A pipeline to create predictive functional networks: application to the tumor progression of hepatocellular carcinoma

Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well i...

Full description

Saved in:
Bibliographic Details
Published in:BMC bioinformatics Vol. 21; no. 1; pp. 18 - 14
Main Authors: Folschette, Maxime, Legagneux, Vincent, Poret, Arnaud, Chebouba, Lokmane, Guziolowski, Carito, Théret, Nathalie
Format: Journal Article
Language:English
Published: London BioMed Central 14.01.2020
Springer Nature B.V
BMC
Subjects:
ISSN:1471-2105, 1471-2105
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipe and contains as testing data all the data used in this paper.
AbstractList Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.
Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility.BACKGROUNDIntegrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility.The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems.RESULTSThe presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems.This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.CONCLUSIONThis new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.
Abstract Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.
Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.
Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipe and contains as testing data all the data used in this paper.
ArticleNumber 18
Author Legagneux, Vincent
Guziolowski, Carito
Chebouba, Lokmane
Folschette, Maxime
Poret, Arnaud
Théret, Nathalie
Author_xml – sequence: 1
  givenname: Maxime
  surname: Folschette
  fullname: Folschette, Maxime
  organization: Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Univ Rennes, Inserm, EHESP, Irset, UMR S1085, IFB-CORE, Institut Français de Bioinformatique, UMS CNRS 3601, LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, Univ. Lille, CNRS, Centrale Lille, CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille, UMR 9189, F-59000
– sequence: 2
  givenname: Vincent
  surname: Legagneux
  fullname: Legagneux, Vincent
  organization: Univ Rennes, Inserm, EHESP, Irset, UMR S1085
– sequence: 3
  givenname: Arnaud
  surname: Poret
  fullname: Poret, Arnaud
  organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004
– sequence: 4
  givenname: Lokmane
  surname: Chebouba
  fullname: Chebouba, Lokmane
  organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, École centrale de Nantes, Department of Computer Science, LRIA Laboratory, Electrical Engineering and Computer Science Faculty, University of Science and Technology Houari Boumediene (USTHB)
– sequence: 5
  givenname: Carito
  surname: Guziolowski
  fullname: Guziolowski, Carito
  email: carito.guziolowski@ls2n.fr
  organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, École centrale de Nantes
– sequence: 6
  givenname: Nathalie
  orcidid: 0000-0002-5857-7828
  surname: Théret
  fullname: Théret, Nathalie
  email: nathalie.theret@univ-rennes1.fr
  organization: Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Univ Rennes, Inserm, EHESP, Irset, UMR S1085
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31937236$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02095930$$DView record in HAL
BookMark eNp9kk9v1DAQxSNURP_AB-CCInGBQ8CO49jmUGlVAa20Ehc4WxNnsuslGwfbWcS3x2laaFeCk62Z33v22O88OxncgFn2kpJ3lMr6faCl5KogVBWM0bqgT7IzWglalJTwkwf70-w8hB0hVEjCn2WnjComSlafZdMqH-2IvR0wjy43HiFiPnpsrYn2gHk3DWnjBujzAeNP57-HDzmMY28NzPVZFbdJPO2dT0K38RjC3HBdvsURojPY91MPPjfgjR3cHp5nTzvoA764Wy-yb58-fr26LtZfPt9crdaF4YLEwkioOaQZmQBiuMFGKlUyYEg7Q42UVDYlU1jVIjFAmhKEbBTyrkWiVMsuspvFt3Ww06O3e_C_tAOrbwvObzT4aE2PWiYHTtLzlIpVHTBpEFiDom2UoNBg8rpcvMap2WNrcIge-kemjzuD3eqNO-hacSkoTwZvF4Ptkex6tdZzjZREccXIoUrsm7vDvPsxYYh6b8P8jjCgm4IuGZNKKsFJQl8foTs3-fRfM1WRmjNJ6kS9enj7P-ffJyEBYgGMdyF47LSx8faH0zC215ToOXN6yZxOmdNz5jRNSnqkvDf_n6ZcNCGxwwb930v_W_QbE9zp8w
