159 10.1186/alzrt146 |
| ContentType | Journal Article |
| Copyright | 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 INIST-CNRS |
| DBID | FBQ BSCLL 24P AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1002/mnfr.201300724 |
| DatabaseName | AGRIS Istex Wiley Online Library Open Access CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Diet & Clinical Nutrition |
| EISSN | 1613-4133 |
| EndPage | 527 |
| ExternalDocumentID | 24402825 28275303 10_1002_mnfr_201300724 MNFR2145 ark_67375_WNG_Z3F6XZ74_P US201400070715 |
| Genre | article Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: German Federal Ministry of Education and Research (BMBF) funderid: 01EA1334A |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AAFWJ AAMMB AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY BSCLL 24P AEUQT AFPWT DROCM RWI AAYXX CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c5715-cfedad6d98fdb776f5ad1db6b1c495c383af95bf22810d0133988dac9ce644aa3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000332339600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-4125 1613-4133 |
| IngestDate | Fri Oct 03 00:00:10 EDT 2025 Thu Oct 02 19:07:32 EDT 2025 Wed Feb 19 02:25:59 EST 2025 Wed Apr 02 07:25:07 EDT 2025 Sat Nov 29 08:00:39 EST 2025 Tue Nov 18 22:37:03 EST 2025 Wed Jan 22 17:11:32 EST 2025 Tue Nov 11 03:32:45 EST 2025 Thu Apr 03 09:45:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Human Monocotyledones Curcuma longal Nutrition Tyrosine kinase inhibitor Toxicity Sex Oral administration Micelle Sex differences Healthy humans Bioavailability Powder Liquid Angiospermae Spermatophyta Curcumin Curcuma Safety Pharmacokinetics Zingiberaceae Curcuma longa |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/3.0 CC BY 4.0 2014 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5715-cfedad6d98fdb776f5ad1db6b1c495c383af95bf22810d0133988dac9ce644aa3 |
| Notes | http://dx.doi.org/10.1002/mnfr.201300724 ark:/67375/WNG-Z3F6XZ74-P istex:23392DC554ADABE90D6AC323FD532528647A4D10 German Federal Ministry of Education and Research (BMBF) - No. 01EA1334A ArticleID:MNFR2145 The trial was registered at clinicaltrials.gov with the study ID NCT01925287. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201300724 |
| PMID | 24402825 |
| PQID | 1504452003 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1539444485 proquest_miscellaneous_1504452003 pubmed_primary_24402825 pascalfrancis_primary_28275303 crossref_citationtrail_10_1002_mnfr_201300724 crossref_primary_10_1002_mnfr_201300724 wiley_primary_10_1002_mnfr_201300724_MNFR2145 istex_primary_ark_67375_WNG_Z3F6XZ74_P fao_agris_US201400070715 |
| PublicationCentury | 2000 |
| PublicationDate | March 2014 |
| PublicationDateYYYYMMDD | 2014-03-01 |
| PublicationDate_xml | – month: 03 year: 2014 text: March 2014 |
| PublicationDecade | 2010 |
| PublicationPlace | Weinheim |
| PublicationPlace_xml | – name: Weinheim – name: Germany |
| PublicationTitle | Molecular nutrition & food research |
| PublicationTitleAlternate | Mol. Nutr. Food Res |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley |
| References | Golombick, T., Diamond, T. H., Manoharan, A., Ramakrishna, R., Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am. J. Hematol. 2012, 87, 455-460. Dal Piaz F, B. A., Belisario, M. A., De Tommasi, N., Thioredoxin system modulation by plant and fungal secondary metabolites. Curr. Med. Chem. 2010, 17, 479-494. Shoba, G., Joy, D., Joseph, T., Majeed, M. et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353-356. Meibohm, B., Beierle, I., Derendorf, H., How important are gender differences in pharmacokinetics? Clin. Pharmacokinet. 2002, 41, 329-342. Kurita, T., Makino, Y., Novel curcumin oral delivery systems. Anticancer Res. 2013, 33, 2807-2821. Cuomo, J., Appendino, G., Dern, A. S., Schneider, E. et al., Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod. 2011, 74, 664-669. Sharma, R. A., Steward, W. P., Gescher, A. J., Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 2007, 595, 453-470. Akazawa, N., Choi, Y., Miyaki, A., Tanabe, Y. et al., Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 2012, 32, 795-799. Sharma, R. A., McLelland, H. R., Hill, K. A., Ireson, C. R. et al., Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 2001, 7, 1894-1900. Garcea, G., Berry, D. P., Jones, D. J., Singh, R. et al., Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 120-125. Eckert, G. P., Schiborr, C., Hagl, S., Abdel-Kader, R. et al., Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem. Int. 2013, 62, 595-602. Pan, M. H., Huang, T. M., Lin, J. K., Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 1999, 27, 486-494. Sugawara, J., Akazawa, N., Miyaki, A., Choi, Y. et al., Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study. Am. J. Hypertens. 