A pipeline to create predictive functional networks: application to the tumor progression of hepatocellular carcinoma
Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well i...
Uložené v:
| Vydané v: | BMC bioinformatics Ročník 21; číslo 1; s. 18 - 14 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
14.01.2020
Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1471-2105, 1471-2105 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Background
Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility.
Results
The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems.
Conclusion
This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at
https://github.com/LokmaneChebouba/key-pipe
and contains as testing data all the data used in this paper. |
|---|---|
| AbstractList | Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper. Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility.BACKGROUNDIntegrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility.The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems.RESULTSThe presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems.This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper.CONCLUSIONThis new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper. Abstract Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper. Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipeand contains as testing data all the data used in this paper. Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and incompleteness of biological data. From the computational side, several solvers for logic programs are able to perform extremely well in decision problems for combinatorial search domains. The challenge then is how to process the biological knowledge in order to feed these solvers to gain insights in a biological study. It requires formalizing the biological knowledge to give a precise interpretation of this information; currently, very few pathway databases offer this possibility. Results The presented work proposes an automatic pipeline to extract automatically regulatory knowledge from pathway databases and generate novel computational predictions related to the state of expression or activity of biological molecules. We applied it in the context of hepatocellular carcinoma (HCC) progression, and evaluate the precision and the stability of these computational predictions. Our working base is a graph of 3383 nodes and 13,771 edges extracted from the KEGG database, in which we integrate 209 differentially expressed genes between low and high aggressive HCC across 294 patients. Our computational model predicts the shifts of expression of 146 initially non-observed biological components. Our predictions were validated at 88% using a larger experimental dataset and cross-validation techniques. In particular, we focus on the protein complexes predictions and show for the first time that NFKB1/BCL-3 complexes are activated in aggressive HCC. In spite of the large dimension of the reconstructed models, our analyses over the computational predictions discover a well constrained region where KEGG regulatory knowledge constrains gene expression of several biomolecules. These regions can offer interesting windows to perturb experimentally such complex systems. Conclusion This new pipeline allows biologists to develop their own predictive models based on a list of genes. It facilitates the identification of new regulatory biomolecules using knowledge graphs and predictive computational methods. Our workflow is implemented in an automatic python pipeline which is publicly available at https://github.com/LokmaneChebouba/key-pipe and contains as testing data all the data used in this paper. |
| ArticleNumber | 18 |
| Author | Legagneux, Vincent Guziolowski, Carito Chebouba, Lokmane Folschette, Maxime Poret, Arnaud Théret, Nathalie |
| Author_xml | – sequence: 1 givenname: Maxime surname: Folschette fullname: Folschette, Maxime organization: Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Univ Rennes, Inserm, EHESP, Irset, UMR S1085, IFB-CORE, Institut Français de Bioinformatique, UMS CNRS 3601, LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, Univ. Lille, CNRS, Centrale Lille, CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille, UMR 9189, F-59000 – sequence: 2 givenname: Vincent surname: Legagneux fullname: Legagneux, Vincent organization: Univ Rennes, Inserm, EHESP, Irset, UMR S1085 – sequence: 3 givenname: Arnaud surname: Poret fullname: Poret, Arnaud organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004 – sequence: 4 givenname: Lokmane surname: Chebouba fullname: Chebouba, Lokmane organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, École centrale de Nantes, Department of Computer Science, LRIA Laboratory, Electrical Engineering and Computer Science Faculty, University of Science and Technology Houari Boumediene (USTHB) – sequence: 5 givenname: Carito surname: Guziolowski fullname: Guziolowski, Carito email: carito.guziolowski@ls2n.fr organization: LS2N, Laboratoire des Sciences du Numérique de Nantes, UMR 6004, École centrale de Nantes – sequence: 6 givenname: Nathalie orcidid: 0000-0002-5857-7828 surname: Théret fullname: Théret, Nathalie email: nathalie.theret@univ-rennes1.fr organization: Univ Rennes, Inria, CNRS, IRISA, UMR 6074, Univ Rennes, Inserm, EHESP, Irset, UMR S1085 |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31937236$$D View this record in MEDLINE/PubMed https://hal.science/hal-02095930$$DView record in HAL |
| BookMark | eNp9kk9v1DAQxSNURP_AB-CCInGBQ8CO49jmUGlVAa20Ehc4WxNnsuslGwfbWcS3x2laaFeCk62Z33v22O88OxncgFn2kpJ3lMr6faCl5KogVBWM0bqgT7IzWglalJTwkwf70-w8hB0hVEjCn2WnjComSlafZdMqH-2IvR0wjy43HiFiPnpsrYn2gHk3DWnjBujzAeNP57-HDzmMY28NzPVZFbdJPO2dT0K38RjC3HBdvsURojPY91MPPjfgjR3cHp5nTzvoA764Wy-yb58-fr26LtZfPt9crdaF4YLEwkioOaQZmQBiuMFGKlUyYEg7Q42UVDYlU1jVIjFAmhKEbBTyrkWiVMsuspvFt3Ww06O3e_C_tAOrbwvObzT4aE2PWiYHTtLzlIpVHTBpEFiDom2UoNBg8rpcvMap2WNrcIge-kemjzuD3eqNO-hacSkoTwZvF4Ptkex6tdZzjZREccXIoUrsm7vDvPsxYYh6b8P8jjCgm4IuGZNKKsFJQl8foTs3-fRfM1WRmjNJ6kS9enj7P-ffJyEBYgGMdyF47LSx8faH0zC215ToOXN6yZxOmdNz5jRNSnqkvDf_n6ZcNCGxwwb930v_W_QbE9zp8w |
| CitedBy_id | crossref_primary_10_1002_poh2_97 crossref_primary_10_3390_ph16030405 |
| Cites_doi | 10.1073/pnas.0506580102 10.1111/j.1349-7006.2010.01536.x 10.1038/nrgastro.2010.213 10.1016/j.bbamcr.2014.07.012 10.3390/cells7090133 10.1074/jbc.M114.551986 10.1093/nar/gkw1092 10.1371/journal.pcbi.1003204 10.1001/jamaoncol.2017.3055 10.1016/j.molmed.2016.03.002 10.1093/bioinformatics/bty181 10.1186/gb-2012-13-12-r112 10.1111/j.1872-034X.2010.00758.x 10.1159/000111116 10.1158/0008-5472.CAN-14-0225 10.1016/j.cell.2009.11.007 10.1016/j.cels.2015.12.004 10.1007/s10552-018-1036-x 10.1016/j.bbagrm.2018.01.008 10.1016/j.cell.2017.05.046 10.1186/s13046-018-0887-z 10.1159/000093686 10.1371/journal.pone.0116479 10.1245/s10434-014-3779-2 10.1038/cr.2010.161 10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2 10.1016/j.jhep.2007.05.006 10.1186/s12943-017-0712-x 10.1016/j.jhep.2016.05.007 10.1158/1078-0432.CCR-07-1473 10.1038/nmeth.4077 10.1038/nature08987 10.1128/MCB.25.9.3452-3460.2005 10.1016/j.jhep.2016.05.035 10.1186/s12859-015-0733-7 10.1016/j.jhep.2015.08.028 10.1093/nar/gkw1138 10.1093/nar/gkx1132 10.1101/gr.1239303 10.1093/bioinformatics/btr260 10.1016/j.molcel.2017.06.011 10.3389/fphys.2013.00028 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1186/s12859-019-3316-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1471-2105 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_8853508052934fa38cea3be7db971abe PMC6958715 oai:HAL:hal-02095930v4 31937236 10_1186_s12859_019_3316_1 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX AFFHD CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c570t-c8a65a28537a0c5ceb89923a3e1fc1c8818b239e467853a0b2a78b9e5fde099d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000513635900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1471-2105 |
| IngestDate | Mon Nov 10 04:33:34 EST 2025 Tue Nov 04 01:54:50 EST 2025 Fri Nov 28 06:22:45 EST 2025 Sun Nov 09 11:21:19 EST 2025 Tue Oct 07 05:12:36 EDT 2025 Mon Jul 21 06:03:04 EDT 2025 Tue Nov 18 22:43:02 EST 2025 Sat Nov 29 05:40:06 EST 2025 Sat Sep 06 07:27:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Signaling and regulatory knowledge Hepatocellular carcinoma KEGG Discrete modeling Data and network integration |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c570t-c8a65a28537a0c5ceb89923a3e1fc1c8818b239e467853a0b2a78b9e5fde099d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5857-7828 0000-0002-3727-2320 0000-0002-1417-6678 |
| OpenAccessLink | https://doaj.org/article/8853508052934fa38cea3be7db971abe |
| PMID | 31937236 |
| PQID | 2340653806 |
| PQPubID | 44065 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8853508052934fa38cea3be7db971abe pubmedcentral_primary_oai_pubmedcentral_nih_gov_6958715 hal_primary_oai_HAL_hal_02095930v4 proquest_miscellaneous_2338989750 proquest_journals_2340653806 pubmed_primary_31937236 crossref_citationtrail_10_1186_s12859_019_3316_1 crossref_primary_10_1186_s12859_019_3316_1 springer_journals_10_1186_s12859_019_3316_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-14 |
| PublicationDateYYYYMMDD | 2020-01-14 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2020 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | PE Collins (3316_CR39) 2014; 289 G Khemlina (3316_CR4) 2017; 16 Y Liu (3316_CR32) 2015; 10 T VoPham (3316_CR3) 2018; 29 VY-F Wang (3316_CR24) 2017; 67 DI Tai (3316_CR27) 2000; 89 A Subramanian (3316_CR22) 2005; 102 T-P Chang (3316_CR38) 2014; 1843 U Saran (3316_CR2) 2016; 64 H Yokoo (3316_CR28) 2011; 41 EG Cerami (3316_CR12) 2010; 39 A Liberzon (3316_CR42) 2015; 1 Adrian Ally (3316_CR44) 2017; 169 VF-S Shih (3316_CR23) 2011; 21 T Luedde (3316_CR37) 2011; 8 A Liberzon (3316_CR30) 2011; 27 M Kanehisa (3316_CR13) 2017; 45 L Yan (3316_CR9) 2018; 37 TJ Hudson (3316_CR21) 2010; 464 P Shannon (3316_CR15) 2003; 13 T Akinyemiju (3316_CR1) 2017; 3 E. O'Dea (3316_CR36) 2009; 2 Julia Concetti (3316_CR25) 2018; 7 S Yamada (3316_CR8) 2014; 21 3316_CR20 A Fabregat (3316_CR11) 2018; 46 D Turei (3316_CR14) 2016; 13 P Veber (3316_CR18) 2004; 2 E Seki (3316_CR40) 2007; 47 G Giannelli (3316_CR6) 2016; 65 G Wu (3316_CR16) 2012; 13 L D’Alessandro (3316_CR34) 2013; 4 SR Neaves (3316_CR10) 2018; 34 O Akhouayri (3316_CR31) 2005; 25 HG Woo (3316_CR43) 2008; 14 IN Melas (3316_CR19) 2013; 9 SN Steinway (3316_CR35) 2014; 74 J Kim (3316_CR7) 2010; 101 JP Thiery (3316_CR41) 2009; 139 G Cildir (3316_CR26) 2016; 22 H Mi (3316_CR17) 2017; 45 M Pellicelli (3316_CR33) 2018; 1861 BH O’Neil (3316_CR29) 2007; 72 K Schulze (3316_CR5) 2016; 65 |
| References_xml | – volume: 102 start-page: 15545 issue: 43 year: 2005 ident: 3316_CR22 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506580102 – volume: 101 start-page: 1521 issue: 6 year: 2010 ident: 3316_CR7 publication-title: Cancer Sci doi: 10.1111/j.1349-7006.2010.01536.x – volume: 8 start-page: 108 year: 2011 ident: 3316_CR37 publication-title: Nature Reviews Gastroenterology doi: 10.1038/nrgastro.2010.213 – volume: 1843 start-page: 2620 issue: 11 year: 2014 ident: 3316_CR38 publication-title: Biochim Biophys Acta (BBA) - Mol Cell Res doi: 10.1016/j.bbamcr.2014.07.012 – volume: 7 start-page: 133 issue: 9 year: 2018 ident: 3316_CR25 publication-title: Cells doi: 10.3390/cells7090133 – volume: 289 start-page: 7059 issue: 10 year: 2014 ident: 3316_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.M114.551986 – volume: 45 start-page: 353 issue: D1 year: 2017 ident: 3316_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1092 – volume: 9 start-page: 1003204 issue: 9 year: 2013 ident: 3316_CR19 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1003204 – volume: 3 start-page: 1683 issue: 12 year: 2017 ident: 3316_CR1 publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2017.3055 – volume: 22 start-page: 414 issue: 5 year: 2016 ident: 3316_CR26 publication-title: Trends Mol Med doi: 10.1016/j.molmed.2016.03.002 – volume: 34 start-page: 2856 issue: 16 year: 2018 ident: 3316_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty181 – volume: 13 start-page: 112 issue: 12 year: 2012 ident: 3316_CR16 publication-title: Genome Biol doi: 10.1186/gb-2012-13-12-r112 – volume: 41 start-page: 240 issue: 3 year: 2011 ident: 3316_CR28 publication-title: Hepatol Res doi: 10.1111/j.1872-034X.2010.00758.x – volume: 72 start-page: 97 issue: 1-2 year: 2007 ident: 3316_CR29 publication-title: Oncology doi: 10.1159/000111116 – volume: 74 start-page: 5963 issue: 21 year: 2014 ident: 3316_CR35 publication-title: Cancer Research doi: 10.1158/0008-5472.CAN-14-0225 – volume: 139 start-page: 871 issue: 5 year: 2009 ident: 3316_CR41 publication-title: Cell doi: 10.1016/j.cell.2009.11.007 – volume: 1 start-page: 417 issue: 6 year: 2015 ident: 3316_CR42 publication-title: Cell Syst doi: 10.1016/j.cels.2015.12.004 – volume: 29 start-page: 563 issue: 6 year: 2018 ident: 3316_CR3 publication-title: Cancer Causes Control doi: 10.1007/s10552-018-1036-x – volume: 1861 start-page: 61 issue: 2 year: 2018 ident: 3316_CR33 publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2018.01.008 – volume: 169 start-page: 