CitedBy_id crossref_primary_10_1002_poh2_97
crossref_primary_10_3390_ph16030405
Cites_doi 10.1073/pnas.0506580102
10.1111/j.1349-7006.2010.01536.x
10.1038/nrgastro.2010.213
10.1016/j.bbamcr.2014.07.012
10.3390/cells7090133
10.1074/jbc.M114.551986
10.1093/nar/gkw1092
10.1371/journal.pcbi.1003204
10.1001/jamaoncol.2017.3055
10.1016/j.molmed.2016.03.002
10.1093/bioinformatics/bty181
10.1186/gb-2012-13-12-r112
10.1111/j.1872-034X.2010.00758.x
10.1159/000111116
10.1158/0008-5472.CAN-14-0225
10.1016/j.cell.2009.11.007
10.1016/j.cels.2015.12.004
10.1007/s10552-018-1036-x
10.1016/j.bbagrm.2018.01.008
10.1016/j.cell.2017.05.046
10.1186/s13046-018-0887-z
10.1159/000093686
10.1371/journal.pone.0116479
10.1245/s10434-014-3779-2
10.1038/cr.2010.161
10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2
10.1016/j.jhep.2007.05.006
10.1186/s12943-017-0712-x
10.1016/j.jhep.2016.05.007
10.1158/1078-0432.CCR-07-1473
10.1038/nmeth.4077
10.1038/nature08987
10.1128/MCB.25.9.3452-3460.2005
10.1016/j.jhep.2016.05.035
10.1186/s12859-015-0733-7
10.1016/j.jhep.2015.08.028
10.1093/nar/gkw1138
10.1093/nar/gkx1132
10.1101/gr.1239303
10.1093/bioinformatics/btr260
10.1016/j.molcel.2017.06.011
10.3389/fphys.2013.00028
ContentType Journal Article
Copyright The Author(s) 2019
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2019
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s12859-019-3316-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1471-2105
EndPage 14
ExternalDocumentID oai_doaj_org_article_8853508052934fa38cea3be7db971abe
PMC6958715
oai:HAL:hal-02095930v4
31937236
10_1186_s12859_019_3316_1
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
AFFHD
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c570t-c8a65a28537a0c5ceb89923a3e1fc1c8818b239e467853a0b2a78b9e5fde099d3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513635900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1471-2105
IngestDate Mon Nov 10 04:33:34 EST 2025
Tue Nov 04 01:54:50 EST 2025
Fri Nov 28 06:22:45 EST 2025
Sun Nov 09 11:21:19 EST 2025
Tue Oct 07 05:12:36 EDT 2025
Mon Jul 21 06:03:04 EDT 2025
Tue Nov 18 22:43:02 EST 2025
Sat Nov 29 05:40:06 EST 2025
Sat Sep 06 07:27:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Signaling and regulatory knowledge
Hepatocellular carcinoma
KEGG
Discrete modeling
Data and network integration
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-c8a65a28537a0c5ceb89923a3e1fc1c8818b239e467853a0b2a78b9e5fde099d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5857-7828
0000-0002-3727-2320
0000-0002-1417-6678
OpenAccessLink https://link.springer.com/10.1186/s12859-019-3316-1
PMID 31937236
PQID 2340653806
PQPubID 44065
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_8853508052934fa38cea3be7db971abe
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6958715
hal_primary_oai_HAL_hal_02095930v4
proquest_miscellaneous_2338989750
proquest_journals_2340653806
pubmed_primary_31937236
crossref_citationtrail_10_1186_s12859_019_3316_1
crossref_primary_10_1186_s12859_019_3316_1
springer_journals_10_1186_s12859_019_3316_1
PublicationCentury 2000
PublicationDate 2020-01-14
PublicationDateYYYYMMDD 2020-01-14
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2020
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References PE Collins (3316_CR39) 2014; 289
G Khemlina (3316_CR4) 2017; 16
Y Liu (3316_CR32) 2015; 10
T VoPham (3316_CR3) 2018; 29
VY-F Wang (3316_CR24) 2017; 67
DI Tai (3316_CR27) 2000; 89
A Subramanian (3316_CR22) 2005; 102
T-P Chang (3316_CR38) 2014; 1843
U Saran (3316_CR2) 2016; 64
H Yokoo (3316_CR28) 2011; 41
EG Cerami (3316_CR12) 2010; 39
A Liberzon (3316_CR42) 2015; 1
Adrian Ally (3316_CR44) 2017; 169
VF-S Shih (3316_CR23) 2011; 21
T Luedde (3316_CR37) 2011; 8
A Liberzon (3316_CR30) 2011; 27
M Kanehisa (3316_CR13) 2017; 45
L Yan (3316_CR9) 2018; 37
TJ Hudson (3316_CR21) 2010; 464
P Shannon (3316_CR15) 2003; 13
T Akinyemiju (3316_CR1) 2017; 3
E. O'Dea (3316_CR36) 2009; 2
Julia Concetti (3316_CR25) 2018; 7
S Yamada (3316_CR8) 2014; 21
3316_CR20
A Fabregat (3316_CR11) 2018; 46
D Turei (3316_CR14) 2016; 13
P Veber (3316_CR18) 2004; 2
E Seki (3316_CR40) 2007; 47
G Giannelli (3316_CR6) 2016; 65
G Wu (3316_CR16) 2012; 13
L D’Alessandro (3316_CR34) 2013; 4
SR Neaves (3316_CR10) 2018; 34
O Akhouayri (3316_CR31) 2005; 25
HG Woo (3316_CR43) 2008; 14
IN Melas (3316_CR19) 2013; 9
SN Steinway (3316_CR35) 2014; 74
J Kim (3316_CR7) 2010; 101
JP Thiery (3316_CR41) 2009; 139
G Cildir (3316_CR26) 2016; 22
H Mi (3316_CR17) 2017; 45
M Pellicelli (3316_CR33) 2018; 1861
BH O’Neil (3316_CR29) 2007; 72
K Schulze (3316_CR5) 2016; 65
References_xml – volume: 102
  start-page: 15545
  issue: 43
  year: 2005
  ident: 3316_CR22
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506580102
– volume: 101
  start-page: 1521
  issue: 6
  year: 2010
  ident: 3316_CR7
  publication-title: Cancer Sci
  doi: 10.1111/j.1349-7006.2010.01536.x
– volume: 8
  start-page: 108
  year: 2011
  ident: 3316_CR37
  publication-title: Nature Reviews Gastroenterology
  doi: 10.1038/nrgastro.2010.213
– volume: 1843
  start-page: 2620
  issue: 11
  year: 2014
  ident: 3316_CR38
  publication-title: Biochim Biophys Acta (BBA) - Mol Cell Res
  doi: 10.1016/j.bbamcr.2014.07.012
– volume: 7
  start-page: 133
  issue: 9
  year: 2018
  ident: 3316_CR25
  publication-title: Cells
  doi: 10.3390/cells7090133
– volume: 289
  start-page: 7059
  issue: 10
  year: 2014
  ident: 3316_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.551986
– volume: 45
  start-page: 353
  issue: D1
  year: 2017
  ident: 3316_CR13
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1092
– volume: 9
  start-page: 1003204
  issue: 9
  year: 2013
  ident: 3316_CR19
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003204
– volume: 3
  start-page: 1683
  issue: 12
  year: 2017
  ident: 3316_CR1
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2017.3055
– volume: 22
  start-page: 414
  issue: 5
  year: 2016
  ident: 3316_CR26
  publication-title: Trends Mol Med
  doi: 10.1016/j.molmed.2016.03.002
– volume: 34
  start-page: 2856
  issue: 16
  year: 2018
  ident: 3316_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty181
– volume: 13
  start-page: 112
  issue: 12
  year: 2012
  ident: 3316_CR16
  publication-title: Genome Biol
  doi: 10.1186/gb-2012-13-12-r112
– volume: 41
  start-page: 240
  issue: 3
  year: 2011
  ident: 3316_CR28
  publication-title: Hepatol Res
  doi: 10.1111/j.1872-034X.2010.00758.x
– volume: 72
  start-page: 97
  issue: 1-2
  year: 2007
  ident: 3316_CR29
  publication-title: Oncology
  doi: 10.1159/000111116
– volume: 74
  start-page: 5963
  issue: 21
  year: 2014
  ident: 3316_CR35
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-14-0225
– volume: 139
  start-page: 871
  issue: 5
  year: 2009
  ident: 3316_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.007
– volume: 1
  start-page: 417
  issue: 6
  year: 2015
  ident: 3316_CR42
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2015.12.004
– volume: 29
  start-page: 563
  issue: 6
  year: 2018
  ident: 3316_CR3
  publication-title: Cancer Causes Control
  doi: 10.1007/s10552-018-1036-x
– volume: 1861
  start-page: 61
  issue: 2
  year: 2018
  ident: 3316_CR33
  publication-title: Biochim Biophys Acta Gene Regul Mech
  doi: 10.1016/j.bbagrm.2018.01.008
– volume: 169
  start-page: 1327-1341.e23
  issue: 7
  year: 2017
  ident: 3316_CR44
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.046
– volume: 37
  start-page: 203
  issue: 1
  year: 2018
  ident: 3316_CR9
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-018-0887-z
– volume: 2
  start-page: 140
  year: 2004
  ident: 3316_CR18
  publication-title: ComPlexUs
  doi: 10.1159/000093686
– volume: 2
  start-page: a000216
  issue: 1
  year: 2009
  ident: 3316_CR36
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 10
  start-page: 0116479
  issue: 1
  year: 2015
  ident: 3316_CR32
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116479
– volume: 21
  start-page: 3882
  issue: 12
  year: 2014
  ident: 3316_CR8
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-014-3779-2
– volume: 21
  start-page: 86
  issue: 1
  year: 2011
  ident: 3316_CR23
  publication-title: Cell Res
  doi: 10.1038/cr.2010.161
– volume: 89
  start-page: 2274
  issue: 11
  year: 2000
  ident: 3316_CR27
  publication-title: Cancer
  doi: 10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2
– volume: 47
  start-page: 307
  issue: 2
  year: 2007
  ident: 3316_CR40
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2007.05.006
– volume: 16
  start-page: 149
  issue: 1
  year: 2017
  ident: 3316_CR4
  publication-title: Mol Cancer
  doi: 10.1186/s12943-017-0712-x
– volume: 65
  start-page: 798
  issue: 4
  year: 2016
  ident: 3316_CR6
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2016.05.007
– volume: 14
  start-page: 2056
  issue: 7
  year: 2008
  ident: 3316_CR43
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1473
– volume: 13
  start-page: 966
  issue: 12
  year: 2016
  ident: 3316_CR14
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4077
– volume: 39
  start-page: 685
  issue: suppl_1
  year: 2010
  ident: 3316_CR12
  publication-title: Nucleic Acids Res
– volume: 464
  start-page: 993
  year: 2010
  ident: 3316_CR21
  publication-title: Nature
  doi: 10.1038/nature08987
– volume: 25
  start-page: 3452
  issue: 9
  year: 2005
  ident: 3316_CR31
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.25.9.3452-3460.2005
– volume: 65
  start-page: 1031
  issue: 5
  year: 2016
  ident: 3316_CR5
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2016.05.035
– ident: 3316_CR20
  doi: 10.1186/s12859-015-0733-7
– volume: 64
  start-page: 203
  issue: 1
  year: 2016
  ident: 3316_CR2
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2015.08.028
– volume: 45
  start-page: 183
  issue: D1
  year: 2017
  ident: 3316_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1138
– volume: 46
  start-page: 649
  issue: D1
  year: 2018
  ident: 3316_CR11
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1132
– volume: 13
  start-page: 2498
  issue: 11
  year: 2003
  ident: 3316_CR15
  publication-title: Genome Res
  doi: 10.1101/gr.1239303
– volume: 27
  start-page: 1739
  issue: 12
  year: 2011
  ident: 3316_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 67
  start-page: 484
  issue: 3
  year: 2017
  ident: 3316_CR24
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.06.011
– volume: 4
  start-page: 28
  year: 2013
  ident: 3316_CR34
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00028
SSID ssj0017805
Score 2.3301158
Snippet Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity,...
Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and...
Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity,...
Abstract Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18
SubjectTerms Algorithms
Bcl-3 protein
Biochemistry, Molecular Biology
Bioinformatics
Biological activity
Biological computing
Biomedical and Life Sciences
Biomolecules
Cancer
Carcinoma, Hepatocellular - genetics
Combinatorial analysis
Complex systems
Computational Biology - methods
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer applications
Computer Science
Data and network integration
Databases, Genetic
Discrete modeling
Disease Progression
Gene expression
Gene Regulatory Networks
Genes
Genomes
Graph theory
Hepatocellular carcinoma
Heterogeneity
Humans
KEGG
Life Sciences
Linear programming
Liver cancer
Liver Neoplasms - genetics
Logic programming
Logic programs
Microarrays
Modeling and Simulation
Molecular Networks
Pipelines
Prediction models
Proteins
Research Article
Signaling and regulatory knowledge
Solvers
Stability analysis
Transcriptome
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQVSQuiJavlIIM4gSKasdJbHNbUKseqooDoN4s23G0K9FktZutxL9nxs4uDRVw4ZrYu9bM2PPGM3lDyFtWFW2pvcs1fv5buqbJtQhF3kLAzG3lahEv9L9dyMtLdXWlP99q9YU1YYkeOAnuRIE_ARCBCSlRtlYoH6xwQTZOS25dwNOXSb0Npsb8ATL1jzlMruqTNUeeNgibdS4Er3M-8UKRrB98yxxLIe_izLvlkr_lTKMrOntEHo4Yks7S2g_IvdAdkvupq-SPx2Qzo8vFEr8zD3ToaYSFgS5XmJLBw42iL0tXgLRLVeDrD_RWJhtnAS6kw-a6X9FYwZXYO2jf0jn4r6HH-34sYKUeexF1_bV9Qr6enX75dJ6P3RVyX0k25F7ZurIgFyEt85UPDkKvQlgReOu5V-DJXSF0gJMUxljmCiuV06FqmwCwshFPyV7Xd-E5oVYJIT2WjBau9KFUzAKuYla2zGLeNSNsK23jR-px7IDx3cQQRNUmKciAggwqyPCMvNtNWSbejb8N_ogq3A1Eyuz4AAzJjIZk_mVIGXkDBjD5jfPZhcFnAKmRv5ndlBk53tqHGTf72hSiRIZfxeqMvN69hm2KurBd6Dc4RmCjTsBnGXmWzGn3V3AKClkImC0nhjZZy_RNt5hHKvBaVxDxgoDfb03y17L-KK6j_yGuF-RBgVcPjOe8PCZ7w2oTXpJ9fzMs1qtXcTf-BGBiN8s