2012, 25, 651-656. El-Azab, M., Hishe, H., Moustafa, Y., El-Awady el, S., Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur. J. Pharmacol. 2011, 652, 7-14. Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C. et al., Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35, 2121-2127. Savjani, K. T., Gajjar, A. K., Savjani, J. K., Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. doi:10.5402/2012/195727. Jemal, A., Murray, T., Ward, E., Samuels, A. et al., Cancer statistics, 2005. CA Cancer. J. Clin. 2005, 55, 10-30. Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C. et al., Curcumin is a potent modulator of microglial gene expression and migration. J. Neuroinflammat. 2011, 8, 125. doi:10.1186/1742-2094-8-125. Ono, K., Hasegawa, K., Naiki, H., Yamada, M., Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742-750. Schaffer, M., Schaffer, P. M., Zidan, J., Bar Sela, G., Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 588-597. Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D. et al., Dose escalation of a curcuminoid formulation. BMC Complement. Alter. Med. 2006, 6, 10. doi:10.1186/1472-6882-6-10. Pareyson, D., Marchesi, C., Natural history and treatment of peripheral inherited neuropathies. Adv. Exp. Med. Biol. 2009, 652, 207-224. Liu, H., Liang, Y., Wang, L., Tian, L. et al., In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PLoS One 2012, 7, e48075. Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N. et al., Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10, 6847-6854. Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A. et al., Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 2011, 34, 660-665. DiSilvestro, R. A., Joseph, E., Zhao, S., Bomser, J., Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J. 2012, 11, 79. doi:10.1186/1475-2891-11-79. von Geldern, G., Mowry, E. M., The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol. 2012, 8, 678-689. Jaruga, E., Salvioli, S., Dobrucki, J., Chrul, S. et al., Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Lett. 1998, 433, 287-293. Shehzad, A., Ha, T., Subhan, F., Lee, Y. S., New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur. J. Nutr. 2011, 50, 151-161. Anand, K., Sarkar, A., Kumar, A., Ambasta, R. K. et al., Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo. Nutr. Cancer 2012, 64, 714-724. Jurenka, J. S., Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev. 2009, 14, 141-153. Thayyullathil, F., Chathoth, S., Hago, A., Patel, M. et al., Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic. Biol. Med. 2008, 45, 1403-1412. Kuo, C. L., Wu, S. Y., Ip, S. W., Wu, P. P. et al., Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int. J. Oncol. 2011, 39, 319-328. Antony, B., Merina, B., Iyer, V. S., Judy, N. et al., A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci. 2008, 70, 445-449. Lim, G. P., Chu, T., Yang, F., Beech, W. et al., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370-8377. Brunner, G., Applications of supercritical fluids. Ann. Rev. Chem. Biomol. Eng. 2010, 1, 321-342. Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H. et al., Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 2012, 69, 65-70. Gota, V. S., Maru, G. B., Soni, T. G., Gandhi, T. R. et al., Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem. 2010, 58, 2095-2099. Chandran, B., Goel, A., A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res. 2012, 26, 1719-1725. Stahl, W., van den Berg, H., Arthur, J., Bast, A. et al., Bioavailability and metabolism. Mol. Aspects Med. 2002, 23, 39-100. Khajehdehi, P., Zanjaninejad, B., Aflaki, E., Nazarinia, M. et al., Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J. Ren. Nutr. 2012, 22, 50-57. Carroll, R. E., Benya, R. V., Turgeon, D. K., Vareed, S. et al., Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila) 2011, 4, 354-364. Ide, H., Tokiwa, S., Sakamaki, K., Nishio, K. et al., Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010, 70, 1127-1133. Belakavadi, M., Salimath, B. P., Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol. Cell Biochem. 2005, 273, 57-67. Alwi, I., Santoso, T., Suyono, S., Sutrisna, B. et al., The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta. Med. Indones 2008, 40, 201-210. Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N. et al., Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther. 2012, 4, 43. doi:10.1186/alzrt146. Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M. et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895-2900. Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A. et al., Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411-1417. Heath, D. D., Pruitt, M. A., Brenner, D. E., Rock, C. L., Curcumin in plasma and urine: quantitation by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 783, 287-295. 2011; 652 2012; 2012 2005; 273 2010; 58 2010; 17 2013; 62 1999; 27 2008; 17 2011; 74 2009; 652 2006; 6 1998; 433 2011; 34 2011; 14 2011; 39 2011; 4 2012; 35 2008; 70 1998; 64 2012; 11 2012; 32 2011; 8 2001; 21 2004; 10 2009; 14 2004; 75 2010; 1 2013; 33 2001; 7 2002; 41 2002; 23 2007; 595 2011; 50 2008; 45 2012; 26 2010; 70 2012; 25 2012; 69 2008; 40 2012; 7 2012; 4 2012; 22 2003; 783 2005; 55 2012; 87 2012; 64 2012; 8 2005; 14 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_19_1 e_1_2_7_17_1 Sharma R. A. (e_1_2_7_30_1) 2001; 7 Alwi I. (e_1_2_7_7_1) 2008; 40 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 Jurenka J. S. (e_1_2_7_14_1) 2009; 14 Pan M. H. (e_1_2_7_28_1) 1999; 27 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 Cheng A. L. (e_1_2_7_32_1) 2001; 21 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 Kuo C. L. (e_1_2_7_20_1) 2011; 39 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_29_1 Kurita T. (e_1_2_7_27_1) 2013; 33 e_1_2_7_24_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_36_1 e_1_2_7_38_1 Mol Nutr Food Res. 2014 Mar;58(3):647 |
| References_xml | – reference: Dal Piaz F, B. A., Belisario, M. A., De Tommasi, N., Thioredoxin system modulation by plant and fungal secondary metabolites. Curr. Med. Chem. 2010, 17, 479-494. – reference: Schaffer, M., Schaffer, P. M., Zidan, J., Bar Sela, G., Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 588-597. – reference: Liu, H., Liang, Y., Wang, L., Tian, L. et al., In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog. PLoS One 2012, 7, e48075. – reference: Eckert, G. P., Schiborr, C., Hagl, S., Abdel-Kader, R. et al., Curcumin prevents mitochondrial dysfunction in the brain of the senescence-accelerated mouse-prone 8. Neurochem. Int. 2013, 62, 595-602. – reference: Garcea, G., Berry, D. P., Jones, D. J., Singh, R. et al., Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 120-125. – reference: Savjani, K. T., Gajjar, A. K., Savjani, J. K., Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. doi:10.5402/2012/195727. – reference: Sugawara, J., Akazawa, N., Miyaki, A., Choi, Y. et al., Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study. Am. J. Hypertens. 2012, 25, 651-656. – reference: Lao, C. D., Ruffin, M. T., Normolle, D., Heath, D. D. et al., Dose escalation of a curcuminoid formulation. BMC Complement. Alter. Med. 2006, 6, 10. doi:10.1186/1472-6882-6-10. – reference: Heath, D. D., Pruitt, M. A., Brenner, D. E., Rock, C. L., Curcumin in plasma and urine: quantitation by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2003, 783, 287-295. – reference: Belakavadi, M., Salimath, B. P., Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF-kB and caspase activated DNase. Mol. Cell Biochem. 2005, 273, 57-67. – reference: Gota, V. S., Maru, G. B., Soni, T. G., Gandhi, T. R. et al., Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J. Agric. Food Chem. 2010, 58, 2095-2099. – reference: Cuomo, J., Appendino, G., Dern, A. S., Schneider, E. et al., Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. J. Nat. Prod. 2011, 74, 664-669. – reference: Alwi, I., Santoso, T., Suyono, S., Sutrisna, B. et al., The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta. Med. Indones 2008, 40, 201-210. – reference: Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N. et al., Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res. 2004, 10, 6847-6854. – reference: Lim, G. P., Chu, T., Yang, F., Beech, W. et al., The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 2001, 21, 8370-8377. – reference: Kuo, C. L., Wu, S. Y., Ip, S. W., Wu, P. P. et al., Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int. J. Oncol. 2011, 39, 319-328. – reference: Kurita, T., Makino, Y., Novel curcumin oral delivery systems. Anticancer Res. 2013, 33, 2807-2821. – reference: Anand, K., Sarkar, A., Kumar, A., Ambasta, R. K. et al., Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo. Nutr. Cancer 2012, 64, 714-724. – reference: Khajehdehi, P., Zanjaninejad, B., Aflaki, E., Nazarinia, M. et al., Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo-controlled study. J. Ren. Nutr. 2012, 22, 50-57. – reference: Pareyson, D., Marchesi, C., Natural history and treatment of peripheral inherited neuropathies. Adv. Exp. Med. Biol. 2009, 652, 207-224. – reference: Shoba, G., Joy, D., Joseph, T., Majeed, M. et al., Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998, 64, 353-356. – reference: Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A. et al., Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 1411-1417. – reference: Carroll, R. E., Benya, R. V., Turgeon, D. K., Vareed, S. et al., Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prev. Res. (Phila) 2011, 4, 354-364. – reference: Karlstetter, M., Lippe, E., Walczak, Y., Moehle, C. et al., Curcumin is a potent modulator of microglial gene expression and migration. J. Neuroinflammat. 2011, 8, 125. doi:10.1186/1742-2094-8-125. – reference: Meibohm, B., Beierle, I., Derendorf, H., How important are gender differences in pharmacokinetics? Clin. Pharmacokinet. 2002, 41, 329-342. – reference: Jemal, A., Murray, T., Ward, E., Samuels, A. et al., Cancer statistics, 2005. CA Cancer. J. Clin. 2005, 55, 10-30. – reference: Sharma, R. A., Steward, W. P., Gescher, A. J., Pharmacokinetics and pharmacodynamics of curcumin. Adv. Exp. Med. Biol. 2007, 595, 453-470. – reference: Pan, M. H., Huang, T. M., Lin, J. K., Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab. Dispos. 1999, 27, 486-494. – reference: Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A. et al., Innovative preparation of curcumin for improved oral bioavailability. Biol. Pharm. Bull. 2011, 34, 660-665. – reference: Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H. et al., Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 2012, 69, 65-70. – reference: Chandran, B., Goel, A., A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res. 2012, 26, 1719-1725. – reference: Akazawa, N., Choi, Y., Miyaki, A., Tanabe, Y. et al., Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr. Res. 2012, 32, 795-799. – reference: Chuengsamarn, S., Rattanamongkolgul, S., Luechapudiporn, R., Phisalaphong, C. et al., Curcumin extract for prevention of type 2 diabetes. Diabetes Care 2012, 35, 2121-2127. – reference: DiSilvestro, R. A., Joseph, E., Zhao, S., Bomser, J., Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr. J. 2012, 11, 79. doi:10.1186/1475-2891-11-79. – reference: Ono, K., Hasegawa, K., Naiki, H., Yamada, M., Curcumin has potent anti-amyloidogenic effects for Alzheimer's beta-amyloid fibrils in vitro. J. Neurosci. Res. 2004, 75, 742-750. – reference: Antony, B., Merina, B., Iyer, V. S., Judy, N. et al., A pilot cross-over study to evaluate human oral bioavailability of BCM-95CG (Biocurcumax), a novel bioenhanced preparation of curcumin. Indian J. Pharm. Sci. 2008, 70, 445-449. – reference: Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N. et al., Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther. 2012, 4, 43. doi:10.1186/alzrt146. – reference: Golombick, T., Diamond, T. H., Manoharan, A., Ramakrishna, R., Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double-blind placebo-controlled cross-over 4g study and an open-label 8g extension study. Am. J. Hematol. 2012, 87, 455-460. – reference: Shehzad, A., Ha, T., Subhan, F., Lee, Y. S., New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur. J. Nutr. 2011, 50, 151-161. – reference: El-Azab, M., Hishe, H., Moustafa, Y., El-Awady el, S., Anti-angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma-bearing mice. Eur. J. Pharmacol. 2011, 652, 7-14. – reference: von Geldern, G., Mowry, E. M., The influence of nutritional factors on the prognosis of multiple sclerosis. Nat. Rev. Neurol. 2012, 8, 678-689. – reference: Jaruga, E., Salvioli, S., Dobrucki, J., Chrul, S. et al., Apoptosis-like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes. FEBS Lett. 1998, 433, 287-293. – reference: Jurenka, J. S., Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern. Med. Rev. 2009, 14, 141-153. – reference: Brunner, G., Applications of supercritical fluids. Ann. Rev. Chem. Biomol. Eng. 2010, 1, 321-342. – reference: Stahl, W., van den Berg, H., Arthur, J., Bast, A. et al., Bioavailability and metabolism. Mol. Aspects Med. 2002, 23, 39-100. – reference: Ide, H., Tokiwa, S., Sakamaki, K., Nishio, K. et al., Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate 2010, 70, 1127-1133. – reference: Thayyullathil, F., Chathoth, S., Hago, A., Patel, M. et al., Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic. Biol. Med. 2008, 45, 1403-1412. – reference: Cheng, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M. et al., Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895-2900. – reference: Sharma, R. A., McLelland, H. R., Hill, K. A., Ireson, C. R. et al., Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 2001, 7, 1894-1900. – volume: 783 start-page: 287 year: 2003 end-page: 295 article-title: Curcumin in plasma and urine: quantitation by high‐performance liquid chromatography publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. – volume: 40 start-page: 201 year: 2008 end-page: 210 article-title: The effect of curcumin on lipid level in patients with acute coronary syndrome publication-title: Acta. Med. Indones – volume: 273 start-page: 57 year: 2005 end-page: 67 article-title: Mechanism of inhibition of ascites tumor growth in mice by curcumin is mediated by NF‐kB and caspase activated DNase publication-title: Mol. Cell Biochem. – volume: 17 start-page: 479 year: 2010 end-page: 494 article-title: Thioredoxin system modulation by plant and fungal secondary metabolites publication-title: Curr. Med. Chem. – volume: 17 start-page: 1411 year: 2008 end-page: 1417 article-title: Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 6 start-page: 10 year: 2006 article-title: Dose escalation of a curcuminoid formulation publication-title: BMC Complement. Alter. Med. – volume: 25 start-page: 651 year: 2012 end-page: 656 article-title: Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study publication-title: Am. J. Hypertens. – volume: 50 start-page: 151 year: 2011 end-page: 161 article-title: New mechanisms and the anti‐inflammatory role of curcumin in obesity and obesity‐related metabolic diseases publication-title: Eur. J. Nutr. – volume: 26 start-page: 1719 year: 2012 end-page: 1725 article-title: A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis publication-title: Phytother. Res. – volume: 14 start-page: 588 year: 2011 end-page: 597 article-title: Curcuma as a functional food in the control of cancer and inflammation publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 70 start-page: 445 year: 2008 end-page: 449 article-title: A pilot cross‐over study to evaluate human oral bioavailability of BCM‐95CG (Biocurcumax), a novel bioenhanced preparation of curcumin publication-title: Indian J. Pharm. Sci. – volume: 87 start-page: 455 year: 2012 end-page: 460 article-title: Monoclonal gammopathy of undetermined significance, smoldering multiple myeloma, and curcumin: a randomized, double‐blind placebo‐controlled cross‐over 4g study and an open‐label 8g extension study publication-title: Am. J. Hematol. – volume: 433 start-page: 287 year: 1998 end-page: 293 article-title: Apoptosis‐like, reversible changes in plasma membrane asymmetry and permeability, and transient modifications in mitochondrial membrane potential induced by curcumin in rat thymocytes publication-title: FEBS Lett. – volume: 64 start-page: 353 year: 1998 end-page: 356 article-title: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers publication-title: Planta Med. – volume: 69 start-page: 65 year: 2012 end-page: 70 article-title: Dose‐escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers publication-title: Cancer Chemother. Pharmacol. – volume: 10 start-page: 6847 year: 2004 end-page: 6854 article-title: Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance publication-title: Clin Cancer Res. – volume: 2012 start-page: 195727 year: 2012 article-title: Drug solubility: importance and enhancement techniques publication-title: ISRN Pharm. – volume: 23 start-page: 39 year: 2002 end-page: 100 article-title: Bioavailability and metabolism publication-title: Mol. Aspects Med. – volume: 14 start-page: 141 year: 2009 end-page: 153 article-title: Anti‐inflammatory properties of curcumin, a major constituent of : a review of preclinical and clinical research publication-title: Altern. Med. Rev. – volume: 4 start-page: 354 year: 2011 end-page: 364 article-title: Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia publication-title: Cancer Prev. Res. (Phila) – volume: 22 start-page: 50 year: 2012 end-page: 57 article-title: Oral supplementation of turmeric decreases proteinuria, hematuria, and systolic blood pressure in patients suffering from relapsing or refractory lupus nephritis: a randomized and placebo‐controlled study publication-title: J. Ren. Nutr. – volume: 34 start-page: 660 year: 2011 end-page: 665 article-title: Innovative preparation of curcumin for improved oral bioavailability publication-title: Biol. Pharm. Bull. – volume: 8 start-page: 125 year: 2011 article-title: Curcumin is a potent modulator of microglial gene expression and migration publication-title: J. Neuroinflammat. – volume: 652 start-page: 7 year: 2011 end-page: 14 article-title: Anti‐angiogenic effect of resveratrol or curcumin in Ehrlich ascites carcinoma‐bearing mice publication-title: Eur. J. Pharmacol. – volume: 74 start-page: 664 year: 2011 end-page: 669 article-title: Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation publication-title: J. Nat. Prod. – volume: 8 start-page: 678 year: 2012 end-page: 689 article-title: The influence of nutritional factors on the prognosis of multiple sclerosis publication-title: Nat. Rev. Neurol. – volume: 35 start-page: 2121 year: 2012 end-page: 2127 article-title: Curcumin extract for prevention of type 2 diabetes publication-title: Diabetes Care – volume: 55 start-page: 10 year: 2005 end-page: 30 article-title: Cancer statistics, 2005 publication-title: CA Cancer. J. Clin. – volume: 64 start-page: 714 year: 2012 end-page: 724 article-title: Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo publication-title: Nutr. Cancer – volume: 21 start-page: 8370 year: 2001 end-page: 8377 article-title: The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse publication-title: J. Neurosci. – volume: 595 start-page: 453 year: 2007 end-page: 470 article-title: Pharmacokinetics and pharmacodynamics of curcumin publication-title: Adv. Exp. Med. Biol. – volume: 14 start-page: 120 year: 2005 end-page: 125 article-title: Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 1 start-page: 321 year: 2010 end-page: 342 article-title: Applications of supercritical fluids publication-title: Ann. Rev. Chem. Biomol. Eng. – volume: 33 start-page: 2807 year: 2013 end-page: 2821 article-title: Novel curcumin oral delivery systems publication-title: Anticancer Res. – volume: 39 start-page: 319 year: 2011 end-page: 328 article-title: Apoptotic death in curcumin‐treated NPC‐TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase‐3‐dependent signaling responses publication-title: Int. J. Oncol. – volume: 70 start-page: 1127 year: 2010 end-page: 1133 article-title: Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate‐specific antigen publication-title: Prostate – volume: 32 start-page: 795 year: 2012 end-page: 799 article-title: Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women publication-title: Nutr. Res. – volume: 58 start-page: 2095 year: 2010 end-page: 2099 article-title: Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers publication-title: J. Agric. Food Chem. – volume: 27 start-page: 486 year: 1999 end-page: 494 article-title: Biotransformation of curcumin through reduction and glucuronidation in mice publication-title: Drug Metab. Dispos. – volume: 21 start-page: 2895 year: 2001 end-page: 2900 article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high‐risk or pre‐malignant lesions publication-title: Anticancer Res. – volume: 11 start-page: 79 year: 2012 article-title: Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people publication-title: Nutr. J. – volume: 41 start-page: 329 year: 2002 end-page: 342 article-title: How important are gender differences in pharmacokinetics publication-title: Clin. Pharmacokinet. – volume: 75 start-page: 742 year: 2004 end-page: 750 article-title: Curcumin has potent anti‐amyloidogenic effects for Alzheimer's beta‐amyloid fibrils in vitro publication-title: J. Neurosci. Res. – volume: 7 start-page: e48075 year: 2012 article-title: In vivo and in vitro suppression of hepatocellular carcinoma by EF24, a curcumin analog publication-title: PLoS One – volume: 652 start-page: 207 year: 2009 end-page: 224 article-title: Natural history and treatment of peripheral inherited neuropathies publication-title: Adv. Exp. Med. Biol. – volume: 4 start-page: 43 year: 2012 article-title: Oral curcumin for Alzheimer's disease: tolerability and efficacy in a 24‐week randomized, double blind, placebo‐controlled study publication-title: Alzheimers Res. Ther. – volume: 7 start-page: 1894 year: 2001 end-page: 1900 article-title: Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer publication-title: Clin. Cancer Res. – volume: 45 start-page: 1403 year: 2008 end-page: 1412 article-title: Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase‐dependent and ‐independent apoptosis in L929 cells publication-title: Free Radic. Biol. Med. – volume: 62 start-page: 595 year: 2013 end-page: 602 article-title: Curcumin prevents mitochondrial dysfunction in the brain of the senescence‐accelerated mouse‐prone 8 publication-title: Neurochem. Int. – ident: e_1_2_7_40_1 doi: 10.1248/bpb.34.660 – ident: e_1_2_7_13_1 doi: 10.1002/ptr.4639 – ident: e_1_2_7_21_1 doi: 10.1016/j.freeradbiomed.2008.08.014 – ident: e_1_2_7_39_1 doi: 10.1021/np1007262 – ident: e_1_2_7_2_1 doi: 10.3322/canjclin.55.1.10 – ident: e_1_2_7_31_1 doi: 10.1158/1055-9965.EPI-07-2693 – volume: 21 start-page: 2895 year: 2001 ident: e_1_2_7_32_1 article-title: Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high‐risk or pre‐malignant lesions publication-title: Anticancer Res. – ident: e_1_2_7_5_1 doi: 10.1002/pros.21147 – ident: e_1_2_7_38_1 doi: 10.4103/0250-474X.44591 – ident: e_1_2_7_49_1 doi: 10.1002/jnr.20025 – ident: e_1_2_7_8_1 doi: 10.1016/j.nutres.2012.09.002 – ident: e_1_2_7_42_1 doi: 10.1021/jf9024807 – ident: e_1_2_7_41_1 doi: 10.1007/s00280-011-1673-1 – ident: e_1_2_7_12_1 doi: 10.1038/nrneurol.2012.194 – ident: e_1_2_7_10_1 doi: 10.1038/ajh.2012.24 – ident: e_1_2_7_26_1 doi: 10.1016/S0014-5793(98)00919-3 – ident: e_1_2_7_24_1 doi: 10.1016/j.ejphar.2010.11.008 – ident: e_1_2_7_50_1 doi: 10.1523/JNEUROSCI.21-21-08370.2001 – ident: e_1_2_7_36_1 doi: 10.1158/1940-6207.CAPR-10-0098 – ident: e_1_2_7_34_1 doi: 10.1158/1055-9965.120.14.1 – ident: e_1_2_7_45_1 doi: 10.1016/S1570-0232(02)00714-6 – volume: 40 start-page: 201 year: 2008 ident: e_1_2_7_7_1 article-title: The effect of curcumin on lipid level in patients with acute coronary syndrome publication-title: Acta. Med. Indones – ident: e_1_2_7_43_1 doi: 10.5402/2012/195727 – ident: e_1_2_7_33_1 doi: 10.1186/1472‐6882‐6‐10 – ident: e_1_2_7_19_1 doi: 10.1007/s11010-005-7717-2 – ident: e_1_2_7_3_1 doi: 10.1007/978-0-387-46401-5_20 – ident: e_1_2_7_23_1 doi: 10.1080/01635581.2012.686648 – ident: e_1_2_7_48_1 doi: 10.2165/00003088-200241050-00002 – ident: e_1_2_7_11_1 doi: 10.1007/978-90-481-2813-6_14 – ident: e_1_2_7_44_1 doi: 10.1146/annurev-chembioeng-073009-101311 – ident: e_1_2_7_25_1 doi: 10.1016/j.neuint.2013.02.014 – ident: e_1_2_7_46_1 doi: 10.1016/S0098-2997(02)00016-X – ident: e_1_2_7_9_1 doi: 10.1053/j.jrn.2011.03.002 – ident: e_1_2_7_18_1 doi: 10.1186/1742‐2094‐8‐125 – ident: e_1_2_7_47_1 doi: 10.1186/1475‐2891‐11‐79 – ident: e_1_2_7_29_1 doi: 10.1055/s-2006-957450 – ident: e_1_2_7_15_1 doi: 10.1097/MCO.0b013e32834bfe94 – ident: e_1_2_7_35_1 doi: 10.1158/1078-0432.CCR-04-0744 – ident: e_1_2_7_16_1 doi: 10.1007/s00394-011-0188-1 – ident: e_1_2_7_6_1 doi: 10.2337/dc12-0116 – ident: e_1_2_7_17_1 doi: 10.2174/092986710790226165 – volume: 39 start-page: 319 year: 2011 ident: e_1_2_7_20_1 article-title: Apoptotic death in curcumin‐treated NPC‐TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase‐3‐dependent signaling responses publication-title: Int. J. Oncol. – volume: 27 start-page: 486 year: 1999 ident: e_1_2_7_28_1 article-title: Biotransformation of curcumin through reduction and glucuronidation in mice publication-title: Drug Metab. Dispos. doi: 10.1016/S0090-9556(24)15211-7 – volume: 7 start-page: 1894 year: 2001 ident: e_1_2_7_30_1 article-title: Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer publication-title: Clin. Cancer Res. – volume: 14 start-page: 141 year: 2009 ident: e_1_2_7_14_1 article-title: Anti‐inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research publication-title: Altern. Med. Rev. – volume: 33 start-page: 2807 year: 2013 ident: e_1_2_7_27_1 article-title: Novel curcumin oral delivery systems publication-title: Anticancer Res. – ident: e_1_2_7_22_1 doi: 10.1371/journal.pone.0048075 – ident: e_1_2_7_4_1 doi: 10.1002/ajh.23159 – ident: e_1_2_7_37_1 doi: 10.1186/alzrt146 – reference: - Mol Nutr Food Res. 2014 Mar;58(3):647 |
| SSID | ssj0031243 |
| Score | 2.5464294 |
| Snippet | SCOPE: Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and... Scope Curcumin revealed various health‐beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and... Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid... |
| SourceID | proquest pubmed pascalfrancis crossref wiley istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 516 |
| SubjectTerms | absorption Administration, Oral Bioavailability Biological and medical sciences Biological Availability blood Cross-Over Studies Curcuma longa Curcumin Curcumin - adverse effects Curcumin - analogs & derivatives Curcumin - analysis Curcumin - metabolism Curcumin - pharmacokinetics Diarylheptanoids Feeding. Feeding behavior Female Fundamental and applied biological sciences. Psychology gender differences Healthy humans Humans Male men Micelles Powders Safety Sex differences Sex Factors urine Vertebrates: anatomy and physiology, studies on body, several organs or systems women Young Adult |
| Title | oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes |
| URI | https://api.istex.fr/ark:/67375/WNG-Z3F6XZ74-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.201300724 https://www.ncbi.nlm.nih.gov/pubmed/24402825 https://www.proquest.com/docview/1504452003 https://www.proquest.com/docview/1539444485 |
| Volume | 58 |
| WOSCitedRecordID | wos000332339600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1613-4133 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031243 issn: 1613-4125 databaseCode: DRFUL dateStart: 20040101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RlgMXyrsuEC0SKierXnv9OiJK4ABRVIiIelnts7JI7JJNSsMP4fcyYycpkXgIcfHFu2vv7Ow8dme-IeS5M0wnJopCLnMZ8iyyYZHiaZOLE60KJlmm22IT-WBQjMfl8Kcs_g4fYnPghjujlde4waXyx9egodPaIZ4nXsfkMd8he4wlBRZviPlwLYsT0F5tiD0orZCDLl_DNkbx8Xb_LbW042QDxirS-QqDJaUHermu0MWvLNFtw7bVTP39_5_THXJ7ZZXSlx0b3SU3bH2PBCeVndMjuoIOndDBGrn_PvkO7EUxuZ-qqpGXspp0eN9L2jiqFzO9mFY1xdwVOsWQv7r6Zg29aL4aO6OyNnRSfVlUBl_izYGnlacYSoKBS7DWkyWtarRnPfSCgbpszSVtKwr6doCusounq0Az6u2V9Q_IqP_646u34arEQ6jTnKWhdtZIk5mycEbleeZSaZhRmWIaPDcN7rN0ZapcHBcsMkCYpCwKI3WpLRhyUiYPyW7d1PaAUMVVZFIFFknkeJblJdOZAvFpLCYH6ywg4XqFhV7hn2MZjonokJtjgdQXG-oH5MWm_UWH_PHblgfAMEKeg1gWow8xOq0tjBJLA3LUctFmBDn7jKF0eSo-Dd6Is6Sfjc9yLoYB6W2x2aYDuMTgUUZJQJ6t-U6ABMDFkbVtFl6ASc85omf9sQ0mQIMrDn_0qGPa6y9w3mYwA4Fa3vzLbMX7Qf8U8e0P_7H9Y3ILSdMF8D0hu_PZwj4lN_XlvPKzXrtv4ZmPix7ZOzntj979ADzTRnI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9QwELZoQaIv3KXhKEZC5SlqDud6RMBSRButoBWrvliODxR1Nymb3dLlh_B7mXGOaiUOIfG8trMZf57DmfmGkBdG-TJUnucykQiXxZ520whvm0wQyiL1hR9L22wiyfN0MsnGXTYh1sK0_BDDhRueDKuv8YDjhfT-FWvorDJI6InfY5KAbZDrDEwNQj1g414Zh2C-bI49WC2XgTHveRu9YH99_ppd2jCiBm8VBX2J2ZKiAYGZttPFr1zRdc_WmqbR7f_wUnfIrc4vpa9aIN0l13R1jzhvSr2ge7QjD53SvOfuv09-AMAolvfToqzFhSinLeP3itaGyuVcLmdlRbF6hc4w6a8qv2tFz-tvSs-pqBSdll-XpcIf8dtBQ8uGYjIJpi7Bbk9XtKzQo21gFizU1muuqO0p2NgF2t4uDe1SzWijL3XzgJyM3h6_PnC7Jg-ujBI_cqXRSqhYZalRRZLEJhLKV0Vc-BJiNwkBtDBZVJggSH1PgWDCLE2VkJnU4MoJEW6Tzaqu9A6hBSs8FRXgk3iGxXGS-TIuQIEqjeXBMnaI228xlx0DOjbimPKWuzngKH0-SN8hL4fx5y33x29H7gBiuPgCipmffAowbLVESn7kkD0Lo2EFMT_DZLok4p_zd_w0HMWT04TxsUN213A2TICgGGJKL3TI8x54HHQAbo6odL1sODj1jCF_1h_HYAk0BOPwjx62qL16AmO2hhkEZMH5l7flR_noIzLcP_rH8c_IzYPjo0N--D7_8JhsoZjadL4nZHMxX-qn5Ia8WJTNfNce4p-3aEfV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zb9NAEF7RFKG-cJeaoywSKk9WfayvR0QwIIoVFSKivqzWeyCrjh3ipDT8EH4vM7aTKhKHkHj2em3Pzs6x_uYbQp4b5UpfOY7NRCRsFjrajgM8bTKeL_PYFW4o22YTUZbFk0ky6tGEWAvT8UNsDtxwZ7T2Gje4nilzfMUaOq0MEnri_5jIYztkl2EnmQHZHZ6m45O1OfbBgbUoe_BbNgN3vmZudLzj7Rm2PNOOETXEqyjqS8RLigZEZrpeF78KRrdj29Y5pbf-w2fdJjf7yJS-7FTpDrmmq7vEGhZ6QY9oTx9a0mzN3n-P_AAVo1jgT_OiFheiKDvO7xWtDZXLuVxOi4pi_QqdIuyvKr5rRWf1N6XnVFSKlsXXZaHwIv49aGjRUISTIHgJ1rtc0aLCmLaBu2CirmJzRduugk07QdfdpaE92Iw2-lI398k4ff3p1Vu7b_NgyyByA1sarYQKVRIblUdRaAKhXJWHuSshe5OQQguTBLnxvNh1FAjGT-JYCZlIDcGcEP4-GVR1pQ8IzVnuqCCHqMQxLAyjxJVhDiZUaSwQlqFF7PUSc9lzoGMrjpJ37M0eR-nzjfQt8mIzftaxf_x25AFoDBdfwDTz8UcPE9eWSskNLHLUqtFmBjE_RzhdFPDP2Rt-5qfh5CxifGSRwy0929wAaTFklY5vkWdrxeNgBXBxRKXrZcMhrGcMGbT-OAaLoCEdhzd60Gnt1RMYa6uYQUCtcv7la_mHLD1FjvuH_zj-KbkxGqb85F32_hHZQyl1eL7HZLCYL_UTcl1eLIpmftjv4p_MIEjr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+oral+bioavailability+of+curcumin+from+micronized+powder+and+liquid+micelles+is+significantly+increased+in+healthy+humans+and+differs+between+sexes&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Schiborr%2C+Christina&rft.au=Kocher%2C+Alexa&rft.au=Behnam%2C+Dariush&rft.au=Jandasek%2C+Josef&rft.date=2014-03-01&rft.issn=1613-4133&rft.eissn=1613-4133&rft.volume=58&rft.issue=3&rft.spage=516&rft_id=info:doi/10.1002%2Fmnfr.201300724&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |