Reconciling multiple genes trees via segmental duplications and losses
Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous appr...
Uložené v:
| Vydané v: | Algorithms for molecular biology Ročník 14; číslo 1; s. 7 - 19 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
BioMed Central
20.03.2019
Springer Nature B.V BMC |
| Predmet: | |
| ISSN: | 1748-7188, 1748-7188 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost
δ
and
λ
, respectively. We show that the problem is polynomial-time solvable when
δ
≤
λ
(via LCA-mapping), while if
δ
>
λ
the problem is NP-hard, even when
λ
=
0
and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are
δ
/
λ
and the number
d
of segmental duplications, of time complexity
O
⌈
δ
λ
⌉
d
·
n
·
δ
λ
. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. |
|---|---|
| AbstractList | Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost
δ
and
λ
, respectively. We show that the problem is polynomial-time solvable when
δ
≤
λ
(via LCA-mapping), while if
δ
>
λ
the problem is NP-hard, even when
λ
=
0
and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are
δ
/
λ
and the number
d
of segmental duplications, of time complexity
O
⌈
δ
λ
⌉
d
·
n
·
δ
λ
. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost $$\delta $$ δ and $$\lambda $$ λ, respectively. We show that the problem is polynomial-time solvable when $$\delta \le \lambda $$ δ≤λ (via LCA-mapping), while if $$\delta > \lambda $$ δ>λ the problem is NP-hard, even when $$\lambda = 0$$ λ=0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are $$\delta /\lambda $$ δ/λ and the number d of segmental duplications, of time complexity $$O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)$$ O⌈δλ⌉d·n·δλ. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and , respectively. We show that the problem is polynomial-time solvable when δ ≤ (via LCA-mapping), while if δ > the problem is NP-hard, even when = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ/ and the number d of segmental duplications, of time complexity O ⌈ δ ⌉ d · n · δ. Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Abstract Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost $$\delta $$ δ and $$\lambda $$ λ , respectively. We show that the problem is polynomial-time solvable when $$\delta \le \lambda $$ δ≤λ (via LCA-mapping), while if $$\delta > \lambda $$ δ>λ the problem is NP-hard, even when $$\lambda = 0$$ λ=0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are $$\delta /\lambda $$ δ/λ and the number d of segmental duplications, of time complexity $$O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)$$ O⌈δλ⌉d·n·δλ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost and , respectively. We show that the problem is polynomial-time solvable when (via LCA-mapping), while if the problem is NP-hard, even when and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are and the number of segmental duplications, of time complexity . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes.Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost δ and λ , respectively. We show that the problem is polynomial-time solvable when δ ≤ λ (via LCA-mapping), while if δ > λ the problem is NP-hard, even when λ = 0 and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are δ / λ and the number d of segmental duplications, of time complexity O ⌈ δ λ ⌉ d · n · δ λ . Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene tree independently. However, it is well-known that the evolution of gene families is interconnected. In this paper, we extend a previous approach to reconcile a set of gene trees with a species tree based on segmental macro-evolutionary events, where segmental duplication events and losses are associated with cost \(\delta \) and \(\lambda \), respectively. We show that the problem is polynomial-time solvable when \(\delta \le \lambda \) (via LCA-mapping), while if \(\delta > \lambda \) the problem is NP-hard, even when \(\lambda = 0\) and a single gene tree is given, solving a long standing open problem on the complexity of multi-gene reconciliation. On the positive side, we give a fixed-parameter algorithm for the problem, where the parameters are \(\delta /\lambda \) and the number d of segmental duplications, of time complexity \(O\left(\lceil \frac{\delta }{\lambda } \rceil ^{d} \cdot n \cdot \frac{\delta }{\lambda }\right)\). Finally, we demonstrate the usefulness of this algorithm on two previously studied real datasets: we first show that our method can be used to confirm or raise doubt on hypothetical segmental duplications on a set of 16 eukaryotes, then show how we can detect whole genome duplications in yeast genomes. |
| ArticleNumber | 7 |
| Author | Dondi, Riccardo Lafond, Manuel Scornavacca, Celine |
| Author_xml | – sequence: 1 givenname: Riccardo surname: Dondi fullname: Dondi, Riccardo organization: Dipartimento di Filosofia, Lettere, Comunicazione, Università degli Studi di Bergamo – sequence: 2 givenname: Manuel orcidid: 0000-0002-5305-7372 surname: Lafond fullname: Lafond, Manuel email: manuel.lafond@USherbrooke.ca organization: Department of Computer Science, Universitè de Sherbrooke – sequence: 3 givenname: Celine surname: Scornavacca fullname: Scornavacca, Celine organization: ISEM, CNRS, IRD, EPHE, Universit de Montpellier |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30930955$$D View this record in MEDLINE/PubMed https://hal.science/hal-02154306$$DView record in HAL |
| BookMark | eNp9Ul2L1DAUDbLifugP8EUKvuhDNWmSJn0RlsV1FwYE0eeQ5qObIU3GpB3w35tOd3V3QCFfJOece2_uOQcnIQYDwGsEPyDE248ZYYhoDVFXJu7q9hk4Q4zwmiHOTx6dT8F5zlsICcUQvwCnGHZlUHoGrr8ZFYNy3oWhGmc_uZ031WCCydWUTFn3TlbZDKMJk_SVnnfeKTm5GHIlg658zNnkl-C5lT6bV_f7Bfhx_fn71U29-frl9upyUyvK4FQzbLnSCHJGOkJ6aiyXutQgue2YJaxvLSWccgWJUk1DVKusZpJSqLQluscX4HbV1VFuxS65UaZfIkonDhcxDUKmySlvBEYSckl7rBgmFhPeMEw73WHOeC_7RevTqrWb-9FoVQpM0j8RffoS3J0Y4l60pKEtaovA-1Xg7oh2c7kRyx1sECUYtntUsO_ug6X4czZ5EqPLyngvg4lzFk0DEUMdP8i-PYJu45xC-daCQpB1CBJeUG8eZ_8n_kNrC4CtAJVKi5KxQrnp0LhSjPMCQbGYSKwmEsVEYjGRWBJAR8wH8f9xmpWTCzYMJv1N-t-k3_jy17o |
| CitedBy_id | crossref_primary_10_1371_journal_pcbi_1010621 crossref_primary_10_1186_s13015_020_00171_4 crossref_primary_10_1186_s13015_024_00252_8 crossref_primary_10_1186_s13015_025_00284_8 crossref_primary_10_1016_j_bbagrm_2019_194472 crossref_primary_10_3390_a17050186 crossref_primary_10_3390_a14050152 crossref_primary_10_1016_j_compbiolchem_2020_107260 crossref_primary_10_1109_TCBB_2019_2934957 |
| Cites_doi | 10.1093/bioinformatics/btw778 10.1186/s12859-015-0803-x 10.1007/978-3-642-02008-7_4 10.1038/nature09649 10.1093/sysbio/28.2.132 10.1137/S0097539798343362 10.1101/127548 10.1093/bioinformatics/btw105 10.1073/pnas.1202997109 10.1186/1748-7188-8-12 10.1093/gbe/evx069 10.1007/978-1-61779-585-5_2 10.1007/3-540-49381-6_37 10.1093/sysbio/46.3.523 10.1093/sysbio/syv044 10.1038/nature08064 10.1038/s41559-018-0525-3 10.1093/bioinformatics/btn150 10.1186/s13015-016-0067-7 10.1006/mpev.1996.0071 10.1093/bioinformatics/bty242 10.1186/s13015-017-0096-x 10.1007/978-3-319-12418-6_7 10.1007/978-3-030-00834-5_10 10.1038/nature02424 10.1109/TCBB.2009.52 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | C6C AAYXX CITATION NPM 3V. 7QO 7QP 7QR 7TK 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 1XC VOOES 5PM DOA |
| DOI | 10.1186/s13015-019-0139-6 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Computer Science |
| EISSN | 1748-7188 |
| EndPage | 19 |
| ExternalDocumentID | oai_doaj_org_article_31a08a5b3c734f34827359d93878babb PMC6425616 oai:HAL:hal-02154306v1 30930955 10_1186_s13015_019_0139_6 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100002790 – fundername: ; |
| GroupedDBID | 0R~ 23M 2WC 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR ITC KQ8 L6V LK8 M48 M7P M7S M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW ~8M AAYXX AFFHD CITATION 2VQ 4.4 AHSBF ALIPV C1A H13 IPNFZ NPM RIG 3V. 7QO 7QP 7QR 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 1XC VOOES 5PM |
| ID | FETCH-LOGICAL-c570t-73f8cd10874944b5ef8ad301a8f97f47b6f54858c04cc224c6cfd7a550cdf4db3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000462297100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1748-7188 |
| IngestDate | Tue Oct 14 01:55:09 EDT 2025 Tue Nov 04 02:05:01 EST 2025 Tue Oct 14 20:41:34 EDT 2025 Thu Sep 04 19:27:00 EDT 2025 Tue Oct 07 05:34:43 EDT 2025 Mon Jul 21 05:36:26 EDT 2025 Sat Nov 29 05:10:43 EST 2025 Tue Nov 18 20:37:32 EST 2025 Sat Sep 06 07:29:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | NP-hardness Reconciliation Phylogenetics Segmental duplications Gene trees Species trees Fixed-parameter tractability Whole genome duplications |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c570t-73f8cd10874944b5ef8ad301a8f97f47b6f54858c04cc224c6cfd7a550cdf4db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5305-7372 0009-0004-0179-9771 |
| OpenAccessLink | https://link.springer.com/10.1186/s13015-019-0139-6 |
| PMID | 30930955 |
| PQID | 2210791048 |
| PQPubID | 55040 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_31a08a5b3c734f34827359d93878babb pubmedcentral_primary_oai_pubmedcentral_nih_gov_6425616 hal_primary_oai_HAL_hal_02154306v1 proquest_miscellaneous_2201719816 proquest_journals_2210791048 pubmed_primary_30930955 crossref_citationtrail_10_1186_s13015_019_0139_6 crossref_primary_10_1186_s13015_019_0139_6 springer_journals_10_1186_s13015_019_0139_6 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-20 |
| PublicationDateYYYYMMDD | 2019-03-20 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Algorithms for molecular biology |
| PublicationTitleAbbrev | Algorithms Mol Biol |
| PublicationTitleAlternate | Algorithms Mol Biol |
| PublicationYear | 2019 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | J Paszek (139_CR26) 2017; 15 I Ullah (139_CR30) 2015; 64 G Butler (139_CR2) 2009; 459 139_CR27 139_CR28 AA Davín (139_CR7) 2018; 2 R Dondi (139_CR9) 2017; 12 M Lafond (139_CR18) 2016; 11 B Ma (139_CR21) 2000; 30 W Duchemin (139_CR11) 2017; 9 M Lafond (139_CR19) 2018; 34 139_CR5 139_CR4 139_CR3 LA David (139_CR6) 2011; 469 139_CR10 TH To (139_CR29) 2015; 16 E Jacox (139_CR15) 2016; 32 WP Maddison (139_CR22) 1997; 46 139_CR8 CW Luo (139_CR20) 2011; 8 R Guigo (139_CR14) 1996; 6 139_CR12 RDM Page (139_CR25) 2002; 7 M Kellis (139_CR17) 2004; 428 E Jacox (139_CR16) 2017; 33 TH Nguyen (139_CR23) 2013; 8 MS Bansal (139_CR1) 2008; 24 M Goodman (139_CR13) 1979; 28 RDM Page (139_CR24) 1994; 43 |
| References_xml | – ident: 139_CR10 – volume: 15 start-page: 1515 issue: 5 year: 2017 ident: 139_CR26 publication-title: IEEE/ACM Trans Comput Biol Bioinf – volume: 33 start-page: 980 issue: 7 year: 2017 ident: 139_CR16 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw778 – volume: 16 start-page: 384 issue: 1 year: 2015 ident: 139_CR29 publication-title: BMC Bioinf doi: 10.1186/s12859-015-0803-x – volume: 7 start-page: 536 year: 2002 ident: 139_CR25 publication-title: Pac Symp Biocomput – ident: 139_CR3 doi: 10.1007/978-3-642-02008-7_4 – volume: 469 start-page: 93 issue: 7328 year: 2011 ident: 139_CR6 publication-title: Nature doi: 10.1038/nature09649 – volume: 28 start-page: 132 issue: 2 year: 1979 ident: 139_CR13 publication-title: Syst Biol doi: 10.1093/sysbio/28.2.132 – volume: 30 start-page: 729 issue: 3 year: 2000 ident: 139_CR21 publication-title: SIAM J Comput doi: 10.1137/S0097539798343362 – ident: 139_CR5 doi: 10.1101/127548 – volume: 32 start-page: 2056 issue: 13 year: 2016 ident: 139_CR15 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw105 – ident: 139_CR27 doi: 10.1073/pnas.1202997109 – volume: 8 start-page: 12 issue: 1 year: 2013 ident: 139_CR23 publication-title: Algorith Mol Biol doi: 10.1186/1748-7188-8-12 – volume: 9 start-page: 1312 issue: 5 year: 2017 ident: 139_CR11 publication-title: Genome Biol Evol doi: 10.1093/gbe/evx069 – ident: 139_CR28 doi: 10.1007/978-1-61779-585-5_2 – volume: 43 start-page: 58 issue: 1 year: 1994 ident: 139_CR24 publication-title: Syst Biol – ident: 139_CR12 doi: 10.1007/3-540-49381-6_37 – volume: 46 start-page: 523 issue: 3 year: 1997 ident: 139_CR22 publication-title: Syst Biol doi: 10.1093/sysbio/46.3.523 – volume: 64 start-page: 969 issue: 6 year: 2015 ident: 139_CR30 publication-title: Syst Biol doi: 10.1093/sysbio/syv044 – volume: 459 start-page: 657 issue: 7247 year: 2009 ident: 139_CR2 publication-title: Nature doi: 10.1038/nature08064 – volume: 2 start-page: 904 issue: 5 year: 2018 ident: 139_CR7 publication-title: Nat Ecol Evol doi: 10.1038/s41559-018-0525-3 – volume: 24 start-page: 132 issue: 13 year: 2008 ident: 139_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn150 – volume: 11 start-page: 4 year: 2016 ident: 139_CR18 publication-title: Algorith Mol Biol doi: 10.1186/s13015-016-0067-7 – volume: 6 start-page: 189 issue: 2 year: 1996 ident: 139_CR14 publication-title: Mol Phylogenet Evol doi: 10.1006/mpev.1996.0071 – volume: 34 start-page: i366 issue: 13 year: 2018 ident: 139_CR19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty242 – volume: 12 start-page: 1 issue: 1 year: 2017 ident: 139_CR9 publication-title: Algorith Mol Biol doi: 10.1186/s13015-017-0096-x – ident: 139_CR4 doi: 10.1007/978-3-319-12418-6_7 – ident: 139_CR8 doi: 10.1007/978-3-030-00834-5_10 – volume: 428 start-page: 617 issue: 6983 year: 2004 ident: 139_CR17 publication-title: Nature doi: 10.1038/nature02424 – volume: 8 start-page: 260 issue: 1 year: 2011 ident: 139_CR20 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2009.52 |
| SSID | ssj0045303 |
| Score | 2.2718937 |
| Snippet | Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile each gene... Abstract Reconciling gene trees with a species tree is a fundamental problem to understand the evolution of gene families. Many existing approaches reconcile... |
| SourceID | doaj pubmedcentral hal proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | Algorithms Bioinformatics Biological evolution Biomedical and Life Sciences Cellular and Medical Topics Complexity Computational Biology/Bioinformatics Computer Science Eukaryotes Evolution Fixed-parameter tractability Gene families Gene mapping Gene trees Genes Genomes Genomics Life Sciences Mapping Parameters Phylogenetics Physiological Polynomials Reconciliation Reproduction (copying) Segmental duplications Selected papers from WABI 2018 Species trees Trees Yeast |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuqJRXaKkM4gSKmqyd2D4WxKqHquIAqDfLj7hdqcqiZnel_vvOxMmWUAEXrrHj2OOZ8XyayWeA91r7mVdB5laJmAtfiFxXNpLh2VrKsql6nu0fp_LsTJ2f66-_XPVFNWGJHjgJ7oiXtlC2ctxLLiJRsUhe6aC5kspZ58j7FlKPYCr5YFGhZx5ymKWqjzr01CUVqVFtENd5PTmFerJ-PFsuqRTyfpx5v1zyt5xpfxTNd-HJEEOy4zT3p_CgaffgUbpV8uYZzAlStn5BP5qzsWCQXZBTY5SD7thmYVnXXCRefxbWdzlsZtvArpaUCX4O3-dfvn0-yYfrEnJfyWKVSx6VD2WhpNBCuKqJygZct1VRyyikqyPCk0rhfniPJ7evfQzSIkTxIYrg-AvYaZdt8wqYCt7qmSo9R7jEpdXaIpKNwkdEiK5yGRSj-IwfuMTpSosr02MKVZskcYMSNyRxU2fwYfvKz0Sk8bfOn2hPth2JA7t_gJphBs0w_9KMDN7hjk7GODk-NfSMAh2BYGlTZnAwbrgZrLczM1ylxDhKqAzebpvR7iiZYttmuaY-xDSkVYmTfZn0Y_spyi4TtV8GcqI5k7lMW9rFZc_tjXAQI1oc8-OoY3fT-qO4Xv8Pce3D41lvIBw95wHsrK7XzRt46DerRXd92JvXLZToJTU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagBYkL70egIIM4gaImazu2T6hFXfVQrSoEqDfLsePtSlVSNrsr8e-ZSZxdhYpeuCZO4ngeni8z-YaQj1q7iVNeplbxkHKX8VQLG9DwbCFlXomOZ_vnmZzN1MWFPo8f3NpYVjn4xM5R-8bhN_LDCWATCXsbV1-uf6XYNQqzq7GFxl2yj0xloOf7xyez82-DL-YCPHTMZeaqOGzBY-dYrIY1QkynxWg36kj7YY-5xJLIm_HmzbLJv3Kn3ZY0ffS_L_OYPIzBKD3qtecJuVPVT8n9vj3l72dkiti0dgv8Y50OlYd0jt6RYjK7pZuFpW017xsEUL_eJcOprT29ajCl_Jz8mJ58_3qaxr4LqRMyW6WSBeV8ninJNeelqIKyHhbOqqBl4LIsAuAcoUCwzkEI4AoXvLSAdZwP3JfsBdmrm7p6RajyzuqJyh0D3MWk1doCJA7cBViBUpQJyYb1Ny6SkmNvjCvTgRNVmF5kBkRmUGSmSMin7SXXPSPHbYOPUajbgUim3R1olnMTbdOw3GbKipI5yXhAth_JhPaaKalKW8IkP4BKjO5xenRm8BhGTBxQ1yZPyMEgahPdQGt2ck7I--1pMGDMyti6atY4BimLtMphsi97Bds-CtPUyBGYEDlSvdFcxmfqxWVHEg64EkJjuOfnQUl30_rncr2-_SXekAeTznYYONcDsrdarqu35J7brBbt8l20vT9pxDUc priority: 102 providerName: ProQuest |
| Title | Reconciling multiple genes trees via segmental duplications and losses |
| URI | https://link.springer.com/article/10.1186/s13015-019-0139-6 https://www.ncbi.nlm.nih.gov/pubmed/30930955 https://www.proquest.com/docview/2210791048 https://www.proquest.com/docview/2201719816 https://hal.science/hal-02154306 https://pubmed.ncbi.nlm.nih.gov/PMC6425616 https://doaj.org/article/31a08a5b3c734f34827359d93878babb |
| Volume | 14 |
| WOSCitedRecordID | wos000462297100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: RBZ dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: P5Z dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: M7S dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1748-7188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045303 issn: 1748-7188 databaseCode: RSV dateStart: 20060101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbYBhIv_IYFRhQQT6CIpLZj-3FDq4Y0qojBVHixHCfuKk3p1LSV-O-5c5JOYYAEL36IneTi3J3vy10-E_JGKTuyshSxkczFzCYsVtw4NDyTCZFW3PNsn5-KyUROpyrv_uNu-mr3PiXpPbU3a5m9b8DbplhohvU9VMXZDtnjSDaDEP3svHe_jINT7tKXvz1tsAB5nn5YVi6wCvJmiHmzUvKXdKlfhcb3_0v-B-ReF3RGh62WPCS3qvoRudNuQ_njMRkjBq3tHP9Mj_oKw2iGXjDCpHUTbeYmaqpZuxFAVK6vk96RqcvocoGp4yfk6_j4y4eTuNtfIbZcJKtYUCdtmSZSMMVYwSsnTQlCGumUcEwUmQM8wyW8QGthqbeZdaUwgGls6VhZ0Kdkt17U1T6JZGmNGsnUUsBXVBilDEBfx6wDSFnwIiBJP-naduTjuAfGpfYgRGa6nR4N06NxenQWkLfbU65a5o2_DT7CN7kdiKTZ_sBiOdOdDWqamkQaXlArKHPI6iMoV6WiUsjCFCDka9CDwTVODk81HsPIiAG62qQBOejVRHfm3ugRPKWAwIvJgLzadoOhYvbF1NVijWOQmkjJFIR91mrV9laYjkYuwICIgb4NZBn21PMLTwYO-BFCYLjmu17rrsX643Q9_6fRL8jdkVdbCj71gOyuluvqJbltN6t5swzJjpgK38qQ7B0dT_LPof-yEWIdbe7bM2hz_h3684-f8m-ht9ifCEkyVQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELZKAZUL78JCAYPgAoqaxE5sHxAqj9VWXVY9FNSbcex4u1KVlM3uov4pfiMzeexqqeitB66J40zsb16Z8Qwhr5WysZVOBEZyH3Ab8kAlxiPjmVSIKE_qOtvfh2I0ksfH6nCD_O7OwmBaZScTa0HtSov_yHdj8E0E6DYuP5z9DLBrFEZXuxYaDSwO8vNf4LJV7_c_w_6-ieP-l6NPg6DtKhDYRISzQDAvrYtCKbjiPEtyL40DmBvplfBcZKkHKz6RQLa1oOBsar0TBix56zx3GYN5r5HrYEbEYZ0qeNhJfp6APmgjp5FMdyvQDxGmxmFGElNBuqb76hYBoNFOMAHzonV7MUnzr0htrQD7d_63pbtLbremNt1reOMe2ciL--Rm03zz_AHpo-dd2Amex6ddXiUdo-ynGKqv6GJiaJWPm_YH1M1XoX5qCkdPSwyYPyTfruQjtslmURb5Y0Kls0bFMrIMvEomjFIGHH7PrYcVz5KsR8Juv7VtS65j549TXbteMtUNRDRARCNEdNojb5ePnDX1Ri4b_BFBtByIpcLrC-V0rFvJo1lkQmmSjFnBuMdaRoIlyikmhcxMBkS-AgiuzTHYG2q8hvYgB59yEfXITgct3Qq5Sq9w1SMvl7dBPGHMyRR5OccxWJBJyQiIfdQAevkqDMJjBcQeEWtQX6Nl_U4xOalLoIPXDIY_zPmuY4oVWf9crieXf8QLsjU4-jrUw_3RwVNyK675loEa2SGbs-k8f0Zu2MVsUk2f11xPyY-r5pU_2YGRvA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB5BOcQL9xEoYBBPVFGTtRPbj-VYFbFaVRxV3yzHjrcrVdlqs7sS_56ZHFuFAhLiNXGSsT0znk8z-QbgjdZu5JSXsVUixMIlItaZDWR4NpcyLbOGZ_t4IqdTdXKij7o-p3Vf7d6nJNt_GoilqVrtn_vQmrjK92v0vCkVnVGtD9dxfhWuCQQyVNP15etx74pFhg66S2X-9rHBYdRw9uMRc0oVkZfDzctVk7-kTpsTaXznv-dyF253wSg7aLXnHlwpq_two21P-eMBjAmbVm5Of6yzvvKQzcg7Mkpm12wzt6wuZ22DAObXF8lwZivPzhaUUn4I38cfv70_jLu-C7HLZLKKJQ_K-TRRUmghiqwMynoU0qqgZRCyyAPinEzhxjqHIYDLXfDSItZxPghf8EewUy2q8gkw5Z3VI5U6jriLS6u1RUgchAsINYusiCDpN8C4jpScemOcmQacqNy0y2NweQwtj8kjeLt95Lxl5Pjb4He0q9uBRKbdXFgsZ6azTcNTmyibFdxJLgKx_Uieaa-5kqqwBQr5GnVi8I7Dg4mhaxQxCURdmzSC3V5lTOcGajPCWUoMyISK4NX2NhowZWVsVS7WNIYoi7RKUdjHrYZtP0VpauIIjEAOdG8gy_BONT9tSMIRV2JojO_c6zXwQqw_LtfTfxr9Em4efRibyafp52dwa9RoMEe3uws7q-W6fA7X3WY1r5cvGqP8CfmONSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconciling+multiple+genes+trees+via+segmental+duplications+and+losses&rft.jtitle=Algorithms+for+molecular+biology&rft.au=Dondi%2C+Riccardo&rft.au=Lafond%2C+Manuel&rft.au=Scornavacca%2C+Celine&rft.date=2019-03-20&rft.pub=BioMed+Central&rft.eissn=1748-7188&rft.volume=14&rft_id=info:doi/10.1186%2Fs13015-019-0139-6&rft_id=info%3Apmid%2F30930955&rft.externalDocID=PMC6425616 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-7188&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-7188&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-7188&client=summon |