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaggNQL70egIIM4gaL6kYfDBS2Iqoeq6gFQb5btOOxKNEk32Ur8e2acbEqo6IVrYiexZzzvfEPIW5aKKimcjQv8_TexZRkX0ou4AoeZm9RmMgT0vx_lx8fq9LQ4GQNu3VhWuZWJQVCXjcMY-b6QCcKoKpZ9bM9j7BqF2dWxhcZNcgtREkQo3TuZsgiI1z9mMrnK9juOaG3gPBexlDyL-UwXBch-0DBLLIi8am1eLZr8K3MaFNLBvf9dyn1ydzRF6WLgnQfkhq8fkjtDc8pfj8hmQdtVi7-re9o3NFiXnrZrzOygjKSoEodIIq2HYvLuA_0jIY6zwLyk_easWdNQCDaAgNCmoktQg32DaQOsg6UOWxrVzZl5TL4dfPn6-TAemzTELs1ZHztlstTAxsrcMJc6b8GDE9JIzyvHnQKDwApZeBDIMMYwK0yubOHTqvRgnZbyCdmpm9o_I9QoKXOHlafCJs4nihkwz5jJK2YwfRsRtiWXdiOCOTbS-KmDJ6MyPVBYA4U1UljziLybprQDfMd1gz8hD0wDEXk7XGjWP_R4kLWCVYBRiwlSmVRGKueNtD4vbZFzY31E3gAHzZ5xuDjSeA0sc4SBZhdJRPa2nKFHmdHpS7aIyOvpNpx2pIWpfbPBMRL7fYKZF5GnAz9OrwJhKnMhYXY-49TZt8zv1KtlQBTPihQcZ9jg91uevvysf27X8-sX8YLsCoxNMB7zZI_s9OuNf0luu4t-1a1fhYP6Gz13Rao
  priority: 102
  providerName: ProQuest
Title A pipeline to create predictive functional networks: application to the tumor progression of hepatocellular carcinoma
URI https://link.springer.com/article/10.1186/s12859-019-3316-1
https://www.ncbi.nlm.nih.gov/pubmed/31937236
https://www.proquest.com/docview/2340653806
https://www.proquest.com/docview/2338989750
https://hal.science/hal-02095930
https://pubmed.ncbi.nlm.nih.gov/PMC6958715
https://doaj.org/article/8853508052934fa38cea3be7db971abe
Volume 21
WOSCitedRecordID wos000513635900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: Open Access: BioMedCentral Open Access Titles
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: K7-
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RSV
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw0IINJF74_giMyiCeQBFOnMQObx3aNMSoogFT4cWyXYdWYknVpJP499w5SaEMkODFD_E5cc7n-_Cd7wh5xtK4THJrwhyv_yZmNgtz7uKwBIM50qnJuD_QPz0Wk4mcTvOiv8fdDNHug0vSc2q_rWX2sokw1xqYvnnIeZSFYPLsgrSTWK_h5P3pxnWASfp79-Vvh20JIJ-nH8TKHKMgL6qYFyMlf3GXeil0eOO_5n-TXO-VTjruqOQWueSq2-RqV4by2x2yHtPlYokX0x1ta-r1SEeXK_ThIDekKPy6M0NadWHjzSv6k-sbR4EiSdv1Wb2iPuSrS_dB65LOQeC1NToIMOKVWixeVNVn-i75eHjw4fVR2JdjCG0qWBtaqbNUw09woZlNrTNgq8VccxeVNrISRL-Jee6A9QKMZibWQprcpeXMgR464_fITlVX7gGhWnIuLMaYxiaxLpFMgyLGtCiZRkdtQNiwRsr2ucqxZMZX5W0WmakOmwqwqRCbKgrI882QZZeo42_A-7jwG0DMse0f1Ksvqt-ySsJfgPqKrlCelJpL6zQ3TsxMLiJtXECeAtlsveNofKzwGejgmPCZnScB2RuoSvXcoVExTzAlsGRZQJ5sumFf41roytVrhOFY2RMUuoDc74hw8ylgm1zEHEaLLfLcmst2T7WY-9zhWZ6CiQwIfjEQ6Y9p_RFdD_8J-hG5FuOhBIvCKNkjO-1q7R6TK_a8XTSrEbkspsK3ckR29w8mxcnIH4RA-1aEIwy-LaAt0s_QX7x5V3wa-Q3-HQcDRB0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAcGF9yNQwCC4gKLGdhI7SAgtj2qrXVYcStWbcRyHXYkmYTdb1D_Fb2Qmjy1LRW89cE1sJ7a_eXnGM4Q8DyKeh4lN_QSv_4ZplvmJcNzPwWBmJkpj0Rzo74_lZKIODpLPG-RXfxcGwyp7ntgw6qy0eEa-zUWIaVRVEL-tfvhYNQq9q30JjRYWI3f8E0y2xZvdD7C_Lzjf-bj3fuh3VQV8G8mg9q0ycWQ4iClpAhtZl4LJwYURjuWWWQUSLOUiccBBoI0JUm6kShMX5ZkDdSoTMO4FcjEUSiJdjaS_8lpgfYDOc8pUvL1gmB0OjPXEF4LFPluTfU2JAJBoUwzAPK3dng7S_MtT2wjAnev_29LdINc6VZsOWtq4STZccYtcbotvHt8mywGtZhVex3e0LmmjPTtazdFzhTKAoshvT0pp0QbLL17TPxz-2AvUZ1ovD8s5bQLd2iQntMzpFMR8XaJbBON8qcWSTUV5aO6QL-cy57tksygLd59Qo4SQFiNreRpaF6rAgPoZGJkHBt3THgl6eGjbZWjHQiHfdWOpqVi3iNKAKI2I0swjL1ddqjY9yVmN3yHmVg0xs3jzoJx_0x2j0gpmAUo7OoBFmBuhrDMidTJLE8lM6jzyDBC7NsZwMNb4DCwPTHMdHIUe2eqRqDueuNAnMPTI09Vr4Ga4F6Zw5RLbCKxnCmqsR-61-F99CoSFkFxAb7lGGWv_sv6mmE2bjOlxEinJYIFf9TR08lv_XK4HZ0_iCbky3Ps01uPdyeghucrxHCZgPgu3yGY9X7pH5JI9qmeL-eOGSVDy9bxJ6zfjFKJA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bj5UwEG7Meokv3i_oqtX4pCFbKJfi2_FyssaTk03Uzb41bSmek7hAgLOJ_94ZCiiumhhfYQp0mLbfdKbfEPKcxWERZUb7GR7_jXSe-xm3oV-AwxyoWCe839A_XqXrtTg5yY6GOqftmO0-hiTdmQZkaSq7gzov3BAXyUEbIO8auMGZz3mQ-OD-XIwwjx7d9Y_HUxgBCfuHUOZvm80Wo56zH5aYDWZEnoeb57Mmfwmd9ivS8vp_9-UGuTaAUbpw1nOTXLDlLXLZlaf8dpvsFrTe1nhg3dKuoj2-tLRuMLaDsyTFRdHtJdLSpZO3r-hPIXFsBQCTdrvTqqF9KpijAaFVQTewEHYVBg4wE5YaLGpUVqfqDvm8fPfpzaE_lGnwTZyyzjdCJbGCTvBUMRMbq8GHC7niNihMYARAAh3yzMKUDDKK6VClQmc2LnIL-DTnd8leWZX2PqFKcJ4azD0NdWRsJJgCgMZUWjCFAVyPsPF_STNwmGMpja-y92VEIp02JWhTojZl4JEXU5PaEXj8Tfg1GsEkiNzb_YWq-SKHoSwF9AJgLYZIeVQoLoxVXNs011kaKG098gxMaPaMw8VK4jXA5kgEzc4ij-yPFiaHWaOVIY-QKliwxCNPp9sw3vFfqNJWO5ThWPETgJ5H7jmDnF4F0ylPQw6t05mpzr5lfqfcbnpO8SSLwXUGBb8cDfbHZ_1RXQ_-SfoJuXL0dilX79cfHpKrIe5bsMAPon2y1zU7-4hcMmfdtm0e92P4O832RxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pipeline+to+create+predictive+functional+networks%3A+application+to+the+tumor+progression+of+hepatocellular+carcinoma&rft.jtitle=BMC+bioinformatics&rft.au=Folschette%2C+Maxime&rft.au=Legagneux%2C+Vincent&rft.au=Poret%2C+Arnaud&rft.au=Chebouba%2C+Lokmane&rft.date=2020-01-14&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3316-1&rft.externalDocID=10_1186_s12859_019_3316_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon