Reconciling multiple genes trees via segmental duplications and losses

Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous appr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithms for molecular biology Ročník 14; číslo 1; s. 7 - 19
Hlavní autori: Dondi, Riccardo, Lafond, Manuel, Scornavacca, Celine
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London BioMed Central 20.03.2019
Springer Nature B.V
BMC
Predmet:
ISSN:1748-7188, 1748-7188
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
AbstractList Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost $$\delta $$ δ and $$\lambda $$ λ, respectively. We show that the problem is polynomial-time solvable when $$\delta \le \lambda $$ δ≤λ (via LCA-mapping), while if $$\delta > \lambda $$ δ>λ the problem is NP-hard, even when $$\lambda = 0$$ λ=0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are $$\delta /\lambda $$ δ/λ and the number d of segmental duplications, of time complexity $$O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)$$ O⌈δλ⌉d·n·δλ. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and , respectively. We show that the problem is polynomial-time solvable when δ ≤ (via LCA-mapping), while if δ > the problem is NP-hard, even when = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ/ and the number d of segmental duplications, of time complexity O ⌈ δ ⌉ d · n · δ. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Abstract Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost $$\delta $$ δ and $$\lambda $$ λ , respectively. We show that the problem is polynomial-time solvable when $$\delta \le \lambda $$ δ≤λ (via LCA-mapping), while if $$\delta > \lambda $$ δ>λ the problem is NP-hard, even when $$\lambda = 0$$ λ=0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are $$\delta /\lambda $$ δ/λ and the number d of segmental duplications, of time complexity $$O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)$$ O⌈δλ⌉d·n·δλ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost and , respectively. We show that the problem is polynomial-time solvable when (via LCA-mapping), while if the problem is NP-hard, even when and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are and the number of segmental duplications, of time complexity . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost \(\delta \) and \(\lambda \), respectively. We show that the problem is polynomial-time solvable when \(\delta \le \lambda \) (via LCA-mapping), while if \(\delta > \lambda \) the problem is NP-hard, even when \(\lambda = 0\) and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are \(\delta /\lambda \) and the number d of segmental duplications, of time complexity \(O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)\). Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.
ArticleNumber 7
Author Dondi, Riccardo
Lafond, Manuel
Scornavacca, Celine
Author_xml – sequence: 1
  givenname: Riccardo
  surname: Dondi
  fullname: Dondi, Riccardo
  organization: Dipartimento di Filosofia, Lettere, Comunicazione, Università degli Studi di Bergamo
– sequence: 2
  givenname: Manuel
  orcidid: 0000-0002-5305-7372
  surname: Lafond
  fullname: Lafond, Manuel
  email: manuel.lafond@USherbrooke.ca
  organization: Department of Computer Science, Universitè de Sherbrooke
– sequence: 3
  givenname: Celine
  surname: Scornavacca
  fullname: Scornavacca, Celine
  organization: ISEM, CNRS, IRD, EPHE, Universit de Montpellier
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30930955$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02154306$$DView record in HAL
BookMark eNp9Ul2L1DAUDbLifugP8EUKvuhDNWmSJn0RlsV1FwYE0eeQ5qObIU3GpB3w35tOd3V3QCFfJOece2_uOQcnIQYDwGsEPyDE248ZYYhoDVFXJu7q9hk4Q4zwmiHOTx6dT8F5zlsICcUQvwCnGHZlUHoGrr8ZFYNy3oWhGmc_uZ031WCCydWUTFn3TlbZDKMJk_SVnnfeKTm5GHIlg658zNnkl-C5lT6bV_f7Bfhx_fn71U29-frl9upyUyvK4FQzbLnSCHJGOkJ6aiyXutQgue2YJaxvLSWccgWJUk1DVKusZpJSqLQluscX4HbV1VFuxS65UaZfIkonDhcxDUKmySlvBEYSckl7rBgmFhPeMEw73WHOeC_7RevTqrWb-9FoVQpM0j8RffoS3J0Y4l60pKEtaovA-1Xg7oh2c7kRyx1sECUYtntUsO_ug6X4czZ5EqPLyngvg4lzFk0DEUMdP8i-PYJu45xC-daCQpB1CBJeUG8eZ_8n_kNrC4CtAJVKi5KxQrnp0LhSjPMCQbGYSKwmEsVEYjGRWBJAR8wH8f9xmpWTCzYMJv1N-t-k3_jy17o
CitedBy_id crossref_primary_10_1371_journal_pcbi_1010621
crossref_primary_10_1186_s13015_020_00171_4
crossref_primary_10_1186_s13015_024_00252_8
crossref_primary_10_1186_s13015_025_00284_8
crossref_primary_10_1016_j_bbagrm_2019_194472
crossref_primary_10_3390_a17050186
crossref_primary_10_3390_a14050152
crossref_primary_10_1016_j_compbiolchem_2020_107260
crossref_primary_10_1109_TCBB_2019_2934957
Cites_doi 10.1093/bioinformatics/btw778
10.1186/s12859-015-0803-x
10.1007/978-3-642-02008-7_4
10.1038/nature09649
10.1093/sysbio/28.2.132
10.1137/S0097539798343362
10.1101/127548
10.1093/bioinformatics/btw105
10.1073/pnas.1202997109
10.1186/1748-7188-8-12
10.1093/gbe/evx069
10.1007/978-1-61779-585-5_2
10.1007/3-540-49381-6_37
10.1093/sysbio/46.3.523
10.1093/sysbio/syv044
10.1038/nature08064
10.1038/s41559-018-0525-3
10.1093/bioinformatics/btn150
10.1186/s13015-016-0067-7
10.1006/mpev.1996.0071
10.1093/bioinformatics/bty242
10.1186/s13015-017-0096-x
10.1007/978-3-319-12418-6_7
10.1007/978-3-030-00834-5_10
10.1038/nature02424
10.1109/TCBB.2009.52
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID C6C
AAYXX
CITATION
NPM
3V.
7QO
7QP
7QR
7TK
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
1XC
VOOES
5PM
DOA
DOI 10.1186/s13015-019-0139-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList



PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1748-7188
EndPage 19
ExternalDocumentID oai_doaj_org_article_31a08a5b3c734f34827359d93878babb
PMC6425616
oai:HAL:hal-02154306v1
30930955
10_1186_s13015_019_0139_6
Genre Journal Article
GrantInformation_xml – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100002790
– fundername: ;
GroupedDBID 0R~
23M
2WC
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
ITC
KQ8
L6V
LK8
M48
M7P
M7S
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
AFFHD
CITATION
2VQ
4.4
AHSBF
ALIPV
C1A
H13
IPNFZ
NPM
RIG
3V.
7QO
7QP
7QR
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c570t-73f8cd10874944b5ef8ad301a8f97f47b6f54858c04cc224c6cfd7a550cdf4db3
IEDL.DBID RSV
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462297100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1748-7188
IngestDate Tue Oct 14 01:55:09 EDT 2025
Tue Nov 04 02:05:01 EST 2025
Tue Oct 14 20:41:34 EDT 2025
Thu Sep 04 19:27:00 EDT 2025
Tue Oct 07 05:34:43 EDT 2025
Mon Jul 21 05:36:26 EDT 2025
Sat Nov 29 05:10:43 EST 2025
Tue Nov 18 20:37:32 EST 2025
Sat Sep 06 07:29:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords NP-hardness
Reconciliation
Phylogenetics
Segmental duplications
Gene trees
Species trees
Fixed-parameter tractability
Whole genome duplications
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c570t-73f8cd10874944b5ef8ad301a8f97f47b6f54858c04cc224c6cfd7a550cdf4db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5305-7372
0009-0004-0179-9771
OpenAccessLink https://link.springer.com/10.1186/s13015-019-0139-6
PMID 30930955
PQID 2210791048
PQPubID 55040
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_31a08a5b3c734f34827359d93878babb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425616
hal_primary_oai_HAL_hal_02154306v1
proquest_miscellaneous_2201719816
proquest_journals_2210791048
pubmed_primary_30930955
crossref_citationtrail_10_1186_s13015_019_0139_6
crossref_primary_10_1186_s13015_019_0139_6
springer_journals_10_1186_s13015_019_0139_6
PublicationCentury 2000
PublicationDate 2019-03-20
PublicationDateYYYYMMDD 2019-03-20
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Algorithms for molecular biology
PublicationTitleAbbrev Algorithms Mol Biol
PublicationTitleAlternate Algorithms Mol Biol
PublicationYear 2019
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References J Paszek (139_CR26) 2017; 15
I Ullah (139_CR30) 2015; 64
G Butler (139_CR2) 2009; 459
139_CR27
139_CR28
AA Davín (139_CR7) 2018; 2
R Dondi (139_CR9) 2017; 12
M Lafond (139_CR18) 2016; 11
B Ma (139_CR21) 2000; 30
W Duchemin (139_CR11) 2017; 9
M Lafond (139_CR19) 2018; 34
139_CR5
139_CR4
139_CR3
LA David (139_CR6) 2011; 469
139_CR10
TH To (139_CR29) 2015; 16
E Jacox (139_CR15) 2016; 32
WP Maddison (139_CR22) 1997; 46
139_CR8
CW Luo (139_CR20) 2011; 8
R Guigo (139_CR14) 1996; 6
139_CR12
RDM Page (139_CR25) 2002; 7
M Kellis (139_CR17) 2004; 428
E Jacox (139_CR16) 2017; 33
TH Nguyen (139_CR23) 2013; 8
MS Bansal (139_CR1) 2008; 24
M Goodman (139_CR13) 1979; 28
RDM Page (139_CR24) 1994; 43
References_xml – ident: 139_CR10
– volume: 15
  start-page: 1515
  issue: 5
  year: 2017
  ident: 139_CR26
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– volume: 33
  start-page: 980
  issue: 7
  year: 2017
  ident: 139_CR16
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw778
– volume: 16
  start-page: 384
  issue: 1
  year: 2015
  ident: 139_CR29
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-015-0803-x
– volume: 7
  start-page: 536
  year: 2002
  ident: 139_CR25
  publication-title: Pac Symp Biocomput
– ident: 139_CR3
  doi: 10.1007/978-3-642-02008-7_4
– volume: 469
  start-page: 93
  issue: 7328
  year: 2011
  ident: 139_CR6
  publication-title: Nature
  doi: 10.1038/nature09649
– volume: 28
  start-page: 132
  issue: 2
  year: 1979
  ident: 139_CR13
  publication-title: Syst Biol
  doi: 10.1093/sysbio/28.2.132
– volume: 30
  start-page: 729
  issue: 3
  year: 2000
  ident: 139_CR21
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539798343362
– ident: 139_CR5
  doi: 10.1101/127548
– volume: 32
  start-page: 2056
  issue: 13
  year: 2016
  ident: 139_CR15
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw105
– ident: 139_CR27
  doi: 10.1073/pnas.1202997109
– volume: 8
  start-page: 12
  issue: 1
  year: 2013
  ident: 139_CR23
  publication-title: Algorith Mol Biol
  doi: 10.1186/1748-7188-8-12
– volume: 9
  start-page: 1312
  issue: 5
  year: 2017
  ident: 139_CR11
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evx069
– ident: 139_CR28
  doi: 10.1007/978-1-61779-585-5_2
– volume: 43
  start-page: 58
  issue: 1
  year: 1994
  ident: 139_CR24
  publication-title: Syst Biol
– ident: 139_CR12
  doi: 10.1007/3-540-49381-6_37
– volume: 46
  start-page: 523
  issue: 3
  year: 1997
  ident: 139_CR22
  publication-title: Syst Biol
  doi: 10.1093/sysbio/46.3.523
– volume: 64
  start-page: 969
  issue: 6
  year: 2015
  ident: 139_CR30
  publication-title: Syst Biol
  doi: 10.1093/sysbio/syv044
– volume: 459
  start-page: 657
  issue: 7247
  year: 2009
  ident: 139_CR2
  publication-title: Nature
  doi: 10.1038/nature08064
– volume: 2
  start-page: 904
  issue: 5
  year: 2018
  ident: 139_CR7
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-018-0525-3
– volume: 24
  start-page: 132
  issue: 13
  year: 2008
  ident: 139_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn150
– volume: 11
  start-page: 4
  year: 2016
  ident: 139_CR18
  publication-title: Algorith Mol Biol
  doi: 10.1186/s13015-016-0067-7
– volume: 6
  start-page: 189
  issue: 2
  year: 1996
  ident: 139_CR14
  publication-title: Mol Phylogenet Evol
  doi: 10.1006/mpev.1996.0071
– volume: 34
  start-page: i366
  issue: 13
  year: 2018
  ident: 139_CR19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty242
– volume: 12
  start-page: 1
  issue: 1
  year: 2017
  ident: 139_CR9
  publication-title: Algorith Mol Biol
  doi: 10.1186/s13015-017-0096-x
– ident: 139_CR4
  doi: 10.1007/978-3-319-12418-6_7
– ident: 139_CR8
  doi: 10.1007/978-3-030-00834-5_10
– volume: 428
  start-page: 617
  issue: 6983
  year: 2004
  ident: 139_CR17
  publication-title: Nature
  doi: 10.1038/nature02424
– volume: 8
  start-page: 260
  issue: 1
  year: 2011
  ident: 139_CR20
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2009.52
SSID ssj0045303
Score 2.2718937
Snippet Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene...
Abstract Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Algorithms
Bioinformatics
Biological evolution
Biomedical and Life Sciences
Cellular and Medical Topics
Complexity
Computational Biology/Bioinformatics
Computer Science
Eukaryotes
Evolution
Fixed-parameter tractability
Gene families
Gene mapping
Gene trees
Genes
Genomes
Genomics
Life Sciences
Mapping
Parameters
Phylogenetics
Physiological
Polynomials
Reconciliation
Reproduction (copying)
Segmental duplications
Selected papers from WABI 2018
Species trees
Trees
Yeast
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqJRXaKkM4gSKmqyd2D4WxKqHquIAqDfLj7hdqcqiZnel_vvOxMmWUAEXrrHj2OOZ8XyayWeA91r7mVdB5laJmAtfiFxXNpLh2VrKsql6nu0fp_LsTJ2f66-_XPVFNWGJHjgJ7oiXtlC2ctxLLiJRsUhe6aC5kspZ58j7FlKPYCr5YFGhZx5ymKWqjzr01CUVqVFtENd5PTmFerJ-PFsuqRTyfpx5v1zyt5xpfxTNd-HJEEOy4zT3p_CgaffgUbpV8uYZzAlStn5BP5qzsWCQXZBTY5SD7thmYVnXXCRefxbWdzlsZtvArpaUCX4O3-dfvn0-yYfrEnJfyWKVSx6VD2WhpNBCuKqJygZct1VRyyikqyPCk0rhfniPJ7evfQzSIkTxIYrg-AvYaZdt8wqYCt7qmSo9R7jEpdXaIpKNwkdEiK5yGRSj-IwfuMTpSosr02MKVZskcYMSNyRxU2fwYfvKz0Sk8bfOn2hPth2JA7t_gJphBs0w_9KMDN7hjk7GODk-NfSMAh2BYGlTZnAwbrgZrLczM1ylxDhKqAzebpvR7iiZYttmuaY-xDSkVYmTfZn0Y_spyi4TtV8GcqI5k7lMW9rFZc_tjXAQI1oc8-OoY3fT-qO4Xv8Pce3D41lvIBw95wHsrK7XzRt46DerRXd92JvXLZToJTU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkL70egIIM4gaImazu2T6hFXfVQrSoEqDfLsePtSlVSNrsr8e-ZSZxdhYpeuCZO4ngeni8z-YaQj1q7iVNeplbxkHKX8VQLG9DwbCFlXomOZ_vnmZzN1MWFPo8f3NpYVjn4xM5R-8bhN_LDCWATCXsbV1-uf6XYNQqzq7GFxl2yj0xloOf7xyez82-DL-YCPHTMZeaqOGzBY-dYrIY1QkynxWg36kj7YY-5xJLIm_HmzbLJv3Kn3ZY0ffS_L_OYPIzBKD3qtecJuVPVT8n9vj3l72dkiti0dgv8Y50OlYd0jt6RYjK7pZuFpW017xsEUL_eJcOprT29ajCl_Jz8mJ58_3qaxr4LqRMyW6WSBeV8ninJNeelqIKyHhbOqqBl4LIsAuAcoUCwzkEI4AoXvLSAdZwP3JfsBdmrm7p6RajyzuqJyh0D3MWk1doCJA7cBViBUpQJyYb1Ny6SkmNvjCvTgRNVmF5kBkRmUGSmSMin7SXXPSPHbYOPUajbgUim3R1olnMTbdOw3GbKipI5yXhAth_JhPaaKalKW8IkP4BKjO5xenRm8BhGTBxQ1yZPyMEgahPdQGt2ck7I--1pMGDMyti6atY4BimLtMphsi97Bds-CtPUyBGYEDlSvdFcxmfqxWVHEg64EkJjuOfnQUl30_rncr2-_SXekAeTznYYONcDsrdarqu35J7brBbt8l20vT9pxDUc
  priority: 102
  providerName: ProQuest
Title Reconciling multiple genes trees via segmental duplications and losses
URI https://link.springer.com/article/10.1186/s13015-019-0139-6
https://www.ncbi.nlm.nih.gov/pubmed/30930955
https://www.proquest.com/docview/2210791048
https://www.proquest.com/docview/2201719816
https://hal.science/hal-02154306
https://pubmed.ncbi.nlm.nih.gov/PMC6425616
https://doaj.org/article/31a08a5b3c734f34827359d93878babb
Volume 14
WOSCitedRecordID wos000462297100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: RBZ
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: P5Z
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: M7S
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1748-7188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045303
  issn: 1748-7188
  databaseCode: RSV
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYBhIv_IYFRhQQT6CIpLZj-3FDq4Y0qojBVHixHCfuKk3p1LSV-O-5c5JOYYAEL36IneTi3J3vy10-E_JGKTuyshSxkczFzCYsVtw4NDyTCZFW3PNsn5-KyUROpyrv_uNu-mr3PiXpPbU3a5m9b8DbplhohvU9VMXZDtnjSDaDEP3svHe_jINT7tKXvz1tsAB5nn5YVi6wCvJmiHmzUvKXdKlfhcb3_0v-B-ReF3RGh62WPCS3qvoRudNuQ_njMRkjBq3tHP9Mj_oKw2iGXjDCpHUTbeYmaqpZuxFAVK6vk96RqcvocoGp4yfk6_j4y4eTuNtfIbZcJKtYUCdtmSZSMMVYwSsnTQlCGumUcEwUmQM8wyW8QGthqbeZdaUwgGls6VhZ0Kdkt17U1T6JZGmNGsnUUsBXVBilDEBfx6wDSFnwIiBJP-naduTjuAfGpfYgRGa6nR4N06NxenQWkLfbU65a5o2_DT7CN7kdiKTZ_sBiOdOdDWqamkQaXlArKHPI6iMoV6WiUsjCFCDka9CDwTVODk81HsPIiAG62qQBOejVRHfm3ugRPKWAwIvJgLzadoOhYvbF1NVijWOQmkjJFIR91mrV9laYjkYuwICIgb4NZBn21PMLTwYO-BFCYLjmu17rrsX643Q9_6fRL8jdkVdbCj71gOyuluvqJbltN6t5swzJjpgK38qQ7B0dT_LPof-yEWIdbe7bM2hz_h3684-f8m-ht9ifCEkyVQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAZUL78JCAYPgAoqaxE5sHxAqj9VWXVY9FNSbcex4u1KVlM3uov4pfiMzeexqqeitB66J40zsb16Z8Qwhr5WysZVOBEZyH3Ab8kAlxiPjmVSIKE_qOtvfh2I0ksfH6nCD_O7OwmBaZScTa0HtSov_yHdj8E0E6DYuP5z9DLBrFEZXuxYaDSwO8vNf4LJV7_c_w_6-ieP-l6NPg6DtKhDYRISzQDAvrYtCKbjiPEtyL40DmBvplfBcZKkHKz6RQLa1oOBsar0TBix56zx3GYN5r5HrYEbEYZ0qeNhJfp6APmgjp5FMdyvQDxGmxmFGElNBuqb76hYBoNFOMAHzonV7MUnzr0htrQD7d_63pbtLbremNt1reOMe2ciL--Rm03zz_AHpo-dd2Amex6ddXiUdo-ynGKqv6GJiaJWPm_YH1M1XoX5qCkdPSwyYPyTfruQjtslmURb5Y0Kls0bFMrIMvEomjFIGHH7PrYcVz5KsR8Juv7VtS65j549TXbteMtUNRDRARCNEdNojb5ePnDX1Ri4b_BFBtByIpcLrC-V0rFvJo1lkQmmSjFnBuMdaRoIlyikmhcxMBkS-AgiuzTHYG2q8hvYgB59yEfXITgct3Qq5Sq9w1SMvl7dBPGHMyRR5OccxWJBJyQiIfdQAevkqDMJjBcQeEWtQX6Nl_U4xOalLoIPXDIY_zPmuY4oVWf9crieXf8QLsjU4-jrUw_3RwVNyK675loEa2SGbs-k8f0Zu2MVsUk2f11xPyY-r5pU_2YGRvA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQL9xEoYBBPVFGTtRPbj-VYFbFaVRxV3yzHjrcrVdlqs7sS_56ZHFuFAhLiNXGSsT0znk8z-QbgjdZu5JSXsVUixMIlItaZDWR4NpcyLbOGZ_t4IqdTdXKij7o-p3Vf7d6nJNt_GoilqVrtn_vQmrjK92v0vCkVnVGtD9dxfhWuCQQyVNP15etx74pFhg66S2X-9rHBYdRw9uMRc0oVkZfDzctVk7-kTpsTaXznv-dyF253wSg7aLXnHlwpq_two21P-eMBjAmbVm5Of6yzvvKQzcg7Mkpm12wzt6wuZ22DAObXF8lwZivPzhaUUn4I38cfv70_jLu-C7HLZLKKJQ_K-TRRUmghiqwMynoU0qqgZRCyyAPinEzhxjqHIYDLXfDSItZxPghf8EewUy2q8gkw5Z3VI5U6jriLS6u1RUgchAsINYusiCDpN8C4jpScemOcmQacqNy0y2NweQwtj8kjeLt95Lxl5Pjb4He0q9uBRKbdXFgsZ6azTcNTmyibFdxJLgKx_Uieaa-5kqqwBQr5GnVi8I7Dg4mhaxQxCURdmzSC3V5lTOcGajPCWUoMyISK4NX2NhowZWVsVS7WNIYoi7RKUdjHrYZtP0VpauIIjEAOdG8gy_BONT9tSMIRV2JojO_c6zXwQqw_LtfTfxr9Em4efRibyafp52dwa9RoMEe3uws7q-W6fA7X3WY1r5cvGqP8CfmONSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconciling+multiple+genes+trees+via+segmental+duplications+and+losses&rft.jtitle=Algorithms+for+molecular+biology&rft.au=Dondi%2C+Riccardo&rft.au=Lafond%2C+Manuel&rft.au=Scornavacca%2C+Celine&rft.date=2019-03-20&rft.pub=BioMed+Central&rft.eissn=1748-7188&rft.volume=14&rft_id=info:doi/10.1186%2Fs13015-019-0139-6&rft_id=info%3Apmid%2F30930955&rft.externalDocID=PMC6425616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-7188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-7188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-7188&client=summon