1327-1341.e23 issue: 7 year: 2017 ident: 3316_CR44 publication-title: Cell doi: 10.1016/j.cell.2017.05.046 – volume: 37 start-page: 203 issue: 1 year: 2018 ident: 3316_CR9 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-018-0887-z – volume: 2 start-page: 140 year: 2004 ident: 3316_CR18 publication-title: ComPlexUs doi: 10.1159/000093686 – volume: 2 start-page: a000216 issue: 1 year: 2009 ident: 3316_CR36 publication-title: Cold Spring Harbor Perspectives in Biology – volume: 10 start-page: 0116479 issue: 1 year: 2015 ident: 3316_CR32 publication-title: PLoS ONE doi: 10.1371/journal.pone.0116479 – volume: 21 start-page: 3882 issue: 12 year: 2014 ident: 3316_CR8 publication-title: Ann Surg Oncol doi: 10.1245/s10434-014-3779-2 – volume: 21 start-page: 86 issue: 1 year: 2011 ident: 3316_CR23 publication-title: Cell Res doi: 10.1038/cr.2010.161 – volume: 89 start-page: 2274 issue: 11 year: 2000 ident: 3316_CR27 publication-title: Cancer doi: 10.1002/1097-0142(20001201)89:11<2274::AID-CNCR16>3.0.CO;2-2 – volume: 47 start-page: 307 issue: 2 year: 2007 ident: 3316_CR40 publication-title: J Hepatol doi: 10.1016/j.jhep.2007.05.006 – volume: 16 start-page: 149 issue: 1 year: 2017 ident: 3316_CR4 publication-title: Mol Cancer doi: 10.1186/s12943-017-0712-x – volume: 65 start-page: 798 issue: 4 year: 2016 ident: 3316_CR6 publication-title: J Hepatol doi: 10.1016/j.jhep.2016.05.007 – volume: 14 start-page: 2056 issue: 7 year: 2008 ident: 3316_CR43 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1473 – volume: 13 start-page: 966 issue: 12 year: 2016 ident: 3316_CR14 publication-title: Nat Methods doi: 10.1038/nmeth.4077 – volume: 39 start-page: 685 issue: suppl_1 year: 2010 ident: 3316_CR12 publication-title: Nucleic Acids Res – volume: 464 start-page: 993 year: 2010 ident: 3316_CR21 publication-title: Nature doi: 10.1038/nature08987 – volume: 25 start-page: 3452 issue: 9 year: 2005 ident: 3316_CR31 publication-title: Mol Cell Biol doi: 10.1128/MCB.25.9.3452-3460.2005 – volume: 65 start-page: 1031 issue: 5 year: 2016 ident: 3316_CR5 publication-title: J Hepatol doi: 10.1016/j.jhep.2016.05.035 – ident: 3316_CR20 doi: 10.1186/s12859-015-0733-7 – volume: 64 start-page: 203 issue: 1 year: 2016 ident: 3316_CR2 publication-title: J Hepatol doi: 10.1016/j.jhep.2015.08.028 – volume: 45 start-page: 183 issue: D1 year: 2017 ident: 3316_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1138 – volume: 46 start-page: 649 issue: D1 year: 2018 ident: 3316_CR11 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1132 – volume: 13 start-page: 2498 issue: 11 year: 2003 ident: 3316_CR15 publication-title: Genome Res doi: 10.1101/gr.1239303 – volume: 27 start-page: 1739 issue: 12 year: 2011 ident: 3316_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 67 start-page: 484 issue: 3 year: 2017 ident: 3316_CR24 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.06.011 – volume: 4 start-page: 28 year: 2013 ident: 3316_CR34 publication-title: Front Physiol doi: 10.3389/fphys.2013.00028 |
| SSID | ssj0017805 |
| Score | 2.3301158 |
| Snippet | Background
Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity,... Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity, noise and... Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent heterogeneity,... Abstract Background Integrating genome-wide gene expression patient profiles with regulatory knowledge is a challenging task because of the inherent... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 18 |
| SubjectTerms | Algorithms Bcl-3 protein Biochemistry, Molecular Biology Bioinformatics Biological activity Biological computing Biomedical and Life Sciences Biomolecules Cancer Carcinoma, Hepatocellular - genetics Combinatorial analysis Complex systems Computational Biology - methods Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer applications Computer Science Data and network integration Databases, Genetic Discrete modeling Disease Progression Gene expression Gene Regulatory Networks Genes Genomes Graph theory Hepatocellular carcinoma Heterogeneity Humans KEGG Life Sciences Linear programming Liver cancer Liver Neoplasms - genetics Logic programming Logic programs Microarrays Modeling and Simulation Molecular Networks Pipelines Prediction models Proteins Research Article Signaling and regulatory knowledge Solvers Stability analysis Transcriptome Workflow |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nj5UwEG901cSL3x_oaqrxpGkWaKHFi3kaN3swmz1osremLcX3EhcQeJv43ztTeKy4cS-GG0yh7Uxnpp3hN4S8MVIYIZVgXsaCCZVaZtLcsor73HJRFaUvQ7EJeXysTk-Lk-nArZ_SKnc6MSjqsnF4Rn6QcoEwqirOP7Q_GVaNwujqVELjOrmBKAlpSN07maMIiNc_RTITlR_0CaK1wea5YJwnOUsWtihA9oOFWWNC5GVv83LS5F-R02CQDu_-71DukTuTK0pXo-zcJ9d8_YDcGotT_npItivablr8Xd3ToaHBu_S07TCygzqSokkcTxJpPSaT9-_pHwFxbAXuJR22Z01HQyLYCAJCm4quwQwODYYNMA-WOixpVDdn5hH5dvj566cjNhVpYC6T8cCcMnlmYGK5NLHLnLewg0u54T6pXOIUOAQ25YUHhQw0JrapkcoWPqtKD95pyR-Tvbqp_VNCUy6BDC5jS6HgTWXsee6L0jhr48JHJN6xS7sJwRwLafzQYSejcj1yWAOHNXJYJxF5OzdpR_iOq4g_ogzMhIi8HW403Xc9LWStYBTg1GKAFETZcOin4dbL0hYyMRY6-RokaPGOo9UXjffAM0cY6PhcRGR_Jxl60hm9vhCLiLyaH8NqR16Y2jdbpOFY7xPcvIg8GeVx_hQoUy5TDq3lQlIXfVk-qTfrgCieFxlsnLOIvNvJ9EW3_jldz64exHNyO8WziThhidgne0O39S_ITXc-bPruZViovwEfuUel priority: 102 providerName: ProQuest – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bj5UwEG7Mqokv613R1VTjk6YRaKHFt6Nxsw9mY7xl35q2FM9JXDgBzib--50pF8VVEw1vMIWhnc6FGb4h5JmRwgipBPMyFkyo1DKT5pZV3OeWi6oofRmaTcjjY3VyUrwf_-Pupmr3KSUZNHXY1ip_2SWItQahb8E4T3IGIc9lsHYK-zV8-PhlTh0gSP-YvvztsIUBCjj9YFbWWAV50cW8WCn5S7o0WKHD6__F_w2yPzqddDVIyU1yyde3yNWhDeX322S3otvNFn9M97RvaPAjPd22mMNBbUjR-A3fDGk9lI13r-hPqW8cBY4k7XenTUtDydcA90Gbiq7B4PUNJgiw4pU6bF5UN6fmDvl8-PbTmyM2tmNgLpNxz5wyeWbgJbg0scuctxCrpdxwn1QucQpMv0154UH1Ao2JbWqksoXPqtKDH1ryu2Svbmp_n9CUSyCDw9hSKLhTGXue-6I0ztq48BGJpzXSbsQqx5YZ33SIWVSuh9nUMJsaZ1MnEXk-D9kOQB1_I36NCz8TIsZ2ONG0X_W4ZbWCtwD3FVOhILSGA5-GWy9LW8jEWGDyKYjN4h5Hq3caz4EPjoDP8ZmIyMEkVXrUDp1OuUBIYBXnEXkyX4Z9jWthat_skIZjZ09w6CJybxDC-VGgNrlMOYyWC_Fc8LK8Um_WATs8LzIIkbOIvJiE9Adbf5yuB_9E_ZBcS_GjRJywRByQvb7d-UfkijvrN137OGzWcxtcPUM priority: 102 providerName: Springer Nature |
| Title | A pipeline to create predictive functional networks: application to the tumor progression of hepatocellular carcinoma |
| URI | https://link.springer.com/article/10.1186/s12859-019-3316-1 https://www.ncbi.nlm.nih.gov/pubmed/31937236 https://www.proquest.com/docview/2340653806 https://www.proquest.com/docview/2338989750 https://hal.science/hal-02095930 https://pubmed.ncbi.nlm.nih.gov/PMC6958715 https://doaj.org/article/8853508052934fa38cea3be7db971abe |
| Volume | 21 |
| WOSCitedRecordID | wos000513635900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: Open Access: BioMedCentral Open Access Titles customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: K7- dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RSV dateStart: 20001201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdggMQL4pvAqAziCWTNiZPY4a1Dm4aAKhofKrxYtuOolVhStekk_nvu4rSsTMALqmSpsZ1ad2ffne_6O0JeGJmaVKqUeclTlqrEMpPkltXC51akdVH5qi82IScTNZ0W5YVSX5gTFuCBA-EOFOgTMCIwIAVTjVDOG2G9rGwhY2M9nr5cFhtnaogfIFL_EMOMVX6wihGnDdzmggkR5yze0UI9WD_olhmmQl62My-nS_4WM-1V0fFtcmuwIek4rP0OueKbu-RGqCr54x5Zj-livsD_mXvatbQ3Cz1dLDEkg4cbRV0WrgBpE7LAV6_phUg2zgK7kHbrs3ZJ-wyugN5B25rOQH91Ld73YwIrdViLqGnPzH3y-fjo05sTNlRXYC6TvGNOmTwzQBchDXeZ8xZcr0QY4ePaxU6BJreJKDycpDDGcJsYqWzhs7ryYFZW4gHZa9rGPyI0ERKGwcfYKgUG2Yp7kfuiMs5aXviI8A21tRugx7ECxnfduyAq14FBGhikkUE6jsjL7ZRFwN342-BDZOF2IEJm9w9AkPQgSPpfghSR5yAAO-84Gb_X-AxMasRv5udpRPY38qGHzb7SiUgR4VfxPCLPtt2wTZEXpvHtGscILNQJ9llEHgZx2v4UnIJCJgJmyx1B21nLbk8zn_VQ4HmRgcebReTVRiR_LeuP5Hr8P8j1hNxM8OqBxyxO98let1z7p-S6O-_mq-WIXJVT2bdqRK4dHk3K01G_Q6F9J9kIU2xLaMvsG_SXbz-UX-Hb6ccvPwH-8ELC |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3db9MwELfGAI0XvgeBAQbBC8haYiexg4RQ-Zg6tVQ8DGlvxnZcWoklpU2H9k_xN3KXj44ysbc9oL4lZ9dOfvflu9wR8tzI2MRSxczLMGax4pYZnlo2Fj61Ih5nuc_rZhNyNFKHh9nnDfKr-xYG0yo7mVgL6rx0eEa-y0WMZVRVmL6d_WDYNQqjq10LjQYWA3_yE1y2xZv9D_B-X3C-9_HgfZ-1XQWYS2RYMadMmhgOakqa0CXOW3A5uDDCR2MXOQUazHKReZAgQGNCy41UNvPJOPdgTuUC5r1ELsdCSeSrgWSrqAX2B2gjp5FKdxcRVocDZz1jQkQpi9Z0X90iADTaBBMwz1q3Z5M0_4rU1gpw78b_9uhukuutqU17DW_cIhu-uE2uNs03T-6QZY_OpjP8HN_TqqS19ezpbI6RK9QBFFV-c1JKiyZZfvGa_hHwx1FgPtNqeVTOaZ3o1hQ5oeWYTkDNVyWGRTDPlzps2VSUR-Yu-XIhe94mm0VZ-PuEciGBDH7G5rGCmfLQi9RnuXHWhpkPSNjBQ7u2Qjs2Cvmua09NpbpBlAZEaUSUjgLycjVk1pQnOY_4HWJuRYiVxesL5fybbgWVVrALMNoxAAysagSs0wjrZW4zGRkLi3wGiF2bo98barwGngeWuQ6P44DsdEjUrUxc6FMYBuTp6jZIM3wXpvDlEmkE9jMFMzYg9xr8r_4KlIWQXMBoucYZa2tZv1NMJ3XF9DRLlIySgLzqeOh0Wf98XA_O38QTstU_-DTUw_3R4CG5xvEcJoxYFO-QzWq-9I_IFXdcTRfzx7WQoOTrRbPWbx9JpDs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bj5UwEG7Mesm-eF9FV63GJ02zQAstvh0vJ2vcnGziJfvWtFA8J9kFApxN_PfOcFNcNTGGN5hCW6adb5jhG0KeGymMkEowJ33BhAotM2FsWc5dbLnIk8xlXbEJuVqpk5PkeKhz2ozZ7mNIsv-nAVmaivagyvJ-iav4oAmQdw3c4IRxHsQM3J_LAvPo0V3_-GUKIyBh_xDK_G2zmTHqOPvBxKwxI_Ii3LyYNflL6LSzSMsb_z2Wm-T6AEbpoteeW-SSK26Tq315ym93yHZBq02FP6w72pa0w5eOVjXGdnCXpGgU-2-JtOjTyZtX9KeQOLYCgEnb7VlZ0y4VrKcBoWVO12AI2xIDB5gJS1MsalSUZ-Yu-bx89-nNIRvKNLA0kn7LUmXiyMAguDR-GqXOgg8XcsNdkKdBqgAS2JAnDrZkkDG-DY1UNnFRnjnApxnfIztFWbj7hIZcghgcxmZCwZ0y3_HYJZlJrfUT5xF_fF86HTjMsZTGqe58GRXrfjY1zKbG2dSBR15MTaqewONvwq9RCSZB5N7uTpT1Vz0sZa1gFABrMUQKymw49NNw62RmExkYC518Bio0u8fh4kjjOcDmSATtnwuP7I8apoddo9EhF0gVrPzYI0-ny7De8V2YwpVblOFY8ROAnkfu9Qo5PQq2Uy5DDq3lTFVnfZlfKTbrjlM8TiJwnSOPvBwV9ke3_jhdD_5J-gm5dvx2qY_erz48JLshfrfwAxaIfbLT1lv3iFxJz9tNUz_u1vB35NZJCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pipeline+to+create+predictive+functional+networks%3A+application+to+the+tumor+progression+of+hepatocellular+carcinoma&rft.jtitle=BMC+bioinformatics&rft.au=Folschette%2C+Maxime&rft.au=Legagneux%2C+Vincent&rft.au=Poret%2C+Arnaud&rft.au=Chebouba%2C+Lokmane&rft.date=2020-01-14&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=21&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-019-3316-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12859_019_3316_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |