The research of sleep staging based on single-lead electrocardiogram and deep neural network

The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering letters Vol. 8; no. 1; pp. 87 - 93
Main Authors: Wei, Ran, Zhang, Xinghua, Wang, Jinhai, Dang, Xin
Format: Journal Article
Language:English
Published: Korea The Korean Society of Medical and Biological Engineering 01.02.2018
Springer Nature B.V
대한의용생체공학회
Subjects:
ISSN:2093-9868, 2093-985X, 2093-985X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen’s kappa coefficient of about 0.56 for the classification of Wake, REM and NREM.
AbstractList The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen’s kappa coefficient of about 0.56 for the classification of Wake, REM and NREM.
The polysomnogram (PSG) analysis is consideredthe golden standard for sleep staging under the clinicalenvironment. The electroencephalogram (EEG) signal isthe most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEGsignal presents us with a few technical challenges. Electrocardiogramsignals on the other hand, are easier torecord, and can provide an attractive alternative for homesleep monitoring. In this paper we describe a method basedon deep neural network (DNN), which can be used for theclassification of the sleep stages into Wake (W), rapid-eyemovement(REM) and non-rapid-eye-movement (NREM)sleep stage. We apply the sleep stage stacked autoencoderto constitute a 4-layer DNN model. In order to test theaccuracy of our method, eighteen PSGs from the MIT-BIHPolysomnographic Database were used. A total of 11 featureswere extracted from each electrocardiogram recordingThe experimental design employs cross-validationacross subjects, ensuring the independence of the trainingand the test data. We obtained an accuracy of 77% and aCohen’s kappa coefficient of about 0.56 for the classificationof Wake, REM and NREM. KCI Citation Count: 1
The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen's kappa coefficient of about 0.56 for the classification of Wake, REM and NREM.The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen's kappa coefficient of about 0.56 for the classification of Wake, REM and NREM.
Author Wang, Jinhai
Wei, Ran
Zhang, Xinghua
Dang, Xin
Author_xml – sequence: 1
  givenname: Ran
  surname: Wei
  fullname: Wei, Ran
  organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center
– sequence: 2
  givenname: Xinghua
  surname: Zhang
  fullname: Zhang, Xinghua
  organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center
– sequence: 3
  givenname: Jinhai
  surname: Wang
  fullname: Wang, Jinhai
  email: tjpubme@126.com
  organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center
– sequence: 4
  givenname: Xin
  surname: Dang
  fullname: Dang, Xin
  organization: School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30603193$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381740$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kk1rFTEYhYNUbK39AW4k4EYXo8nkY2Y2Qil-FAqCXMGFEHKTN3PTOze5JjNK_30znbZqQbN5E_KcwyE5T9FBiAEQek7JG0pI8zZTJhivCG0qQjiv6CN0VJOOVV0rvh3c72V7iE5yviRlCSo6xp6gQ0YkYbRjR-j7agM4QQadzAZHh_MAsMd51L0PPV7rDBbHgHM5DVANoC2GAcyYotHJ-tgnvcM6WGxnXYAp6aGM8VdM22fosdNDhpPbeYy-fni_OvtUXXz-eH52elEZ0ZCx0uu2oQaElKKRjSFgqRbcOgetq9eUt5Rpy5zrnK0lp5R1UjBijCXcNrqcj9HrxTckp7bGq6j9zeyj2iZ1-mV1rlgjOt7xwr5b2P203oE1EMaSWO2T3-l0daP8-yb4TfH5qWRNWiHaYvDq1iDFHxPkUe18NjAMOkCcsqqpZIQK3s25Xj5AL-OUQnkKVRPSSV63fKZe_JnoPsrdJxWgWQCTYs4JnDJ-1KOPc0A_KErU3Ai1NEKVRqi5EWq2pg-Ud-b_09SLJhc29JB-h_636Bq4TMdU
CitedBy_id crossref_primary_10_1088_1361_6579_ac6049
crossref_primary_10_3389_fnins_2022_974192
crossref_primary_10_3389_fnins_2021_573194
crossref_primary_10_3390_app12063028
crossref_primary_10_3390_s21030952
crossref_primary_10_3390_app13063474
crossref_primary_10_3390_bioengineering10050573
crossref_primary_10_1007_s10489_022_04432_0
crossref_primary_10_1016_j_sleep_2024_05_033
crossref_primary_10_1016_j_compbiomed_2023_107127
crossref_primary_10_1016_j_procs_2019_08_173
crossref_primary_10_1007_s13534_018_0058_3
crossref_primary_10_1088_1741_2552_ab39ca
crossref_primary_10_3390_electronics8121461
crossref_primary_10_3390_ijerph19116934
crossref_primary_10_1007_s11042_022_12551_6
crossref_primary_10_1109_JBHI_2022_3225363
crossref_primary_10_3390_s20195688
crossref_primary_10_1109_ACCESS_2022_3167637
crossref_primary_10_1109_TIM_2024_3481551
crossref_primary_10_1007_s13534_019_00108_w
crossref_primary_10_1109_LSENS_2024_3523427
crossref_primary_10_1186_s40537_020_00406_6
crossref_primary_10_1007_s41105_024_00563_8
crossref_primary_10_1038_s41598_019_49703_y
crossref_primary_10_3389_fnins_2023_1059186
crossref_primary_10_3390_s21051562
crossref_primary_10_3390_s23010328
crossref_primary_10_1016_j_neulet_2022_136550
crossref_primary_10_1016_j_procs_2020_09_280
crossref_primary_10_3390_diagnostics12051235
crossref_primary_10_1016_j_bspc_2022_103548
crossref_primary_10_1088_1361_6579_ac826e
crossref_primary_10_1088_1361_6579_aaf339
crossref_primary_10_3390_e24030379
crossref_primary_10_1088_1361_6579_ac5a78
crossref_primary_10_1109_JBHI_2020_2979168
crossref_primary_10_1007_s11517_023_02980_2
crossref_primary_10_3389_fpubh_2022_1092222
crossref_primary_10_3390_diagnostics11112054
crossref_primary_10_3390_electronics9010142
Cites_doi 10.1016/j.compbiomed.2016.09.018
10.1152/ajpheart.2000.278.6.H2039
10.1109/TBME.2005.869773
10.2337/diaspect.29.1.5
10.1088/0967-3334/36/10/2027
10.1109/TBME.2014.2301462
10.1590/1517-86922014200201357
10.1001/archpsyc.1969.01740140118016
10.1109/JBHI.2013.2276083
10.1037/a0037489
10.1007/s11356-016-7812-9
10.1109/TSMCA.2012.2192264
10.1109/TBME.2003.817636
10.1504/IJBET.2010.032695
10.1016/j.cmpb.2013.06.007
10.1109/IEMBS.2008.4649365
ContentType Journal Article
Copyright Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
ACYCR
DOI 10.1007/s13534-017-0044-1
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Korean Citation Index
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-985X
EndPage 93
ExternalDocumentID oai_kci_go_kr_ARTI_3759494
PMC6208558
30603193
10_1007_s13534_017_0044_1
Genre Journal Article
GrantInformation_xml – fundername: Tianjin Research Program of Application Foundation and Advanced Technology
  grantid: 14JCYBJC42400
– fundername: the National Natural Science Foundation for Young Scholars of China
  grantid: 61403276
– fundername: ;
  grantid: 14JCYBJC42400
– fundername: ;
  grantid: 61403276
GroupedDBID -EM
0R~
0VY
203
29~
2VQ
30V
4.4
406
408
53G
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
AUKKA
AXYYD
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
HF~
HMJXF
HRMNR
HYE
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
PT4
RLLFE
ROL
RPM
RSV
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
Z7X
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7X8
5PM
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
UNUBA
ID FETCH-LOGICAL-c570t-ab871ce5665767c0ed1a54dffe8f2b14813ad3ff9fd26411396530ccd04d7a113
IEDL.DBID RSV
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440667700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2093-9868
2093-985X
IngestDate Tue Nov 21 21:38:39 EST 2023
Thu Aug 21 13:27:32 EDT 2025
Fri Jul 11 08:22:41 EDT 2025
Wed Sep 17 13:51:17 EDT 2025
Wed Feb 19 02:31:48 EST 2025
Tue Nov 18 21:55:06 EST 2025
Sat Nov 29 02:18:43 EST 2025
Fri Feb 21 02:38:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Stacked autoencoder (SAE)
Sleep stage
Electrocardiogram (ECG)
Deep neural network (DNN)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-ab871ce5665767c0ed1a54dffe8f2b14813ad3ff9fd26411396530ccd04d7a113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s13534-017-0044-1.pdf
PMID 30603193
PQID 2009642841
PQPubID 2043953
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_3759494
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6208558
proquest_miscellaneous_2163015491
proquest_journals_2009642841
pubmed_primary_30603193
crossref_citationtrail_10_1007_s13534_017_0044_1
crossref_primary_10_1007_s13534_017_0044_1
springer_journals_10_1007_s13534_017_0044_1
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Korea
PublicationPlace_xml – name: Korea
– name: Germany
– name: Heidelberg
PublicationTitle Biomedical engineering letters
PublicationTitleAbbrev Biomed. Eng. Lett
PublicationTitleAlternate Biomed Eng Lett
PublicationYear 2018
Publisher The Korean Society of Medical and Biological Engineering
Springer Nature B.V
대한의용생체공학회
Publisher_xml – name: The Korean Society of Medical and Biological Engineering
– name: Springer Nature B.V
– name: 대한의용생체공학회
References Kurihara, Watanabe (CR9) 2012; 42
Willemen, Van Deun, Verhaert, Vandekerckhove, Exadaktylos, Verbraecken, Van Huffel, Haex, Vander (CR10) 2014; 18
Xu, Lorber (CR19) 2014; 82
Richman, Moorman (CR17) 2000; 278
Rosenfield, Fitzpatrick-Lins (CR18) 1986; 52
Carley, Farabi (CR1) 2016; 29
Mendez, Matteucci, Castronovo, Ferini-Strambi (CR5) 2010; 3
Kawamoto, Kuriyama, Tajima (CR11) 2013; 2
Redmond, Heneghan (CR4) 2006; 53
Domingues, Paiva, Sanches (CR8) 2014; 61
Penzel, Kantelhardt, Grote, Peter, Bunde (CR16) 2003; 50
Ebrahimi, Setarehdan, Ayala-Moyeda, Nazeran (CR6) 2013; 112
CR12
Wolpert (CR2) 1969; 20
Fonseca, Long, Radha, Haakma (CR7) 2015; 36
Goldberger (CR14) 2000; 101
Li, Peng, Yuan, Shao, Chi (CR20) 2016; 23
Kurihara, Watanabe (CR21) 2012; 42
Park, Park, Jeong (CR13) 2000; 2
Nascimento, Passos, Pedrosa, Brasileiro-Santos, Barros, Costa, Lima (CR3) 2014; 20
Singh, Sharma, Gupta (CR15) 2016; 78
S Xu (44_CR19) 2014; 82
Xiang Li (44_CR20) 2016; 23
J Singh (44_CR15) 2016; 78
EA Wolpert (44_CR2) 1969; 20
Y Kurihara (44_CR9) 2012; 42
AL Goldberger (44_CR14) 2000; 101
K Kawamoto (44_CR11) 2013; 2
F Ebrahimi (44_CR6) 2013; 112
AP Nascimento (44_CR3) 2014; 20
P Fonseca (44_CR7) 2015; 36
JS Richman (44_CR17) 2000; 278
H Park (44_CR13) 2000; 2
DW Carley (44_CR1) 2016; 29
44_CR12
A Domingues (44_CR8) 2014; 61
T Willemen (44_CR10) 2014; 18
MO Mendez (44_CR5) 2010; 3
T Penzel (44_CR16) 2003; 50
Y Kurihara (44_CR21) 2012; 42
SJ Redmond (44_CR4) 2006; 53
GH Rosenfield (44_CR18) 1986; 52
References_xml – volume: 78
  start-page: 138
  year: 2016
  end-page: 143
  ident: CR15
  article-title: A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.09.018
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  end-page: H2049
  ident: CR17
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 53
  start-page: 485
  issue: 3
  year: 2006
  end-page: 496
  ident: CR4
  article-title: Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.869773
– volume: 29
  start-page: 5
  issue: 1
  year: 2016
  end-page: 9
  ident: CR1
  article-title: Physiology of sleep
  publication-title: Diabetes Spectr
  doi: 10.2337/diaspect.29.1.5
– volume: 36
  start-page: 2027
  issue: 10
  year: 2015
  end-page: 2040
  ident: CR7
  article-title: Sleep stage classification with ECG and respiratory effort
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/10/2027
– volume: 61
  start-page: 1711
  issue: 6
  year: 2014
  end-page: 1719
  ident: CR8
  article-title: Hypnogram and sleep parameter computation from activity and cardiovascular data
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2301462
– volume: 20
  start-page: 115
  issue: 2
  year: 2014
  end-page: 118
  ident: CR3
  article-title: Sleep quality and stress tolerance in patients with obstructive sleep apnea
  publication-title: Rev Bras Med Esp.
  doi: 10.1590/1517-86922014200201357
– volume: 52
  start-page: 223
  issue: 2
  year: 1986
  end-page: 227
  ident: CR18
  article-title: A coefficient of agreement as a measure of the matic classification accuracy
  publication-title: Photogramm Eng Remote Sens
– volume: 2
  start-page: 20
  issue: 1
  year: 2013
  end-page: 25
  ident: CR11
  article-title: Actigraphic detection of REM sleep based on respiratory rate estimation
  publication-title: J Med Bioeng
– ident: CR12
– volume: 20
  start-page: 246
  issue: 2
  year: 1969
  end-page: 247
  ident: CR2
  article-title: A manual of standardized terminology. Techniques and scoring system for sleep stages of human subjects
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1969.01740140118016
– volume: 2
  start-page: 1316
  year: 2000
  end-page: 1319
  ident: CR13
  article-title: Hybrid neural-network and rule-based expert system for automatic sleep stage scoring
  publication-title: Eng Med Biol Soc
– volume: 18
  start-page: 661
  issue: 2
  year: 2014
  end-page: 669
  ident: CR10
  article-title: An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification
  publication-title: IEEE J Biomed Health Infor m
  doi: 10.1109/JBHI.2013.2276083
– volume: 82
  start-page: 1219
  issue: 6
  year: 2014
  ident: CR19
  article-title: Interrater agreement statistics with skewed data: evaluation of alternatives to Cohen’s kappa
  publication-title: J Consult Clin Psychol
  doi: 10.1037/a0037489
– volume: 23
  start-page: 22408
  issue: 22
  year: 2016
  end-page: 22417
  ident: CR20
  article-title: Deep learning architecture for air quality predictions
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-016-7812-9
– volume: 42
  start-page: 1450
  issue: 6
  year: 2012
  end-page: 1459
  ident: CR9
  article-title: Sleep-stage decision algorithm by using heartbeat and body-movement signals
  publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum
  doi: 10.1109/TSMCA.2012.2192264
– volume: 101
  start-page: 1
  issue: 23
  year: 2000
  end-page: 9
  ident: CR14
  article-title: Components of a new research resource for complex physiologic signals, physiobank, physiotoolkit, and physionet
  publication-title: Am Heart Assoc J Circ
– volume: 50
  start-page: 1143
  issue: 10
  year: 2003
  end-page: 1151
  ident: CR16
  article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.817636
– volume: 3
  start-page: 246
  issue: 3–4
  year: 2010
  end-page: 263
  ident: CR5
  article-title: Sleep staging from heart rate variability: time-varying spectral features and hidden Markov models
  publication-title: Biomed Eng Technol
  doi: 10.1504/IJBET.2010.032695
– volume: 42
  start-page: 1450
  issue: 6
  year: 2012
  end-page: 1459
  ident: CR21
  article-title: Sleep-stage decision algorithm by using heart-beat and body-movement signals
  publication-title: IEEE Trans Syst Man Cyber
  doi: 10.1109/TSMCA.2012.2192264
– volume: 112
  start-page: 47
  issue: 1
  year: 2013
  end-page: 57
  ident: CR6
  article-title: Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, timedomain, and nonlinear dynamics features of heart rate variability signals
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.06.007
– volume: 53
  start-page: 485
  issue: 3
  year: 2006
  ident: 44_CR4
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.869773
– volume: 101
  start-page: 1
  issue: 23
  year: 2000
  ident: 44_CR14
  publication-title: Am Heart Assoc J Circ
– volume: 20
  start-page: 246
  issue: 2
  year: 1969
  ident: 44_CR2
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.1969.01740140118016
– volume: 78
  start-page: 138
  year: 2016
  ident: 44_CR15
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.09.018
– volume: 29
  start-page: 5
  issue: 1
  year: 2016
  ident: 44_CR1
  publication-title: Diabetes Spectr
  doi: 10.2337/diaspect.29.1.5
– volume: 2
  start-page: 20
  issue: 1
  year: 2013
  ident: 44_CR11
  publication-title: J Med Bioeng
– volume: 50
  start-page: 1143
  issue: 10
  year: 2003
  ident: 44_CR16
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2003.817636
– volume: 18
  start-page: 661
  issue: 2
  year: 2014
  ident: 44_CR10
  publication-title: IEEE J Biomed Health Infor m
  doi: 10.1109/JBHI.2013.2276083
– volume: 112
  start-page: 47
  issue: 1
  year: 2013
  ident: 44_CR6
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.06.007
– volume: 20
  start-page: 115
  issue: 2
  year: 2014
  ident: 44_CR3
  publication-title: Rev Bras Med Esp.
  doi: 10.1590/1517-86922014200201357
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: 44_CR17
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.2000.278.6.H2039
– volume: 42
  start-page: 1450
  issue: 6
  year: 2012
  ident: 44_CR21
  publication-title: IEEE Trans Syst Man Cyber
  doi: 10.1109/TSMCA.2012.2192264
– volume: 36
  start-page: 2027
  issue: 10
  year: 2015
  ident: 44_CR7
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/36/10/2027
– volume: 3
  start-page: 246
  issue: 3–4
  year: 2010
  ident: 44_CR5
  publication-title: Biomed Eng Technol
  doi: 10.1504/IJBET.2010.032695
– volume: 82
  start-page: 1219
  issue: 6
  year: 2014
  ident: 44_CR19
  publication-title: J Consult Clin Psychol
  doi: 10.1037/a0037489
– volume: 61
  start-page: 1711
  issue: 6
  year: 2014
  ident: 44_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2301462
– volume: 2
  start-page: 1316
  year: 2000
  ident: 44_CR13
  publication-title: Eng Med Biol Soc
– volume: 52
  start-page: 223
  issue: 2
  year: 1986
  ident: 44_CR18
  publication-title: Photogramm Eng Remote Sens
– ident: 44_CR12
  doi: 10.1109/IEMBS.2008.4649365
– volume: 42
  start-page: 1450
  issue: 6
  year: 2012
  ident: 44_CR9
  publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum
  doi: 10.1109/TSMCA.2012.2192264
– volume: 23
  start-page: 22408
  issue: 22
  year: 2016
  ident: 44_CR20
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-016-7812-9
SSID ssj0000515933
Score 2.3310642
Snippet The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is...
The polysomnogram (PSG) analysis is consideredthe golden standard for sleep staging under the clinicalenvironment. The electroencephalogram (EEG) signal isthe...
SourceID nrf
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Artificial neural networks
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classification
EEG
EKG
Electrocardiography
Electroencephalography
Engineering
Feature extraction
Medical and Radiation Physics
Model accuracy
Model testing
Neural networks
NREM sleep
Original
Original Article
Recording
REM sleep
Sleep
Sleep and wakefulness
의공학
Title The research of sleep staging based on single-lead electrocardiogram and deep neural network
URI https://link.springer.com/article/10.1007/s13534-017-0044-1
https://www.ncbi.nlm.nih.gov/pubmed/30603193
https://www.proquest.com/docview/2009642841
https://www.proquest.com/docview/2163015491
https://pubmed.ncbi.nlm.nih.gov/PMC6208558
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381740
Volume 8
WOSCitedRecordID wos000440667700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.87-93
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2093-985X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000515933
  issn: 2093-9868
  databaseCode: RSV
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZo4UAPvKGBUhnECWQp2fiVY1VRgYQqxKPaA5Ll-NGuunKq3W1_f2fyWhYKEpyiyBPHscfxjGf8fYS8iVJHVdSS-WAl46KSTIsoGA-FL2ovPG_PrZ18UsfHejqtPvfnuJdDtvsQkmz_1OvDbqUoMWNCMYxCMnB5bsNqp3E2fvl6Mm6sIGlJRyE_AW-dVVrqIZp5Uy0b69FWWsSbTM3fMyZ_CZu2q9HR_f_6jgfkXm980oNOWx6SWyE9Ijs_QRI-Jj9Ab2iPAHRGm0iX8xAuKNiQyGZEcdHztEkUtxjmgc1BRWhPpePa1FbM9qI2eerxOYTLhDemLtn8Cfl-9P7b4QfWMzAwJ1S-YrYGf8oFgeEZqVwefGEF9zEGHSc1eFJFaX0ZYxU9GFYFWJNSlLlzPudeWbh_SrZTk8IuobWwyk9q4UIVea3ATIkW4d-dt0hdJDOSD-NgXA9PjiwZc7MGVsaOM9BxBjvOFBl5Oz5y0WFz_E34NQyuOXczg4jaeD1tzPnCgN_w0ZRKVLziGdkbxt70c3mJRJ0Vemkc6ng1FsMsxNCKTaG5BBkwa1u0O5B51qnK2CRwyvCoWJkRtaFEowC2Z7Mkzc5apG-JDKpCZ-TdoErrZv3xS5__k_QLchdsQN0lou-R7dXiMrwkd9zVarZc7JMtNdX77QS7BvP2HfI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoQSoceNMGWjCIE5WlZONHckSIqhXLCkGpekCyHD_oqiun2t3y-5nJa1koSPQURZ44jj2OZzzj7yPkdZBFUFklmfNGMi5KyQoRBOM-c1nlhOPNubWTsZpMitPT8lN3jnvRZ7v3IcnmT7067JaLHDMmFMMoJAOX5yaHBQvz-D5_ORk2VpC0pKWQH4G3zspCFn0086pa1tajjTgPV5maf2ZM_hY2bVajg3vX-o775G5nfNK3rbY8IDd8fEju_AJJ-Ih8A72hHQLQGa0DXcy8v6BgQyKbEcVFz9E6UtximHk2AxWhHZWObVJbMduLmuiow-cQLhPeGNtk88fk68H743eHrGNgYFaodMlMBf6U9QLDM1LZ1LvMCO5C8EUYVeBJZblxeQhlcGBYZWBNSpGn1rqUO2Xg_gnZjHX0O4RWwig3qoT1ZeCVAjMlGIR_t84gdZFMSNqPg7YdPDmyZMz0ClgZO05Dx2nsOJ0l5M3wyEWLzfEv4VcwuPrcTjUiauP1e63P5xr8hiOdK1Hykidktx973c3lBRJ1luilcajj5VAMsxBDKyb6-hJkwKxt0O5AZrtVlaFJ4JThUbE8IWpNiQYBbM96SZyeNUjfEhlURZGQ_V6VVs3665c-_S_pF2Tr8PjjWI-PJh-ekdtgDxZtUvou2VzOL_0euWV_LKeL-fNmmv0EpNcf7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELagIAQP5YbQAgbxRGU12fhIHqvCiopqVQmo-oBkOT7oqitntbvl9zOTa1koSIinKMrY8TGWZzzj7yPkTZBFUFklmfNGMi5KyQoRBOM-c1nlhOPNvbXTYzWZFGdn5UnHc7rss937kGR7pwFRmuJqf-7C_vriWy5yzJ5QDCOSDNyfGxw5g9Bd_3Q6HLIggUlLJz8Cz52VhSz6yOZVtWzsTdfjIlxldv6ePflLCLXZmcZ3_7tP98h2Z5TSg1aL7pNrPj4gd36CKnxIvoI-0Q4Z6JzWgS5n3s8p2JbIckRxM3S0jhSPHmaezUB1aEexY5uUV8wCoyY66rAcwmjCH2ObhP6IfBm__3z4gXXMDMwKla6YqcDPsl5g2EYqm3qXGcFdCL4Iowo8rCw3Lg-hDA4MrgysTCny1FqXcqcMvD8mW7GO_imhlTDKjSphfRl4pcB8CQZh4a0zSGkkE5L2c6JtB1uO7BkzvQZcxoHTMHAaB05nCXk7FJm3mB1_E34NE60v7FQj0jY-v9X6YqHBnzjSuRIlL3lCdns90N0aXyKBZ4neG4c6Xg2fYXViyMVEX1-CDJi7DQoeyDxp1WZoEjhreIUsT4jaUKhBANuz-SVOzxsEcInMqqJIyF6vVutm_bGnz_5J-iW5dfJurI-PJh93yG0wE4s2V32XbK0Wl_45uWm_r6bLxYtmxf0Aljgo0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+research+of+sleep+staging+based+on+single-lead+electrocardiogram+and+deep+neural+network&rft.jtitle=Biomedical+engineering+letters&rft.au=Wei%2C+Ran&rft.au=Zhang%2C+Xinghua&rft.au=Wang%2C+Jinhai&rft.au=Dang%2C+Xin&rft.date=2018-02-01&rft.eissn=2093-985X&rft.volume=8&rft.issue=1&rft.spage=87&rft_id=info:doi/10.1007%2Fs13534-017-0044-1&rft_id=info%3Apmid%2F30603193&rft.externalDocID=30603193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon