The research of sleep staging based on single-lead electrocardiogram and deep neural network
The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a...
Uloženo v:
| Vydáno v: | Biomedical engineering letters Ročník 8; číslo 1; s. 87 - 93 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Korea
The Korean Society of Medical and Biological Engineering
01.02.2018
Springer Nature B.V 대한의용생체공학회 |
| Témata: | |
| ISSN: | 2093-9868, 2093-985X, 2093-985X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen’s kappa coefficient of about 0.56 for the classification of Wake, REM and NREM. |
|---|---|
| AbstractList | The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen’s kappa coefficient of about 0.56 for the classification of Wake, REM and NREM. The polysomnogram (PSG) analysis is consideredthe golden standard for sleep staging under the clinicalenvironment. The electroencephalogram (EEG) signal isthe most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEGsignal presents us with a few technical challenges. Electrocardiogramsignals on the other hand, are easier torecord, and can provide an attractive alternative for homesleep monitoring. In this paper we describe a method basedon deep neural network (DNN), which can be used for theclassification of the sleep stages into Wake (W), rapid-eyemovement(REM) and non-rapid-eye-movement (NREM)sleep stage. We apply the sleep stage stacked autoencoderto constitute a 4-layer DNN model. In order to test theaccuracy of our method, eighteen PSGs from the MIT-BIHPolysomnographic Database were used. A total of 11 featureswere extracted from each electrocardiogram recordingThe experimental design employs cross-validationacross subjects, ensuring the independence of the trainingand the test data. We obtained an accuracy of 77% and aCohen’s kappa coefficient of about 0.56 for the classificationof Wake, REM and NREM. KCI Citation Count: 1 The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen's kappa coefficient of about 0.56 for the classification of Wake, REM and NREM.The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is the most important signal for classification of sleep stages. However, in-vivo signal recording and analysis of EEG signal presents us with a few technical challenges. Electrocardiogram signals on the other hand, are easier to record, and can provide an attractive alternative for home sleep monitoring. In this paper we describe a method based on deep neural network (DNN), which can be used for the classification of the sleep stages into Wake (W), rapid-eye-movement (REM) and non-rapid-eye-movement (NREM) sleep stage. We apply the sleep stage stacked autoencoder to constitute a 4-layer DNN model. In order to test the accuracy of our method, eighteen PSGs from the MIT-BIH Polysomnographic Database were used. A total of 11 features were extracted from each electrocardiogram recording The experimental design employs cross-validation across subjects, ensuring the independence of the training and the test data. We obtained an accuracy of 77% and a Cohen's kappa coefficient of about 0.56 for the classification of Wake, REM and NREM. |
| Author | Wang, Jinhai Wei, Ran Zhang, Xinghua Dang, Xin |
| Author_xml | – sequence: 1 givenname: Ran surname: Wei fullname: Wei, Ran organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center – sequence: 2 givenname: Xinghua surname: Zhang fullname: Zhang, Xinghua organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center – sequence: 3 givenname: Jinhai surname: Wang fullname: Wang, Jinhai email: tjpubme@126.com organization: School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center – sequence: 4 givenname: Xin surname: Dang fullname: Dang, Xin organization: School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin Medical Electronic Treating-Technology Engineering Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30603193$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381740$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kk1rFTEYhYNUbK39AW4k4EYXo8nkY2Y2Qil-FAqCXMGFEHKTN3PTOze5JjNK_30znbZqQbN5E_KcwyE5T9FBiAEQek7JG0pI8zZTJhivCG0qQjiv6CN0VJOOVV0rvh3c72V7iE5yviRlCSo6xp6gQ0YkYbRjR-j7agM4QQadzAZHh_MAsMd51L0PPV7rDBbHgHM5DVANoC2GAcyYotHJ-tgnvcM6WGxnXYAp6aGM8VdM22fosdNDhpPbeYy-fni_OvtUXXz-eH52elEZ0ZCx0uu2oQaElKKRjSFgqRbcOgetq9eUt5Rpy5zrnK0lp5R1UjBijCXcNrqcj9HrxTckp7bGq6j9zeyj2iZ1-mV1rlgjOt7xwr5b2P203oE1EMaSWO2T3-l0daP8-yb4TfH5qWRNWiHaYvDq1iDFHxPkUe18NjAMOkCcsqqpZIQK3s25Xj5AL-OUQnkKVRPSSV63fKZe_JnoPsrdJxWgWQCTYs4JnDJ-1KOPc0A_KErU3Ai1NEKVRqi5EWq2pg-Ud-b_09SLJhc29JB-h_636Bq4TMdU |
| CitedBy_id | crossref_primary_10_1088_1361_6579_ac6049 crossref_primary_10_3389_fnins_2022_974192 crossref_primary_10_3389_fnins_2021_573194 crossref_primary_10_3390_app12063028 crossref_primary_10_3390_s21030952 crossref_primary_10_3390_app13063474 crossref_primary_10_3390_bioengineering10050573 crossref_primary_10_1007_s10489_022_04432_0 crossref_primary_10_1016_j_sleep_2024_05_033 crossref_primary_10_1016_j_compbiomed_2023_107127 crossref_primary_10_1016_j_procs_2019_08_173 crossref_primary_10_1007_s13534_018_0058_3 crossref_primary_10_1088_1741_2552_ab39ca crossref_primary_10_3390_electronics8121461 crossref_primary_10_3390_ijerph19116934 crossref_primary_10_1007_s11042_022_12551_6 crossref_primary_10_1109_JBHI_2022_3225363 crossref_primary_10_3390_s20195688 crossref_primary_10_1109_ACCESS_2022_3167637 crossref_primary_10_1109_TIM_2024_3481551 crossref_primary_10_1007_s13534_019_00108_w crossref_primary_10_1109_LSENS_2024_3523427 crossref_primary_10_1186_s40537_020_00406_6 crossref_primary_10_1007_s41105_024_00563_8 crossref_primary_10_1038_s41598_019_49703_y crossref_primary_10_3389_fnins_2023_1059186 crossref_primary_10_3390_s21051562 crossref_primary_10_3390_s23010328 crossref_primary_10_1016_j_neulet_2022_136550 crossref_primary_10_1016_j_procs_2020_09_280 crossref_primary_10_3390_diagnostics12051235 crossref_primary_10_1016_j_bspc_2022_103548 crossref_primary_10_1088_1361_6579_ac826e crossref_primary_10_1088_1361_6579_aaf339 crossref_primary_10_3390_e24030379 crossref_primary_10_1088_1361_6579_ac5a78 crossref_primary_10_1109_JBHI_2020_2979168 crossref_primary_10_1007_s11517_023_02980_2 crossref_primary_10_3389_fpubh_2022_1092222 crossref_primary_10_3390_diagnostics11112054 crossref_primary_10_3390_electronics9010142 |
| Cites_doi | 10.1016/j.compbiomed.2016.09.018 10.1152/ajpheart.2000.278.6.H2039 10.1109/TBME.2005.869773 10.2337/diaspect.29.1.5 10.1088/0967-3334/36/10/2027 10.1109/TBME.2014.2301462 10.1590/1517-86922014200201357 10.1001/archpsyc.1969.01740140118016 10.1109/JBHI.2013.2276083 10.1037/a0037489 10.1007/s11356-016-7812-9 10.1109/TSMCA.2012.2192264 10.1109/TBME.2003.817636 10.1504/IJBET.2010.032695 10.1016/j.cmpb.2013.06.007 10.1109/IEMBS.2008.4649365 |
| ContentType | Journal Article |
| Copyright | Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017 Copyright Springer Science & Business Media 2018 |
| Copyright_xml | – notice: Korean Society of Medical and Biological Engineering and Springer-Verlag GmbH Germany 2017 – notice: Copyright Springer Science & Business Media 2018 |
| DBID | AAYXX CITATION NPM 7X8 5PM ACYCR |
| DOI | 10.1007/s13534-017-0044-1 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Korean Citation Index |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2093-985X |
| EndPage | 93 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_3759494 PMC6208558 30603193 10_1007_s13534_017_0044_1 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Tianjin Research Program of Application Foundation and Advanced Technology grantid: 14JCYBJC42400 – fundername: the National Natural Science Foundation for Young Scholars of China grantid: 61403276 – fundername: ; grantid: 14JCYBJC42400 – fundername: ; grantid: 61403276 |
| GroupedDBID | -EM 0R~ 0VY 203 29~ 2VQ 30V 4.4 406 408 53G 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACPRK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR AUKKA AXYYD AYJHY BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 HF~ HMJXF HRMNR HYE HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J OK1 PT4 RLLFE ROL RPM RSV S27 SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 Z7X ZMTXR ~A9 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 7X8 5PM AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC UNUBA |
| ID | FETCH-LOGICAL-c570t-ab871ce5665767c0ed1a54dffe8f2b14813ad3ff9fd26411396530ccd04d7a113 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440667700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2093-9868 2093-985X |
| IngestDate | Tue Nov 21 21:38:39 EST 2023 Thu Aug 21 13:27:32 EDT 2025 Fri Jul 11 08:22:41 EDT 2025 Wed Sep 17 13:51:17 EDT 2025 Wed Feb 19 02:31:48 EST 2025 Tue Nov 18 21:55:06 EST 2025 Sat Nov 29 02:18:43 EST 2025 Fri Feb 21 02:38:55 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Stacked autoencoder (SAE) Sleep stage Electrocardiogram (ECG) Deep neural network (DNN) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c570t-ab871ce5665767c0ed1a54dffe8f2b14813ad3ff9fd26411396530ccd04d7a113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s13534-017-0044-1.pdf |
| PMID | 30603193 |
| PQID | 2009642841 |
| PQPubID | 2043953 |
| PageCount | 7 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_3759494 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6208558 proquest_miscellaneous_2163015491 proquest_journals_2009642841 pubmed_primary_30603193 crossref_citationtrail_10_1007_s13534_017_0044_1 crossref_primary_10_1007_s13534_017_0044_1 springer_journals_10_1007_s13534_017_0044_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-02-01 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Korea |
| PublicationPlace_xml | – name: Korea – name: Germany – name: Heidelberg |
| PublicationTitle | Biomedical engineering letters |
| PublicationTitleAbbrev | Biomed. Eng. Lett |
| PublicationTitleAlternate | Biomed Eng Lett |
| PublicationYear | 2018 |
| Publisher | The Korean Society of Medical and Biological Engineering Springer Nature B.V 대한의용생체공학회 |
| Publisher_xml | – name: The Korean Society of Medical and Biological Engineering – name: Springer Nature B.V – name: 대한의용생체공학회 |
| References | Kurihara, Watanabe (CR9) 2012; 42 Willemen, Van Deun, Verhaert, Vandekerckhove, Exadaktylos, Verbraecken, Van Huffel, Haex, Vander (CR10) 2014; 18 Xu, Lorber (CR19) 2014; 82 Richman, Moorman (CR17) 2000; 278 Rosenfield, Fitzpatrick-Lins (CR18) 1986; 52 Carley, Farabi (CR1) 2016; 29 Mendez, Matteucci, Castronovo, Ferini-Strambi (CR5) 2010; 3 Kawamoto, Kuriyama, Tajima (CR11) 2013; 2 Redmond, Heneghan (CR4) 2006; 53 Domingues, Paiva, Sanches (CR8) 2014; 61 Penzel, Kantelhardt, Grote, Peter, Bunde (CR16) 2003; 50 Ebrahimi, Setarehdan, Ayala-Moyeda, Nazeran (CR6) 2013; 112 CR12 Wolpert (CR2) 1969; 20 Fonseca, Long, Radha, Haakma (CR7) 2015; 36 Goldberger (CR14) 2000; 101 Li, Peng, Yuan, Shao, Chi (CR20) 2016; 23 Kurihara, Watanabe (CR21) 2012; 42 Park, Park, Jeong (CR13) 2000; 2 Nascimento, Passos, Pedrosa, Brasileiro-Santos, Barros, Costa, Lima (CR3) 2014; 20 Singh, Sharma, Gupta (CR15) 2016; 78 S Xu (44_CR19) 2014; 82 Xiang Li (44_CR20) 2016; 23 J Singh (44_CR15) 2016; 78 EA Wolpert (44_CR2) 1969; 20 Y Kurihara (44_CR9) 2012; 42 AL Goldberger (44_CR14) 2000; 101 K Kawamoto (44_CR11) 2013; 2 F Ebrahimi (44_CR6) 2013; 112 AP Nascimento (44_CR3) 2014; 20 P Fonseca (44_CR7) 2015; 36 JS Richman (44_CR17) 2000; 278 H Park (44_CR13) 2000; 2 DW Carley (44_CR1) 2016; 29 44_CR12 A Domingues (44_CR8) 2014; 61 T Willemen (44_CR10) 2014; 18 MO Mendez (44_CR5) 2010; 3 T Penzel (44_CR16) 2003; 50 Y Kurihara (44_CR21) 2012; 42 SJ Redmond (44_CR4) 2006; 53 GH Rosenfield (44_CR18) 1986; 52 |
| References_xml | – volume: 78 start-page: 138 year: 2016 end-page: 143 ident: CR15 article-title: A method of REM-NREM sleep distinction using ECG signal for unobtrusive personal monitoring publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.09.018 – volume: 278 start-page: H2039 issue: 6 year: 2000 end-page: H2049 ident: CR17 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 53 start-page: 485 issue: 3 year: 2006 end-page: 496 ident: CR4 article-title: Cardiorespiratory-based sleep staging in subjects with obstructive sleep apnea publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.869773 – volume: 29 start-page: 5 issue: 1 year: 2016 end-page: 9 ident: CR1 article-title: Physiology of sleep publication-title: Diabetes Spectr doi: 10.2337/diaspect.29.1.5 – volume: 36 start-page: 2027 issue: 10 year: 2015 end-page: 2040 ident: CR7 article-title: Sleep stage classification with ECG and respiratory effort publication-title: Physiol Meas doi: 10.1088/0967-3334/36/10/2027 – volume: 61 start-page: 1711 issue: 6 year: 2014 end-page: 1719 ident: CR8 article-title: Hypnogram and sleep parameter computation from activity and cardiovascular data publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2301462 – volume: 20 start-page: 115 issue: 2 year: 2014 end-page: 118 ident: CR3 article-title: Sleep quality and stress tolerance in patients with obstructive sleep apnea publication-title: Rev Bras Med Esp. doi: 10.1590/1517-86922014200201357 – volume: 52 start-page: 223 issue: 2 year: 1986 end-page: 227 ident: CR18 article-title: A coefficient of agreement as a measure of the matic classification accuracy publication-title: Photogramm Eng Remote Sens – volume: 2 start-page: 20 issue: 1 year: 2013 end-page: 25 ident: CR11 article-title: Actigraphic detection of REM sleep based on respiratory rate estimation publication-title: J Med Bioeng – ident: CR12 – volume: 20 start-page: 246 issue: 2 year: 1969 end-page: 247 ident: CR2 article-title: A manual of standardized terminology. Techniques and scoring system for sleep stages of human subjects publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1969.01740140118016 – volume: 2 start-page: 1316 year: 2000 end-page: 1319 ident: CR13 article-title: Hybrid neural-network and rule-based expert system for automatic sleep stage scoring publication-title: Eng Med Biol Soc – volume: 18 start-page: 661 issue: 2 year: 2014 end-page: 669 ident: CR10 article-title: An evaluation of cardiorespiratory and movement features with respect to sleep-stage classification publication-title: IEEE J Biomed Health Infor m doi: 10.1109/JBHI.2013.2276083 – volume: 82 start-page: 1219 issue: 6 year: 2014 ident: CR19 article-title: Interrater agreement statistics with skewed data: evaluation of alternatives to Cohen’s kappa publication-title: J Consult Clin Psychol doi: 10.1037/a0037489 – volume: 23 start-page: 22408 issue: 22 year: 2016 end-page: 22417 ident: CR20 article-title: Deep learning architecture for air quality predictions publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-016-7812-9 – volume: 42 start-page: 1450 issue: 6 year: 2012 end-page: 1459 ident: CR9 article-title: Sleep-stage decision algorithm by using heartbeat and body-movement signals publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum doi: 10.1109/TSMCA.2012.2192264 – volume: 101 start-page: 1 issue: 23 year: 2000 end-page: 9 ident: CR14 article-title: Components of a new research resource for complex physiologic signals, physiobank, physiotoolkit, and physionet publication-title: Am Heart Assoc J Circ – volume: 50 start-page: 1143 issue: 10 year: 2003 end-page: 1151 ident: CR16 article-title: Comparison of detrended fluctuation analysis and spectral analysis for heart rate variability in sleep and sleep apnea publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2003.817636 – volume: 3 start-page: 246 issue: 3–4 year: 2010 end-page: 263 ident: CR5 article-title: Sleep staging from heart rate variability: time-varying spectral features and hidden Markov models publication-title: Biomed Eng Technol doi: 10.1504/IJBET.2010.032695 – volume: 42 start-page: 1450 issue: 6 year: 2012 end-page: 1459 ident: CR21 article-title: Sleep-stage decision algorithm by using heart-beat and body-movement signals publication-title: IEEE Trans Syst Man Cyber doi: 10.1109/TSMCA.2012.2192264 – volume: 112 start-page: 47 issue: 1 year: 2013 end-page: 57 ident: CR6 article-title: Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, timedomain, and nonlinear dynamics features of heart rate variability signals publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.06.007 – volume: 53 start-page: 485 issue: 3 year: 2006 ident: 44_CR4 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.869773 – volume: 101 start-page: 1 issue: 23 year: 2000 ident: 44_CR14 publication-title: Am Heart Assoc J Circ – volume: 20 start-page: 246 issue: 2 year: 1969 ident: 44_CR2 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.1969.01740140118016 – volume: 78 start-page: 138 year: 2016 ident: 44_CR15 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.09.018 – volume: 29 start-page: 5 issue: 1 year: 2016 ident: 44_CR1 publication-title: Diabetes Spectr doi: 10.2337/diaspect.29.1.5 – volume: 2 start-page: 20 issue: 1 year: 2013 ident: 44_CR11 publication-title: J Med Bioeng – volume: 50 start-page: 1143 issue: 10 year: 2003 ident: 44_CR16 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2003.817636 – volume: 18 start-page: 661 issue: 2 year: 2014 ident: 44_CR10 publication-title: IEEE J Biomed Health Infor m doi: 10.1109/JBHI.2013.2276083 – volume: 112 start-page: 47 issue: 1 year: 2013 ident: 44_CR6 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2013.06.007 – volume: 20 start-page: 115 issue: 2 year: 2014 ident: 44_CR3 publication-title: Rev Bras Med Esp. doi: 10.1590/1517-86922014200201357 – volume: 278 start-page: H2039 issue: 6 year: 2000 ident: 44_CR17 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 42 start-page: 1450 issue: 6 year: 2012 ident: 44_CR21 publication-title: IEEE Trans Syst Man Cyber doi: 10.1109/TSMCA.2012.2192264 – volume: 36 start-page: 2027 issue: 10 year: 2015 ident: 44_CR7 publication-title: Physiol Meas doi: 10.1088/0967-3334/36/10/2027 – volume: 3 start-page: 246 issue: 3–4 year: 2010 ident: 44_CR5 publication-title: Biomed Eng Technol doi: 10.1504/IJBET.2010.032695 – volume: 82 start-page: 1219 issue: 6 year: 2014 ident: 44_CR19 publication-title: J Consult Clin Psychol doi: 10.1037/a0037489 – volume: 61 start-page: 1711 issue: 6 year: 2014 ident: 44_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2014.2301462 – volume: 2 start-page: 1316 year: 2000 ident: 44_CR13 publication-title: Eng Med Biol Soc – volume: 52 start-page: 223 issue: 2 year: 1986 ident: 44_CR18 publication-title: Photogramm Eng Remote Sens – ident: 44_CR12 doi: 10.1109/IEMBS.2008.4649365 – volume: 42 start-page: 1450 issue: 6 year: 2012 ident: 44_CR9 publication-title: IEEE Trans Syst Man Cybern Part A Syst Hum doi: 10.1109/TSMCA.2012.2192264 – volume: 23 start-page: 22408 issue: 22 year: 2016 ident: 44_CR20 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-016-7812-9 |
| SSID | ssj0000515933 |
| Score | 2.3310642 |
| Snippet | The polysomnogram (PSG) analysis is considered the golden standard for sleep staging under the clinical environment. The electroencephalogram (EEG) signal is... The polysomnogram (PSG) analysis is consideredthe golden standard for sleep staging under the clinicalenvironment. The electroencephalogram (EEG) signal isthe... |
| SourceID | nrf pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 87 |
| SubjectTerms | Artificial neural networks Biological and Medical Physics Biomedical Engineering and Bioengineering Biomedicine Biophysics Classification EEG EKG Electrocardiography Electroencephalography Engineering Feature extraction Medical and Radiation Physics Model accuracy Model testing Neural networks NREM sleep Original Original Article Recording REM sleep Sleep Sleep and wakefulness 의공학 |
| Title | The research of sleep staging based on single-lead electrocardiogram and deep neural network |
| URI | https://link.springer.com/article/10.1007/s13534-017-0044-1 https://www.ncbi.nlm.nih.gov/pubmed/30603193 https://www.proquest.com/docview/2009642841 https://www.proquest.com/docview/2163015491 https://pubmed.ncbi.nlm.nih.gov/PMC6208558 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002381740 |
| Volume | 8 |
| WOSCitedRecordID | wos000440667700008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Biomedical Engineering Letters (BMEL), 2018, 8(1), , pp.87-93 |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2093-985X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000515933 issn: 2093-9868 databaseCode: RSV dateStart: 20110201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB7RwgM8cB-BUhnEE8hSDid2HhFq1b5UiEv7gGTFV7vqyql2t_x-ZnItCy0SSJGiKOPExzieyYy_D-CNy5qQOR-4NdJw4UzgdSMUlybHw6BG5aYjm5AnJ2o2qz8O-7hXY7b7GJLsvtSbzW5FWVDGhOQUheTo8tzE1U7RbPz0-dv0Y4VIS3oK-Ry9dV6rSo3RzKuesrUe7cRluMrU_DNj8rewabcaHd77r3bch7uD8cne99ryAG74-BDu_AJJ-Ai-o96wAQHojLWBrRbeXzC0IYnNiNGi51gbGf1iWHi-QBVhA5WO7VJbKduLNdExR-UILhPfGPtk88fw9fDgy4cjPjAwcFvKdM0bg_6U9SWFZyppU49DWwoXglchN-hJZUXjihDq4NCwytCarMoitdalwskGr5_AbmyjfwZYv7ypjDJV5YRw3qJjjB9LL60UqTM2JJCO46DtAE9OLBkLvQFWpo7T2HGaOk5nCbydilz02Bx_E36Ng6vP7VwTojadT1t9vtToNxzrQpa1qEUCe-PY62Eur4iosyYvTeAzXk23cRZSaKWJvr1EGTRrO7Q7lHnaq8pUJXTKaKtYkYDcUqJJgOqzfSfOzzqk74oYVEuVwLtRlTbVuralz_9J-gXcRhtQ9Ynoe7C7Xl76l3DL_ljPV8t92JEztd9NsJ-w-x8m |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB-0CrYffNtGq67iJ2Uhj002-ShiabEeolX6QViyL3v02JS7a__-zuR1nlZBIRBCZpN9zGZnMrO_H8Arm9Q-sc5zo6XmwmrPq1qUXOoUD40aleqWbEJOJuXxcfWp38e9GLLdh5Bk-6VebXbL8owyJiSnKCRHl-eGwAWL8vg-f_k2_lgh0pKOQj5Fb51XZVEO0cyrnrK2Hl0Pc3-Vqfl7xuQvYdN2Ndq781_tuAu3e-OTve205R5cc-E-bP0ESfgAvqPesB4B6IQ1ni1mzp0xtCGJzYjRomdZExj9Ypg5PkMVYT2VjmlTWynbi9XBMkvlCC4T3xi6ZPOH8HXv_dG7fd4zMHCTy3jJa43-lHE5hWcKaWKHQ5sL670rfarRk0qy2mbeV96iYZWgNVnkWWyMjYWVNV4_go3QBLcDWL-0LnSpi8IKYZ1Bxxg_lk4aKWKrjY8gHsZBmR6enFgyZmoFrEwdp7DjFHWcSiJ4PRY567A5_ib8EgdXnZqpIkRtOv9o1Olcod9woDKZV6ISEewOY6_6ubwgos6KvDSBz3gx3sZZSKGVOrjmHGXQrG3R7lBmu1OVsUrolNFWsSwCuaZEowDVZ_1OmJ60SN8FMajmZQRvBlVaVeuPLX38T9LP4db-0cdDdXgw-fAENtEeLLuk9F3YWM7P3VO4aS6W08X8WTvNLgFpFCEi |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bi9NAFD7oKqIP3t2NrjqKTy7D5jLJJI-iFhelLHhhH4Qhc3PLlklpu_5-z8mtVldBhEIpOUkmM2c658s5830AL2xS-8Q6z42WmgurPa9qUXKpU_xo9KhUt2ITcjotT06q417ndDVUuw8pyW5PA7E0hfXhwvrDzca3LM-oekJyykhyhD9XBGkGEVz_-GV8yUICJp2cfIrInVdlUQ6ZzYuusrU2XQ5Lf1HY-Xv15C8p1HZlmtz672e6DTf7oJS96rzoDlxy4S7c-Imq8B58RX9iPTPQKWs8W82dWzCMLUnliNFiaFkTGL16mDs-R9dhvcSOaUteqQqM1cEyS-cRjSbeMXRF6Pfh8-Ttp9fveK_MwE0u4zWvNeIs43JK2xTSxA6HPBfWe1f6VCPCSrLaZt5X3mLAlWCUWeRZbIyNhZU1_n4AO6EJbg-wfWld6FIXhRXCOoOAGf9EnTRSxFYbH0E8jIkyPW05qWfM1YZwmTpOYccp6jiVRPByPGXRcXb8zfg5DrQ6MzNFTNv0_a1RZ0uFeOJIZTKvRCUi2B_8QPVzfEUCnhWhN4HXeDYextlJKZc6uOYcbTDcbVnw0Ga3c5uxSQjWaAtZFoHccqjRgNqzfSTMTlsG8IKUVfMygoPBrTbN-uOTPvwn66dw7fjNRH04mr5_BNcxTCy7WvV92Fkvz91juGq-r2er5ZN2xv0AbNkqBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+research+of+sleep+staging+based+on+single-lead+electrocardiogram+and+deep+neural+network&rft.jtitle=Biomedical+engineering+letters&rft.au=Wei%2C+Ran&rft.au=Zhang%2C+Xinghua&rft.au=Wang%2C+Jinhai&rft.au=Dang%2C+Xin&rft.date=2018-02-01&rft.issn=2093-9868&rft.eissn=2093-985X&rft.volume=8&rft.issue=1&rft.spage=87&rft.epage=93&rft_id=info:doi/10.1007%2Fs13534-017-0044-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13534_017_0044_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon |