Inbreeding and Loss of Genetic Variation in a Reintroduced Population of Mauritius Kestrel

Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Conservation biology Ročník 22; číslo 2; s. 395 - 404
Hlavní autori: EWING, STEVEN R, NAGER, RUEDI G, NICOLL, MALCOLM A.C, AUMJAUD, AURELIEN, JONES, CARL G, KELLER, LUKAS F
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Malden, USA Blackwell Publishing Inc 01.04.2008
Blackwell Publishing, Inc
Blackwell
Blackwell Publishing Ltd
Predmet:
ISSN:0888-8892, 1523-1739, 1523-1739
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
AbstractList :  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. Resumen:  Muchas poblaciones se han recuperado de cuellos de botella severos ya sea naturalmente o por medio de manejo de conservación intensiva. Sin embargo, en el pasado pocos programas de conservación han monitoreado la salud genética de poblaciones en recuperación. Realizamos una evaluación genética de una población pequeña, reintroducida de Falco punctatus para determiner sí ha ocurrido deterioro genético desde su reintroducción. Utilizamos análisis de pedigrí que dio cuenta parcial de individuos de origen desconocido para documentar que (1) la endogamia ocurrió frecuentemente (incremento de 2.6% por generación; NeI= 18.9), (2) 25% de las parejas reproductivas estaban compuestas de individuos relacionados cercana o moderadamente, (3) la diversidad genética se ha perdido en la población (pérdida de 1.6% por generación; NeV= 32.1) más rápidamente que el correspondiente incremento en la endogamia y (4) ignorar la contribución de individuos desconocidos al pedigrí sesgará las medidas derivadas de ese pedigrí, lo que a la postre obscurecerá la dinámica genética prevaleciente. Las tasas de endogamia y de pérdida de variación genética en la subpoblación de F. punctatus que examinamos fueron extremas y entre las más altas que se han documentado en una población silvestre de vertebrados. Por lo tanto, el deterioro genético puede afectar la viabilidad a largo plazo de esta población. Se requieren estrategias de conservación remediales para reducir el impacto de la endogamia y la pérdida de variación genética en esta especie. Sugerimos que los planes para monitorear la variación genética después de la reintroducción deben ser un componente integral de los programas de recuperación de especies en peligro.
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NₑI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NₑV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. [PUBLICATION ABSTRACT]
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation;$\text{N}_{eI}=18.9$), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation;$\text{N}_{eV}=32.1$) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. /// Muchas poblaciones se han recuperado de cuellos de botella severos ya sea naturalmente o por medio de manejo de conservación intensiva. Sin embargo, en el pasado pocos programas de conservación han monitoreado la salud genética de poblaciones en recuperación. Realizamos una evaluación genética de una población pequeña, reintroducida de Falco punctatus para determiner sí ha ocurrido deterioro genético desde su reintroducción. Utilizamos análisis de pedigrí que dio cuenta parcial de individuos de origen desconocido para documentar que (1) la endogamia ocurrió frecuentemente (incremento de 2.6% por generación;$\text{N}_{eI}=18.9$), (2) 25% de las parejas reproductivas estaban compuestas de individuos relacionados cercana o moderadamente, (3) la diversidad genética se ha perdido en la población (pérdida de 1.6% por generación;$\text{N}_{eV}=32.1$) más rápidamente que el correspondiente incremento en la endogamia y (4) ignorar la contribución de individuos desconocidos al pedigrí sesgará las medidas derivadas de ese pedigrí, lo que a la postre obscurecerá la dinámica genética prevaleciente. Las tasas de endogamia y de pérdida de variación genética en la subpoblación de F. punctatus que examinamos fueron extremas y entre las más altas que se han documentado en una población silvestre de vertebrados. Por lo tanto, el deterioro genético puede afectar la viabilidad a largo plazo de esta población. Se requieren estrategias de conservación remediales para reducir el impacto de la endogamia y la pérdida de variación genética en esta especie. Sugerimos que los planes para monitorear la variación genética después de la reintroducción deben ser un componente integral de los programas de recuperación de especies en peligro.
Author KELLER, LUKAS F.
EWING, STEVEN R.
NAGER, RUEDI G.
AUMJAUD, AURELIEN
NICOLL, MALCOLM A. C.
JONES, CARL G.
Author_xml – sequence: 1
  fullname: EWING, STEVEN R
– sequence: 2
  fullname: NAGER, RUEDI G
– sequence: 3
  fullname: NICOLL, MALCOLM A.C
– sequence: 4
  fullname: AUMJAUD, AURELIEN
– sequence: 5
  fullname: JONES, CARL G
– sequence: 6
  fullname: KELLER, LUKAS F
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20258404$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18294297$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v0zAUhi00xLrBTwAiJLhL8Uec2BcgQQWlomxoMCZxYzm2M7nL7GInovv3OE2p0G6KpchWzvOe4_P6nIAj550BIENwitJ6vZoiikmOKsKnGEI2TR8rppsHYLIPHIFJ-slyxjg-BicxriCEnKLiEThGDPMC82oCfi5cHYzR1l1n0uls6WPMfJPNjTOdVdkPGazsrHeZdZnMLox1XfC6V0ZnX_26b8dgUnyRfbCd7WP22cQumPYxeNjINponu_0UXH788H32KV-ezxezd8tc0QoWuVGEKlwwXWMpq6apykaaMh0MhnVlDKsKrTnUFGMMy7oqU3OQc8ZMCXWtFTkFr8a86-B_9am2uLVRmbaVzvg-ilSEUc6Kg2BRlclMXB4EEaeEQIYT-OIeuPJ9cKlbgSEqKC0hStCzHdTXt0aLdbC3MtyJv4-QgJc7QEYl2yZIp2zccxhiygo43P_tyKmQXimYRijbbf3vgrStQFAM0yFWYhgCMQyBGKZDbKdDbFICdi_B_i6HpW9G6W_bmrv_1onZ-fsF23r_dNSvYufDP70hRggfnMzHuI2d2ezjMtyIsiIVFVdnc8GXZ_ziis8ESfzzkW-kF_I6JL8uv6VsZChMYAnJHzx78T0
CODEN CBIOEF
CitedBy_id crossref_primary_10_1007_s10592_009_0019_6
crossref_primary_10_1007_s10592_019_01216_x
crossref_primary_10_1007_s10592_014_0595_y
crossref_primary_10_1111_mec_12482
crossref_primary_10_1111_ibi_12987
crossref_primary_10_1111_izy_12271
crossref_primary_10_1111_eva_12162
crossref_primary_10_1007_s10592_017_1017_8
crossref_primary_10_1890_11_0627_1
crossref_primary_10_3390_ani11092626
crossref_primary_10_1111_j_1474_919X_2011_01199_x
crossref_primary_10_1007_s10592_013_0444_4
crossref_primary_10_1016_j_tree_2008_07_001
crossref_primary_10_3390_d6020354
crossref_primary_10_3390_d15050622
crossref_primary_10_1111_bij_12788
crossref_primary_10_1002_ece3_11109
crossref_primary_10_1111_cobi_12122
crossref_primary_10_1111_j_1523_1739_2010_01549_x
crossref_primary_10_1016_j_tree_2012_10_016
crossref_primary_10_1111_j_1365_294X_2010_04791_x
crossref_primary_10_1007_s10584_021_02971_y
crossref_primary_10_1002_ece3_4869
crossref_primary_10_1111_acv_12779
crossref_primary_10_1111_j_1523_1739_2010_01574_x
crossref_primary_10_1007_s10592_011_0246_5
crossref_primary_10_1139_cjz_2013_0188
crossref_primary_10_1111_evo_12557
Cites_doi 10.1016/S0169-5347(02)02489-8
10.1111/j.0014-3820.2002.tb01434.x
10.1046/j.1439-0388.1999.00210.x
10.1650/0010-5422(2000)102[0482:IDAIEO]2.0.CO;2
10.1017/S0016672300034455
10.1016/j.anbehav.2003.10.011
10.1038/sj.hdy.6800485
10.1002/zoo.1430080203
10.1016/j.anbehav.2005.06.012
10.1111/j.1469-1795.2006.00078.x
10.1098/rspb.2001.1607
10.1046/j.1365-294X.1999.00734.x
10.1111/j.1474-919X.1995.tb08439.x
10.1111/j.1523-1739.1990.tb00291.x
10.1002/zoo.1430050209
10.1016/0169-5347(93)90197-W
10.1046/j.1365-294X.2003.01702.x
10.1093/genetics/165.4.2193
10.3168/jds.S0022-0302(92)78077-1
10.1017/S0016672399004449
10.1038/35001148
10.1111/j.1469-1795.1999.tb00071.x
10.1046/j.1523-1739.2000.99322.x
10.1111/j.2006.0908-8857.03681.x
10.1086/279872
10.1046/j.1523-1739.2003.01400.x
10.1098/rspb.2002.2035
10.1046/j.1365-2656.2001.00502.x
10.1002/zoo.1430140609
ContentType Journal Article
Copyright Copyright 2008 Society for Conservation Biology
2008 Society for Conservation Biology
2008 INIST-CNRS
Copyright_xml – notice: Copyright 2008 Society for Conservation Biology
– notice: 2008 Society for Conservation Biology
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
7X8
DOI 10.1111/j.1523-1739.2008.00884.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE - Academic
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 404
ExternalDocumentID 1459680611
18294297
20258404
10_1111_j_1523_1739_2008_00884_x
COBI884
20183392
ark_67375_WNG_9LN9RW9C_3
US201300883060
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GeographicLocations Mauritius
GeographicLocations_xml – name: Mauritius
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAJUZ
AAKGQ
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABEFU
ABEML
ABHUG
ABJNI
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACPVT
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFDN
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AI.
AIAGR
AIRJO
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
1OB
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ABUFD
ABXSQ
ACHIC
ACRPL
ACYXJ
ADNMO
ADUKH
ADXHL
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
ALVPJ
AQVQM
BSCLL
HGLYW
IPSME
OIG
SAMSI
-
02
08R
0R
31
3N
4
AAPBV
ABFLS
DZ
GA
HF
HZ
IA
IPNFZ
KM
NF
P4A
PQEST
RIG
UMP
WT
Y3
AAYXX
CITATION
O8X
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7S9
L.6
7X8
ID FETCH-LOGICAL-c5704-ec35c248db2aa7ff76fae67ffe20b7ee874dd90d522206b7617309988e60dbdc3
IEDL.DBID DRFUL
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254796800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-8892
1523-1739
IngestDate Fri Jul 11 08:27:50 EDT 2025
Fri Jul 11 18:23:41 EDT 2025
Tue Oct 07 09:27:08 EDT 2025
Mon Nov 10 02:57:20 EST 2025
Mon Jul 21 06:00:58 EDT 2025
Mon Jul 21 09:12:13 EDT 2025
Tue Nov 18 21:54:34 EST 2025
Sat Nov 29 07:02:57 EST 2025
Sat Jul 09 15:08:53 EDT 2022
Thu Jul 03 21:31:56 EDT 2025
Tue Nov 11 03:33:51 EST 2025
Wed Dec 27 18:58:55 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Genetic variability
Endangered species
Genetic resource
Loss
Population number
Falco punctatus
genetic variation
Reintroduction
Raptor
pedigree
effective population size
gene-drop analysis
Vertebrata
Mountain
Mauritius Kestrel
Inbreeding
Bambous Mountains
Aves
Environmental protection
conservation genetics
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5704-ec35c248db2aa7ff76fae67ffe20b7ee874dd90d522206b7617309988e60dbdc3
Notes http://dx.doi.org/10.1111/j.1523-1739.2008.00884.x
ArticleID:COBI884
ark:/67375/WNG-9LN9RW9C-3
istex:0AC826022D6BA22DC48EFD038F56E183580A7A4A
This paper is dedicated to the memory of Aurelien Aumjaud, a brilliant and committed conservation biologist.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PMID 18294297
PQID 201455601
PQPubID 36794
PageCount 10
ParticipantIDs proquest_miscellaneous_70485984
proquest_miscellaneous_47620026
proquest_miscellaneous_19533082
proquest_journals_201455601
pubmed_primary_18294297
pascalfrancis_primary_20258404
crossref_citationtrail_10_1111_j_1523_1739_2008_00884_x
crossref_primary_10_1111_j_1523_1739_2008_00884_x
wiley_primary_10_1111_j_1523_1739_2008_00884_x_COBI884
jstor_primary_20183392
istex_primary_ark_67375_WNG_9LN9RW9C_3
fao_agris_US201300883060
PublicationCentury 2000
PublicationDate April 2008
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: April 2008
PublicationDecade 2000
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: Malden, MA
– name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2008
Publisher Blackwell Publishing Inc
Blackwell Publishing, Inc
Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Blackwell Publishing, Inc
– name: Blackwell
– name: Blackwell Publishing Ltd
References Glemin, S., J. Ronfort, and T. Bataillon. 2003. Patterns of inbreeding depression and the architecture of the load in subdivided populations. Genetics 165:2193-2212.
Lutaaya, E., I. Miztal, J. K. Bertrand, and J. W. Mabry. 1999. Inbreeding in populations with incomplete pedigrees. Journal of Animal Breeding and Genetics 116:475-480.
Groombridge, J. J., M. W. Bruford, C. G. Jones, and R. A. Nichols. 2001. Evaluating the severity of the population bottleneck in the Mauritius kestrel Falco punctatus from ringing records using MCMC estimation. Journal of Animal Ecology 70:401-409.
Van Raden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science 75:3136-3144.
Wheelwright, N. T., C. R. Freeman-Gallant, and R. A. Mauck. 2005. Asymmetrical incest avoidance in the choice of social and genetic mates. Animal Behaviour 71:631-639.
Groombridge, J. J., C. G. Jones, M. W. Bruford, and R. A. Nichols. 2000. Conservation biology-'ghost' alleles of the Mauritius kestrel. Nature 403:616.
Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66:95-107.
Jamieson, I. G., L. N. Tracy, D. Fletcher, and D. P. Armstrong. 2007. Moderate inbreeding depression in a reintroduced population of North Island robins. Animal Conservation 10:95-102.
MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder. 1986. Pedigree analysis by computer simulation. Zoo Biology 5:147-160.
Nunney, L., and K. A. Campbell. 1993. Assessing minimum viable population size: demography meets population genetics. Trends in Ecology & Evolution 8:234-239.
Toro, M., J. Rodriganez, L. Silio, and C. Rodriganez. 2000. Genealogical analysis of a closed herd of black hairless Iberian pigs. Conservation Biology 6:1843-1851.
Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, G. Slade, and T. Cade. 1995. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137:S173-S180.
Crow, J. F., and M. Kimura. 1970. Introduction to population genetic theory. Harper & Row, New York .
Ciofi, C., and M. W. Bruford. 1999. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Molecular Ecology 8:S17-S30.
Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology 8:111-123.
Keller, L. F., P. R. Grant, B. R. Grant, and K. Petren. 2002. Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches. Evolution 56:1229-1239.
Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17:230-241.
Frankham, R., K. Lees, M. E. Montgomery, P. R. England, E. H. Lowe, and D. A. Briscoe. 1999. Do population size bottlenecks reduce evolutionary potential? Animal Conservation 2:255-260.
Keller, L. F., K. J. Jeffrey, P. Arcese, M. A. Beaumont, W. M. Hochachka, J. N. M. Smith, and M. W. Bruford. 2001. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society of London Series B 268:1387-1394.
Marshall, T. C., D. W. Coltman, J. M. Pemberton, J. Slate, J. A. Spalton, F. E. Guinness, J. A. Smith, J. G. Pilkington, and T. H. Clutton-Brock. 2002. Estimating the prevalence of inbreeding from incomplete pedigrees. Proceedings of the Royal Society of London Series B 269:1533-1539.
Mougeot, F. 2004. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Animal Behaviour 67:1067-1076.
Brooker, M. G., I. Rowley, M. Adams, and P. R. Baverstock. 1990. Promiscuity: an inbreeding avoidance mechanism in a socially mono- gamous species. Behavioral Ecology and Sociobiology 26:191-199.
Pollak, J. P., R. C. Lacy, and J. D. Ballou. 2002. Population management 2000. Chicago Zoological Society, Chicago .
Haig, S. M., J. D. Ballou, and S. R. Derrickson. 1990. Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Conservation Biology 4:290-300.
Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, and T. Cade. 1991. A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973-1991. Dodo 27:81-99.
Lacy, R. C. 1995. Clarification of genetic terms and their use in the management of captive populations. Zoo Biology 14:565-578.
Daniels, S. J., and J. R. Walters. 2000. Inbreeding depression and its effects on the natal dispersal of Red-Cockaded Woodpeckers. Condor 102:482-491.
Jamieson, I. G., M. S. Roy, and M. Lettink. 2003. Sex-specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe. Conservation Biology 17:708-716.
O'Connor, K. D., A. B. Marr, P. Arcese, L. F. Keller, K. J. Jeffery, and M. W. Bruford. 2006. Extra-pair fertilization and effective population size in the song sparrow Melospiza melodia. Journal of Avian Biology 37:572-578.
Slate, J., P. David, K. G. Dodds, B. A. Veenvliet, B. C. Glass, T. E. Broad, and J. C. McEwan. 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255-265.
Caballero, A., and M. A. Toro. 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research 75:331-343.
Wright, S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:330-338.
Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge , United Kingdom .
2001; 70
2002; 17
1993; 8
1922; 56
2000; 6
1995; 14
2002; 56
2004; 67
1989; 8
2006; 37
1995; 137
1995
2003; 17
1970
1999; 2
2002
1999; 8
1992; 75
2007; 10
2001; 268
1991; 27
2004; 93
2001
1990; 26
2000; 102
2000; 403
1995; 66
1986; 5
2000; 75
1986
2002; 269
2005; 71
1980
1999; 116
2003; 165
1990; 4
e_1_2_7_6_1
Soulé M. E. (e_1_2_7_37_1) 1980
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Jones C. G. (e_1_2_7_21_1) 1991; 27
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_11_1
e_1_2_7_10_1
Glemin S. (e_1_2_7_13_1) 2003; 165
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
Haig S. M. (e_1_2_7_16_1) 2002
e_1_2_7_29_1
Pollak J. P. (e_1_2_7_34_1) 2002
Ralls K. (e_1_2_7_35_1) 1986
Franklin I. R. (e_1_2_7_12_1) 1980
Brooker M. G. (e_1_2_7_4_1) 1990; 26
Crow J. F. (e_1_2_7_7_1) 1970
e_1_2_7_30_1
Ballou J. D. (e_1_2_7_2_1) 1995
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
Waples S. R. (e_1_2_7_40_1) 2002
e_1_2_7_22_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – reference: Mougeot, F. 2004. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Animal Behaviour 67:1067-1076.
– reference: Van Raden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science 75:3136-3144.
– reference: Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology 8:111-123.
– reference: Caballero, A., and M. A. Toro. 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research 75:331-343.
– reference: Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17:230-241.
– reference: Lacy, R. C. 1995. Clarification of genetic terms and their use in the management of captive populations. Zoo Biology 14:565-578.
– reference: Daniels, S. J., and J. R. Walters. 2000. Inbreeding depression and its effects on the natal dispersal of Red-Cockaded Woodpeckers. Condor 102:482-491.
– reference: Groombridge, J. J., C. G. Jones, M. W. Bruford, and R. A. Nichols. 2000. Conservation biology-'ghost' alleles of the Mauritius kestrel. Nature 403:616.
– reference: Wright, S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:330-338.
– reference: Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge , United Kingdom .
– reference: Toro, M., J. Rodriganez, L. Silio, and C. Rodriganez. 2000. Genealogical analysis of a closed herd of black hairless Iberian pigs. Conservation Biology 6:1843-1851.
– reference: Frankham, R., K. Lees, M. E. Montgomery, P. R. England, E. H. Lowe, and D. A. Briscoe. 1999. Do population size bottlenecks reduce evolutionary potential? Animal Conservation 2:255-260.
– reference: Pollak, J. P., R. C. Lacy, and J. D. Ballou. 2002. Population management 2000. Chicago Zoological Society, Chicago .
– reference: Nunney, L., and K. A. Campbell. 1993. Assessing minimum viable population size: demography meets population genetics. Trends in Ecology & Evolution 8:234-239.
– reference: MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder. 1986. Pedigree analysis by computer simulation. Zoo Biology 5:147-160.
– reference: Ciofi, C., and M. W. Bruford. 1999. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Molecular Ecology 8:S17-S30.
– reference: Keller, L. F., P. R. Grant, B. R. Grant, and K. Petren. 2002. Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches. Evolution 56:1229-1239.
– reference: Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, and T. Cade. 1991. A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973-1991. Dodo 27:81-99.
– reference: Haig, S. M., J. D. Ballou, and S. R. Derrickson. 1990. Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Conservation Biology 4:290-300.
– reference: Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66:95-107.
– reference: Wheelwright, N. T., C. R. Freeman-Gallant, and R. A. Mauck. 2005. Asymmetrical incest avoidance in the choice of social and genetic mates. Animal Behaviour 71:631-639.
– reference: Marshall, T. C., D. W. Coltman, J. M. Pemberton, J. Slate, J. A. Spalton, F. E. Guinness, J. A. Smith, J. G. Pilkington, and T. H. Clutton-Brock. 2002. Estimating the prevalence of inbreeding from incomplete pedigrees. Proceedings of the Royal Society of London Series B 269:1533-1539.
– reference: Slate, J., P. David, K. G. Dodds, B. A. Veenvliet, B. C. Glass, T. E. Broad, and J. C. McEwan. 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255-265.
– reference: O'Connor, K. D., A. B. Marr, P. Arcese, L. F. Keller, K. J. Jeffery, and M. W. Bruford. 2006. Extra-pair fertilization and effective population size in the song sparrow Melospiza melodia. Journal of Avian Biology 37:572-578.
– reference: Lutaaya, E., I. Miztal, J. K. Bertrand, and J. W. Mabry. 1999. Inbreeding in populations with incomplete pedigrees. Journal of Animal Breeding and Genetics 116:475-480.
– reference: Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, G. Slade, and T. Cade. 1995. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137:S173-S180.
– reference: Groombridge, J. J., M. W. Bruford, C. G. Jones, and R. A. Nichols. 2001. Evaluating the severity of the population bottleneck in the Mauritius kestrel Falco punctatus from ringing records using MCMC estimation. Journal of Animal Ecology 70:401-409.
– reference: Brooker, M. G., I. Rowley, M. Adams, and P. R. Baverstock. 1990. Promiscuity: an inbreeding avoidance mechanism in a socially mono- gamous species. Behavioral Ecology and Sociobiology 26:191-199.
– reference: Glemin, S., J. Ronfort, and T. Bataillon. 2003. Patterns of inbreeding depression and the architecture of the load in subdivided populations. Genetics 165:2193-2212.
– reference: Jamieson, I. G., L. N. Tracy, D. Fletcher, and D. P. Armstrong. 2007. Moderate inbreeding depression in a reintroduced population of North Island robins. Animal Conservation 10:95-102.
– reference: Crow, J. F., and M. Kimura. 1970. Introduction to population genetic theory. Harper & Row, New York .
– reference: Jamieson, I. G., M. S. Roy, and M. Lettink. 2003. Sex-specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe. Conservation Biology 17:708-716.
– reference: Keller, L. F., K. J. Jeffrey, P. Arcese, M. A. Beaumont, W. M. Hochachka, J. N. M. Smith, and M. W. Bruford. 2001. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society of London Series B 268:1387-1394.
– start-page: 151
  year: 1980
  end-page: 169
– volume: 17
  start-page: 230
  year: 2002
  end-page: 241
  article-title: Inbreeding effects in wild populations
  publication-title: Trends in Ecology & Evolution
– volume: 268
  start-page: 1387
  year: 2001
  end-page: 1394
  article-title: Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers
  publication-title: Proceedings of the Royal Society of London Series B
– volume: 269
  start-page: 1533
  year: 2002
  end-page: 1539
  article-title: Estimating the prevalence of inbreeding from incomplete pedigrees
  publication-title: Proceedings of the Royal Society of London Series B
– volume: 75
  start-page: 3136
  year: 1992
  end-page: 3144
  article-title: Accounting for inbreeding and crossbreeding in genetic evaluation of large populations
  publication-title: Journal of Dairy Science
– start-page: 76
  year: 1995
  end-page: 111
– volume: 75
  start-page: 331
  year: 2000
  end-page: 343
  article-title: Interrelations between effective population size and other pedigree tools for the management of conserved populations
  publication-title: Genetical Research
– volume: 8
  start-page: 234
  year: 1993
  end-page: 239
  article-title: Assessing minimum viable population size: demography meets population genetics
  publication-title: Trends in Ecology & Evolution
– start-page: 35
  year: 1986
  end-page: 56
– volume: 93
  start-page: 255
  year: 2004
  end-page: 265
  article-title: Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data
  publication-title: Heredity
– volume: 10
  start-page: 95
  year: 2007
  end-page: 102
  article-title: Moderate inbreeding depression in a reintroduced population of North Island robins
  publication-title: Animal Conservation
– year: 2001
– volume: 66
  start-page: 95
  year: 1995
  end-page: 107
  article-title: Effective population size/adult population size ratios in wildlife: a review
  publication-title: Genetical Research
– volume: 17
  start-page: 708
  year: 2003
  end-page: 716
  article-title: Sex‐specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe
  publication-title: Conservation Biology
– volume: 5
  start-page: 147
  year: 1986
  end-page: 160
  article-title: Pedigree analysis by computer simulation
  publication-title: Zoo Biology
– start-page: 147
  year: 2002
  end-page: 168
– volume: 70
  start-page: 401
  year: 2001
  end-page: 409
  article-title: Evaluating the severity of the population bottleneck in the Mauritius kestrel from ringing records using MCMC estimation
  publication-title: Journal of Animal Ecology
– volume: 56
  start-page: 330
  year: 1922
  end-page: 338
  article-title: Coefficients of inbreeding and relationship
  publication-title: The American Naturalist
– volume: 102
  start-page: 482
  year: 2000
  end-page: 491
  article-title: Inbreeding depression and its effects on the natal dispersal of Red‐Cockaded Woodpeckers
  publication-title: Condor
– volume: 2
  start-page: 255
  year: 1999
  end-page: 260
  article-title: Do population size bottlenecks reduce evolutionary potential?
  publication-title: Animal Conservation
– volume: 26
  start-page: 191
  year: 1990
  end-page: 199
  article-title: Promiscuity: an inbreeding avoidance mechanism in a socially mono‐ gamous species
  publication-title: Behavioral Ecology and Sociobiology
– volume: 403
  year: 2000
  end-page: 616
  article-title: Conservation biology—'ghost' alleles of the Mauritius kestrel
  publication-title: Nature
– volume: 4
  start-page: 290
  year: 1990
  end-page: 300
  article-title: Management options for preserving genetic diversity: reintroduction of Guam rails to the wild
  publication-title: Conservation Biology
– volume: 37
  start-page: 572
  year: 2006
  end-page: 578
  article-title: Extra‐pair fertilization and effective population size in the song sparrow
  publication-title: Journal of Avian Biology
– year: 2002
– volume: 137
  start-page: S173
  year: 1995
  end-page: S180
  article-title: The restoration of the Mauritius Kestrel population
  publication-title: Ibis
– volume: 165
  start-page: 2193
  year: 2003
  end-page: 2212.
  article-title: Patterns of inbreeding depression and the architecture of the load in subdivided populations
  publication-title: Genetics
– volume: 8
  start-page: S17
  year: 1999
  end-page: S30
  article-title: Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis
  publication-title: Molecular Ecology
– volume: 27
  start-page: 81
  year: 1991
  end-page: 99
  article-title: A summary of the conservation management of the Mauritius Kestrel 1973–1991
  publication-title: Dodo
– volume: 56
  start-page: 1229
  year: 2002
  end-page: 1239
  article-title: Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches
  publication-title: Evolution
– volume: 14
  start-page: 565
  year: 1995
  end-page: 578
  article-title: Clarification of genetic terms and their use in the management of captive populations
  publication-title: Zoo Biology
– volume: 6
  start-page: 1843
  year: 2000
  end-page: 1851
  article-title: Genealogical analysis of a closed herd of black hairless Iberian pigs
  publication-title: Conservation Biology
– year: 1970
– start-page: 297
  year: 2002
  end-page: 304
– volume: 116
  start-page: 475
  year: 1999
  end-page: 480
  article-title: Inbreeding in populations with incomplete pedigrees
  publication-title: Journal of Animal Breeding and Genetics
– volume: 67
  start-page: 1067
  year: 2004
  end-page: 1076
  article-title: Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis
  publication-title: Animal Behaviour
– volume: 71
  start-page: 631
  year: 2005
  end-page: 639
  article-title: Asymmetrical incest avoidance in the choice of social and genetic mates
  publication-title: Animal Behaviour
– start-page: 135
  year: 1980
  end-page: 150
– volume: 8
  start-page: 111
  year: 1989
  end-page: 123
  article-title: Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents
  publication-title: Zoo Biology
– start-page: 388
  year: 2002
  end-page: 405
– ident: e_1_2_7_23_1
  doi: 10.1016/S0169-5347(02)02489-8
– ident: e_1_2_7_25_1
  doi: 10.1111/j.0014-3820.2002.tb01434.x
– ident: e_1_2_7_20_1
– ident: e_1_2_7_28_1
  doi: 10.1046/j.1439-0388.1999.00210.x
– ident: e_1_2_7_8_1
  doi: 10.1650/0010-5422(2000)102[0482:IDAIEO]2.0.CO;2
– volume-title: Introduction to population genetic theory
  year: 1970
  ident: e_1_2_7_7_1
– start-page: 35
  volume-title: Conservation biology—the science of scarcity and diversity
  year: 1986
  ident: e_1_2_7_35_1
– ident: e_1_2_7_9_1
  doi: 10.1017/S0016672300034455
– ident: e_1_2_7_31_1
  doi: 10.1016/j.anbehav.2003.10.011
– ident: e_1_2_7_36_1
  doi: 10.1038/sj.hdy.6800485
– start-page: 76
  volume-title: Population management for survival and recovery: analytical methods and strategies in small population conservation
  year: 1995
  ident: e_1_2_7_2_1
– ident: e_1_2_7_3_1
– start-page: 147
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_40_1
– ident: e_1_2_7_26_1
  doi: 10.1002/zoo.1430080203
– ident: e_1_2_7_41_1
  doi: 10.1016/j.anbehav.2005.06.012
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1469-1795.2006.00078.x
– ident: e_1_2_7_24_1
  doi: 10.1098/rspb.2001.1607
– ident: e_1_2_7_6_1
  doi: 10.1046/j.1365-294X.1999.00734.x
– ident: e_1_2_7_22_1
  doi: 10.1111/j.1474-919X.1995.tb08439.x
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1523-1739.1990.tb00291.x
– ident: e_1_2_7_29_1
  doi: 10.1002/zoo.1430050209
– ident: e_1_2_7_32_1
  doi: 10.1016/0169-5347(93)90197-W
– ident: e_1_2_7_11_1
  doi: 10.1046/j.1365-294X.2003.01702.x
– volume: 165
  start-page: 2193
  year: 2003
  ident: e_1_2_7_13_1
  article-title: Patterns of inbreeding depression and the architecture of the load in subdivided populations
  publication-title: Genetics
  doi: 10.1093/genetics/165.4.2193
– ident: e_1_2_7_39_1
  doi: 10.3168/jds.S0022-0302(92)78077-1
– volume: 26
  start-page: 191
  year: 1990
  ident: e_1_2_7_4_1
  article-title: Promiscuity: an inbreeding avoidance mechanism in a socially mono‐ gamous species
  publication-title: Behavioral Ecology and Sociobiology
– ident: e_1_2_7_5_1
  doi: 10.1017/S0016672399004449
– start-page: 388
  volume-title: Population viability analysis
  year: 2002
  ident: e_1_2_7_16_1
– volume-title: Population management 2000
  year: 2002
  ident: e_1_2_7_34_1
– start-page: 135
  volume-title: Conservation biology: an evolutionary‐ecological perspective
  year: 1980
  ident: e_1_2_7_12_1
– ident: e_1_2_7_15_1
  doi: 10.1038/35001148
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1469-1795.1999.tb00071.x
– ident: e_1_2_7_38_1
  doi: 10.1046/j.1523-1739.2000.99322.x
– ident: e_1_2_7_33_1
  doi: 10.1111/j.2006.0908-8857.03681.x
– ident: e_1_2_7_42_1
  doi: 10.1086/279872
– ident: e_1_2_7_18_1
  doi: 10.1046/j.1523-1739.2003.01400.x
– start-page: 151
  volume-title: Conservation biology—an evolutionary‐ecological perspective
  year: 1980
  ident: e_1_2_7_37_1
– ident: e_1_2_7_30_1
  doi: 10.1098/rspb.2002.2035
– volume: 27
  start-page: 81
  year: 1991
  ident: e_1_2_7_21_1
  article-title: A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973–1991
  publication-title: Dodo
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-2656.2001.00502.x
– ident: e_1_2_7_27_1
  doi: 10.1002/zoo.1430140609
SSID ssj0009514
Score 2.0838883
Snippet Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation...
:  Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 395
SubjectTerms Animal genetics
Animal populations
Animal, plant and microbial ecology
Animals
análisis de baja de genes
Applied ecology
Bambous Mountains
Biological and medical sciences
Biology
Birds
Breeding
Conservation
Conservation biology
conservation genetics
Conservation of Natural Resources
Conservation of Natural Resources - methods
conservation programs
Conservation, protection and management of environment and wildlife
effective population size
Endangered & extinct species
Endangered species
endogamia
especies en peligro
Evolutionary genetics
Falco punctatus
Falconiformes
Falconiformes - genetics
Falconiformes - physiology
Fundamental and applied biological sciences. Psychology
gene-drop analysis
General aspects
Genetic diversity
Genetic Variation
Genetics
Genetics, Population
genética de la conservación
Inbreeding
Inbreeding coefficient
interspecific variation
Mauritius
Mauritius Kestrel
methods
montañas Bambous
Parks, reserves, wildlife conservation. Endangered species: population survey and restocking
Pedigree
pedigrí
physiology
Population genetics
Population size
Reintroduction
tamaño poblacional efectivo
variación genética
Vertebrates
viability
Wildlife conservation
Title Inbreeding and Loss of Genetic Variation in a Reintroduced Population of Mauritius Kestrel
URI https://api.istex.fr/ark:/67375/WNG-9LN9RW9C-3/fulltext.pdf
https://www.jstor.org/stable/20183392
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2008.00884.x
https://www.ncbi.nlm.nih.gov/pubmed/18294297
https://www.proquest.com/docview/201455601
https://www.proquest.com/docview/19533082
https://www.proquest.com/docview/47620026
https://www.proquest.com/docview/70485984
Volume 22
WOSCitedRecordID wos000254796800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1523-1739
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009514
  issn: 0888-8892
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5tHUi88HssDIofEG-BxHFi-xHKyiZKmQpl1V4sJ3amalOKmhZt_z3nJA0t2qQJ8WYpPqu5fDl_13y-A3iNINEsDKUvTcx8ljsRQJoFfsqSNLRZLmmYVc0m-HAoJhN5vAWHq7MwdX2I9g8392ZU8dq94Dot360pcTCF8kNenzZxgkgh2FtkkzsUQRx3YOfjqD8erBXgret8Y8bnCyH_UvVcu9bGVrWd6xkSWOf7y5V20QkpdYm-zOsmGNex1E3SW-1a_Qf_734fwv2GuZL3NdQewZYtHsPdupflFY4OqvrXV0_g9KjAPLvaFIkuDBngzZFZTlyFa7QlPzA9r_BApgXRZGSnTi1vEGOGHLf9xJzFF1fzaDFdluSzdYdaLp7CuH_wvXfoNy0c_CzmAfNtFsUZZcKkVGue5zzJtU1wYGmQcmsFZ8bIwCALpEGScuRTEXJWIWwSmNRk0S50illh94BQIwyXSR7pJGBRlmhtAp0YHsU6z8JUe8BXT0tlTX1z12bjQq3lOehD5XzYdN90PlSXHoSt5c-6xsctbPYQEEqfYShW42_UfQDGK5iABR68qVDSrqXn504-x2N1Mvyk5GAoRyeypyIPdisYtRNxFREhYfWgu4GrtQkUCWPAPNhfAU01Mad01ix2CbYHr9qrGCzcFyBd2NmyVGElJhb05hkMN0eXl988Ax-riKXA3_CsRvgfnwkqkd5wD5IKyLd2pup9_XCEo-f_argP92odj1NUvYDOYr60L-FO9msxLedd2OYT0W0Cwm8_UFcl
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inbreeding+and+Loss+of+Genetic+Variation+in+a+Reintroduced+Population+of+Mauritius+Kestrel&rft.jtitle=Conservation+biology&rft.au=EWING%2C+STEVEN+R.&rft.au=NAGER%2C+RUEDI+G.&rft.au=NICOLL%2C+MALCOLM+A.+C.&rft.au=AUMJAUD%2C+AURELIEN&rft.date=2008-04-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=22&rft.issue=2&rft.spage=395&rft.epage=404&rft_id=info:doi/10.1111%2Fj.1523-1739.2008.00884.x&rft.externalDocID=COBI884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon