Inbreeding and Loss of Genetic Variation in a Reintroduced Population of Mauritius Kestrel
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced...
Saved in:
| Published in: | Conservation biology Vol. 22; no. 2; pp. 395 - 404 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Malden, USA
Blackwell Publishing Inc
01.04.2008
Blackwell Publishing, Inc Blackwell Blackwell Publishing Ltd |
| Subjects: | |
| ISSN: | 0888-8892, 1523-1739, 1523-1739 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel ( Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. |
|---|---|
| AbstractList | : Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.
Resumen: Muchas poblaciones se han recuperado de cuellos de botella severos ya sea naturalmente o por medio de manejo de conservación intensiva. Sin embargo, en el pasado pocos programas de conservación han monitoreado la salud genética de poblaciones en recuperación. Realizamos una evaluación genética de una población pequeña, reintroducida de Falco punctatus para determiner sí ha ocurrido deterioro genético desde su reintroducción. Utilizamos análisis de pedigrí que dio cuenta parcial de individuos de origen desconocido para documentar que (1) la endogamia ocurrió frecuentemente (incremento de 2.6% por generación; NeI= 18.9), (2) 25% de las parejas reproductivas estaban compuestas de individuos relacionados cercana o moderadamente, (3) la diversidad genética se ha perdido en la población (pérdida de 1.6% por generación; NeV= 32.1) más rápidamente que el correspondiente incremento en la endogamia y (4) ignorar la contribución de individuos desconocidos al pedigrí sesgará las medidas derivadas de ese pedigrí, lo que a la postre obscurecerá la dinámica genética prevaleciente. Las tasas de endogamia y de pérdida de variación genética en la subpoblación de F. punctatus que examinamos fueron extremas y entre las más altas que se han documentado en una población silvestre de vertebrados. Por lo tanto, el deterioro genético puede afectar la viabilidad a largo plazo de esta población. Se requieren estrategias de conservación remediales para reducir el impacto de la endogamia y la pérdida de variación genética en esta especie. Sugerimos que los planes para monitorear la variación genética después de la reintroducción deben ser un componente integral de los programas de recuperación de especies en peligro. Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N eI = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N eV = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs.Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N(eI)= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; N(eV)= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NₑI= 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NₑV= 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long‐term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; NeI = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation; NeV = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. [PUBLICATION ABSTRACT] Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation;$\text{N}_{eI}=18.9$), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1.6% loss per generation;$\text{N}_{eV}=32.1$) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species. We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs. /// Muchas poblaciones se han recuperado de cuellos de botella severos ya sea naturalmente o por medio de manejo de conservación intensiva. Sin embargo, en el pasado pocos programas de conservación han monitoreado la salud genética de poblaciones en recuperación. Realizamos una evaluación genética de una población pequeña, reintroducida de Falco punctatus para determiner sí ha ocurrido deterioro genético desde su reintroducción. Utilizamos análisis de pedigrí que dio cuenta parcial de individuos de origen desconocido para documentar que (1) la endogamia ocurrió frecuentemente (incremento de 2.6% por generación;$\text{N}_{eI}=18.9$), (2) 25% de las parejas reproductivas estaban compuestas de individuos relacionados cercana o moderadamente, (3) la diversidad genética se ha perdido en la población (pérdida de 1.6% por generación;$\text{N}_{eV}=32.1$) más rápidamente que el correspondiente incremento en la endogamia y (4) ignorar la contribución de individuos desconocidos al pedigrí sesgará las medidas derivadas de ese pedigrí, lo que a la postre obscurecerá la dinámica genética prevaleciente. Las tasas de endogamia y de pérdida de variación genética en la subpoblación de F. punctatus que examinamos fueron extremas y entre las más altas que se han documentado en una población silvestre de vertebrados. Por lo tanto, el deterioro genético puede afectar la viabilidad a largo plazo de esta población. Se requieren estrategias de conservación remediales para reducir el impacto de la endogamia y la pérdida de variación genética en esta especie. Sugerimos que los planes para monitorear la variación genética después de la reintroducción deben ser un componente integral de los programas de recuperación de especies en peligro. |
| Author | KELLER, LUKAS F. EWING, STEVEN R. NAGER, RUEDI G. AUMJAUD, AURELIEN NICOLL, MALCOLM A. C. JONES, CARL G. |
| Author_xml | – sequence: 1 fullname: EWING, STEVEN R – sequence: 2 fullname: NAGER, RUEDI G – sequence: 3 fullname: NICOLL, MALCOLM A.C – sequence: 4 fullname: AUMJAUD, AURELIEN – sequence: 5 fullname: JONES, CARL G – sequence: 6 fullname: KELLER, LUKAS F |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20258404$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18294297$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v0zAUhi00xLrBTwAiJLhL8Uec2BcgQQWlomxoMCZxYzm2M7nL7GInovv3OE2p0G6KpchWzvOe4_P6nIAj550BIENwitJ6vZoiikmOKsKnGEI2TR8rppsHYLIPHIFJ-slyxjg-BicxriCEnKLiEThGDPMC82oCfi5cHYzR1l1n0uls6WPMfJPNjTOdVdkPGazsrHeZdZnMLox1XfC6V0ZnX_26b8dgUnyRfbCd7WP22cQumPYxeNjINponu_0UXH788H32KV-ezxezd8tc0QoWuVGEKlwwXWMpq6apykaaMh0MhnVlDKsKrTnUFGMMy7oqU3OQc8ZMCXWtFTkFr8a86-B_9am2uLVRmbaVzvg-ilSEUc6Kg2BRlclMXB4EEaeEQIYT-OIeuPJ9cKlbgSEqKC0hStCzHdTXt0aLdbC3MtyJv4-QgJc7QEYl2yZIp2zccxhiygo43P_tyKmQXimYRijbbf3vgrStQFAM0yFWYhgCMQyBGKZDbKdDbFICdi_B_i6HpW9G6W_bmrv_1onZ-fsF23r_dNSvYufDP70hRggfnMzHuI2d2ezjMtyIsiIVFVdnc8GXZ_ziis8ESfzzkW-kF_I6JL8uv6VsZChMYAnJHzx78T0 |
| CODEN | CBIOEF |
| CitedBy_id | crossref_primary_10_1007_s10592_009_0019_6 crossref_primary_10_1007_s10592_019_01216_x crossref_primary_10_1007_s10592_014_0595_y crossref_primary_10_1111_mec_12482 crossref_primary_10_1111_ibi_12987 crossref_primary_10_1111_izy_12271 crossref_primary_10_1111_eva_12162 crossref_primary_10_1007_s10592_017_1017_8 crossref_primary_10_1890_11_0627_1 crossref_primary_10_3390_ani11092626 crossref_primary_10_1111_j_1474_919X_2011_01199_x crossref_primary_10_1007_s10592_013_0444_4 crossref_primary_10_1016_j_tree_2008_07_001 crossref_primary_10_3390_d6020354 crossref_primary_10_3390_d15050622 crossref_primary_10_1111_bij_12788 crossref_primary_10_1002_ece3_11109 crossref_primary_10_1111_cobi_12122 crossref_primary_10_1111_j_1523_1739_2010_01549_x crossref_primary_10_1016_j_tree_2012_10_016 crossref_primary_10_1111_j_1365_294X_2010_04791_x crossref_primary_10_1007_s10584_021_02971_y crossref_primary_10_1002_ece3_4869 crossref_primary_10_1111_acv_12779 crossref_primary_10_1111_j_1523_1739_2010_01574_x crossref_primary_10_1007_s10592_011_0246_5 crossref_primary_10_1139_cjz_2013_0188 crossref_primary_10_1111_evo_12557 |
| Cites_doi | 10.1016/S0169-5347(02)02489-8 10.1111/j.0014-3820.2002.tb01434.x 10.1046/j.1439-0388.1999.00210.x 10.1650/0010-5422(2000)102[0482:IDAIEO]2.0.CO;2 10.1017/S0016672300034455 10.1016/j.anbehav.2003.10.011 10.1038/sj.hdy.6800485 10.1002/zoo.1430080203 10.1016/j.anbehav.2005.06.012 10.1111/j.1469-1795.2006.00078.x 10.1098/rspb.2001.1607 10.1046/j.1365-294X.1999.00734.x 10.1111/j.1474-919X.1995.tb08439.x 10.1111/j.1523-1739.1990.tb00291.x 10.1002/zoo.1430050209 10.1016/0169-5347(93)90197-W 10.1046/j.1365-294X.2003.01702.x 10.1093/genetics/165.4.2193 10.3168/jds.S0022-0302(92)78077-1 10.1017/S0016672399004449 10.1038/35001148 10.1111/j.1469-1795.1999.tb00071.x 10.1046/j.1523-1739.2000.99322.x 10.1111/j.2006.0908-8857.03681.x 10.1086/279872 10.1046/j.1523-1739.2003.01400.x 10.1098/rspb.2002.2035 10.1046/j.1365-2656.2001.00502.x 10.1002/zoo.1430140609 |
| ContentType | Journal Article |
| Copyright | Copyright 2008 Society for Conservation Biology 2008 Society for Conservation Biology 2008 INIST-CNRS |
| Copyright_xml | – notice: Copyright 2008 Society for Conservation Biology – notice: 2008 Society for Conservation Biology – notice: 2008 INIST-CNRS |
| DBID | FBQ BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 7X8 |
| DOI | 10.1111/j.1523-1739.2008.00884.x |
| DatabaseName | AGRIS Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1523-1739 |
| EndPage | 404 |
| ExternalDocumentID | 1459680611 18294297 20258404 10_1111_j_1523_1739_2008_00884_x COBI884 20183392 ark_67375_WNG_9LN9RW9C_3 US201300883060 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study Feature |
| GeographicLocations | Mauritius |
| GeographicLocations_xml | – name: Mauritius |
| GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAJUZ AAKGQ AANLZ AAONW AASGY AAUTI AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABEFU ABEML ABHUG ABJNI ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ABWRO ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACNCT ACPOU ACPRK ACPVT ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFDN AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AI. AIAGR AIRJO AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HVGLF HZI HZ~ IHE IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT 1OB AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ABUFD ABXSQ ACHIC ACRPL ACYXJ ADNMO ADUKH ADXHL AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG ALVPJ AQVQM BSCLL HGLYW IPSME OIG SAMSI - 02 08R 0R 31 3N 4 AAPBV ABFLS DZ GA HF HZ IA IPNFZ KM NF P4A PQEST RIG UMP WT Y3 AAYXX CITATION O8X IQODW CGR CUY CVF ECM EIF NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7S9 L.6 7X8 |
| ID | FETCH-LOGICAL-c5704-ec35c248db2aa7ff76fae67ffe20b7ee874dd90d522206b7617309988e60dbdc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000254796800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-8892 1523-1739 |
| IngestDate | Fri Jul 11 08:27:50 EDT 2025 Fri Jul 11 18:23:41 EDT 2025 Tue Oct 07 09:27:08 EDT 2025 Mon Nov 10 02:57:20 EST 2025 Mon Jul 21 06:00:58 EDT 2025 Mon Jul 21 09:12:13 EDT 2025 Tue Nov 18 21:54:34 EST 2025 Sat Nov 29 07:02:57 EST 2025 Sat Jul 09 15:08:53 EDT 2022 Thu Jul 03 21:31:56 EDT 2025 Tue Nov 11 03:33:51 EST 2025 Wed Dec 27 18:58:55 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Genetic variability Endangered species Genetic resource Loss Population number Falco punctatus genetic variation Reintroduction Raptor pedigree effective population size gene-drop analysis Vertebrata Mountain Mauritius Kestrel Inbreeding Bambous Mountains Aves Environmental protection conservation genetics |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5704-ec35c248db2aa7ff76fae67ffe20b7ee874dd90d522206b7617309988e60dbdc3 |
| Notes | http://dx.doi.org/10.1111/j.1523-1739.2008.00884.x ArticleID:COBI884 ark:/67375/WNG-9LN9RW9C-3 istex:0AC826022D6BA22DC48EFD038F56E183580A7A4A This paper is dedicated to the memory of Aurelien Aumjaud, a brilliant and committed conservation biologist. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 |
| PMID | 18294297 |
| PQID | 201455601 |
| PQPubID | 36794 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_70485984 proquest_miscellaneous_47620026 proquest_miscellaneous_19533082 proquest_journals_201455601 pubmed_primary_18294297 pascalfrancis_primary_20258404 crossref_citationtrail_10_1111_j_1523_1739_2008_00884_x crossref_primary_10_1111_j_1523_1739_2008_00884_x wiley_primary_10_1111_j_1523_1739_2008_00884_x_COBI884 jstor_primary_20183392 istex_primary_ark_67375_WNG_9LN9RW9C_3 fao_agris_US201300883060 |
| PublicationCentury | 2000 |
| PublicationDate | April 2008 |
| PublicationDateYYYYMMDD | 2008-04-01 |
| PublicationDate_xml | – month: 04 year: 2008 text: April 2008 |
| PublicationDecade | 2000 |
| PublicationPlace | Malden, USA |
| PublicationPlace_xml | – name: Malden, USA – name: Malden, MA – name: United States – name: Washington |
| PublicationTitle | Conservation biology |
| PublicationTitleAlternate | Conserv Biol |
| PublicationYear | 2008 |
| Publisher | Blackwell Publishing Inc Blackwell Publishing, Inc Blackwell Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Inc – name: Blackwell Publishing, Inc – name: Blackwell – name: Blackwell Publishing Ltd |
| References | Glemin, S., J. Ronfort, and T. Bataillon. 2003. Patterns of inbreeding depression and the architecture of the load in subdivided populations. Genetics 165:2193-2212. Lutaaya, E., I. Miztal, J. K. Bertrand, and J. W. Mabry. 1999. Inbreeding in populations with incomplete pedigrees. Journal of Animal Breeding and Genetics 116:475-480. Groombridge, J. J., M. W. Bruford, C. G. Jones, and R. A. Nichols. 2001. Evaluating the severity of the population bottleneck in the Mauritius kestrel Falco punctatus from ringing records using MCMC estimation. Journal of Animal Ecology 70:401-409. Van Raden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science 75:3136-3144. Wheelwright, N. T., C. R. Freeman-Gallant, and R. A. Mauck. 2005. Asymmetrical incest avoidance in the choice of social and genetic mates. Animal Behaviour 71:631-639. Groombridge, J. J., C. G. Jones, M. W. Bruford, and R. A. Nichols. 2000. Conservation biology-'ghost' alleles of the Mauritius kestrel. Nature 403:616. Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66:95-107. Jamieson, I. G., L. N. Tracy, D. Fletcher, and D. P. Armstrong. 2007. Moderate inbreeding depression in a reintroduced population of North Island robins. Animal Conservation 10:95-102. MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder. 1986. Pedigree analysis by computer simulation. Zoo Biology 5:147-160. Nunney, L., and K. A. Campbell. 1993. Assessing minimum viable population size: demography meets population genetics. Trends in Ecology & Evolution 8:234-239. Toro, M., J. Rodriganez, L. Silio, and C. Rodriganez. 2000. Genealogical analysis of a closed herd of black hairless Iberian pigs. Conservation Biology 6:1843-1851. Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, G. Slade, and T. Cade. 1995. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137:S173-S180. Crow, J. F., and M. Kimura. 1970. Introduction to population genetic theory. Harper & Row, New York . Ciofi, C., and M. W. Bruford. 1999. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Molecular Ecology 8:S17-S30. Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology 8:111-123. Keller, L. F., P. R. Grant, B. R. Grant, and K. Petren. 2002. Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches. Evolution 56:1229-1239. Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17:230-241. Frankham, R., K. Lees, M. E. Montgomery, P. R. England, E. H. Lowe, and D. A. Briscoe. 1999. Do population size bottlenecks reduce evolutionary potential? Animal Conservation 2:255-260. Keller, L. F., K. J. Jeffrey, P. Arcese, M. A. Beaumont, W. M. Hochachka, J. N. M. Smith, and M. W. Bruford. 2001. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society of London Series B 268:1387-1394. Marshall, T. C., D. W. Coltman, J. M. Pemberton, J. Slate, J. A. Spalton, F. E. Guinness, J. A. Smith, J. G. Pilkington, and T. H. Clutton-Brock. 2002. Estimating the prevalence of inbreeding from incomplete pedigrees. Proceedings of the Royal Society of London Series B 269:1533-1539. Mougeot, F. 2004. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Animal Behaviour 67:1067-1076. Brooker, M. G., I. Rowley, M. Adams, and P. R. Baverstock. 1990. Promiscuity: an inbreeding avoidance mechanism in a socially mono- gamous species. Behavioral Ecology and Sociobiology 26:191-199. Pollak, J. P., R. C. Lacy, and J. D. Ballou. 2002. Population management 2000. Chicago Zoological Society, Chicago . Haig, S. M., J. D. Ballou, and S. R. Derrickson. 1990. Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Conservation Biology 4:290-300. Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, and T. Cade. 1991. A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973-1991. Dodo 27:81-99. Lacy, R. C. 1995. Clarification of genetic terms and their use in the management of captive populations. Zoo Biology 14:565-578. Daniels, S. J., and J. R. Walters. 2000. Inbreeding depression and its effects on the natal dispersal of Red-Cockaded Woodpeckers. Condor 102:482-491. Jamieson, I. G., M. S. Roy, and M. Lettink. 2003. Sex-specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe. Conservation Biology 17:708-716. O'Connor, K. D., A. B. Marr, P. Arcese, L. F. Keller, K. J. Jeffery, and M. W. Bruford. 2006. Extra-pair fertilization and effective population size in the song sparrow Melospiza melodia. Journal of Avian Biology 37:572-578. Slate, J., P. David, K. G. Dodds, B. A. Veenvliet, B. C. Glass, T. E. Broad, and J. C. McEwan. 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255-265. Caballero, A., and M. A. Toro. 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research 75:331-343. Wright, S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:330-338. Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge , United Kingdom . 2001; 70 2002; 17 1993; 8 1922; 56 2000; 6 1995; 14 2002; 56 2004; 67 1989; 8 2006; 37 1995; 137 1995 2003; 17 1970 1999; 2 2002 1999; 8 1992; 75 2007; 10 2001; 268 1991; 27 2004; 93 2001 1990; 26 2000; 102 2000; 403 1995; 66 1986; 5 2000; 75 1986 2002; 269 2005; 71 1980 1999; 116 2003; 165 1990; 4 e_1_2_7_6_1 Soulé M. E. (e_1_2_7_37_1) 1980 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Jones C. G. (e_1_2_7_21_1) 1991; 27 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_11_1 e_1_2_7_10_1 Glemin S. (e_1_2_7_13_1) 2003; 165 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 Haig S. M. (e_1_2_7_16_1) 2002 e_1_2_7_29_1 Pollak J. P. (e_1_2_7_34_1) 2002 Ralls K. (e_1_2_7_35_1) 1986 Franklin I. R. (e_1_2_7_12_1) 1980 Brooker M. G. (e_1_2_7_4_1) 1990; 26 Crow J. F. (e_1_2_7_7_1) 1970 e_1_2_7_30_1 Ballou J. D. (e_1_2_7_2_1) 1995 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 Waples S. R. (e_1_2_7_40_1) 2002 e_1_2_7_22_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – reference: Mougeot, F. 2004. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Animal Behaviour 67:1067-1076. – reference: Van Raden, P. M. 1992. Accounting for inbreeding and crossbreeding in genetic evaluation of large populations. Journal of Dairy Science 75:3136-3144. – reference: Lacy, R. C. 1989. Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents. Zoo Biology 8:111-123. – reference: Caballero, A., and M. A. Toro. 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genetical Research 75:331-343. – reference: Keller, L. F., and D. M. Waller. 2002. Inbreeding effects in wild populations. Trends in Ecology & Evolution 17:230-241. – reference: Lacy, R. C. 1995. Clarification of genetic terms and their use in the management of captive populations. Zoo Biology 14:565-578. – reference: Daniels, S. J., and J. R. Walters. 2000. Inbreeding depression and its effects on the natal dispersal of Red-Cockaded Woodpeckers. Condor 102:482-491. – reference: Groombridge, J. J., C. G. Jones, M. W. Bruford, and R. A. Nichols. 2000. Conservation biology-'ghost' alleles of the Mauritius kestrel. Nature 403:616. – reference: Wright, S. 1922. Coefficients of inbreeding and relationship. The American Naturalist 56:330-338. – reference: Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge University Press, Cambridge , United Kingdom . – reference: Toro, M., J. Rodriganez, L. Silio, and C. Rodriganez. 2000. Genealogical analysis of a closed herd of black hairless Iberian pigs. Conservation Biology 6:1843-1851. – reference: Frankham, R., K. Lees, M. E. Montgomery, P. R. England, E. H. Lowe, and D. A. Briscoe. 1999. Do population size bottlenecks reduce evolutionary potential? Animal Conservation 2:255-260. – reference: Pollak, J. P., R. C. Lacy, and J. D. Ballou. 2002. Population management 2000. Chicago Zoological Society, Chicago . – reference: Nunney, L., and K. A. Campbell. 1993. Assessing minimum viable population size: demography meets population genetics. Trends in Ecology & Evolution 8:234-239. – reference: MacCluer, J. W., J. L. VandeBerg, B. Read, and O. A. Ryder. 1986. Pedigree analysis by computer simulation. Zoo Biology 5:147-160. – reference: Ciofi, C., and M. W. Bruford. 1999. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis. Molecular Ecology 8:S17-S30. – reference: Keller, L. F., P. R. Grant, B. R. Grant, and K. Petren. 2002. Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches. Evolution 56:1229-1239. – reference: Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, and T. Cade. 1991. A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973-1991. Dodo 27:81-99. – reference: Haig, S. M., J. D. Ballou, and S. R. Derrickson. 1990. Management options for preserving genetic diversity: reintroduction of Guam rails to the wild. Conservation Biology 4:290-300. – reference: Frankham, R. 1995. Effective population size/adult population size ratios in wildlife: a review. Genetical Research 66:95-107. – reference: Wheelwright, N. T., C. R. Freeman-Gallant, and R. A. Mauck. 2005. Asymmetrical incest avoidance in the choice of social and genetic mates. Animal Behaviour 71:631-639. – reference: Marshall, T. C., D. W. Coltman, J. M. Pemberton, J. Slate, J. A. Spalton, F. E. Guinness, J. A. Smith, J. G. Pilkington, and T. H. Clutton-Brock. 2002. Estimating the prevalence of inbreeding from incomplete pedigrees. Proceedings of the Royal Society of London Series B 269:1533-1539. – reference: Slate, J., P. David, K. G. Dodds, B. A. Veenvliet, B. C. Glass, T. E. Broad, and J. C. McEwan. 2004. Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255-265. – reference: O'Connor, K. D., A. B. Marr, P. Arcese, L. F. Keller, K. J. Jeffery, and M. W. Bruford. 2006. Extra-pair fertilization and effective population size in the song sparrow Melospiza melodia. Journal of Avian Biology 37:572-578. – reference: Lutaaya, E., I. Miztal, J. K. Bertrand, and J. W. Mabry. 1999. Inbreeding in populations with incomplete pedigrees. Journal of Animal Breeding and Genetics 116:475-480. – reference: Jones, C. G., W. Heck, R. E. Lewis, Y. Mungroo, G. Slade, and T. Cade. 1995. The restoration of the Mauritius Kestrel Falco punctatus population. Ibis 137:S173-S180. – reference: Groombridge, J. J., M. W. Bruford, C. G. Jones, and R. A. Nichols. 2001. Evaluating the severity of the population bottleneck in the Mauritius kestrel Falco punctatus from ringing records using MCMC estimation. Journal of Animal Ecology 70:401-409. – reference: Brooker, M. G., I. Rowley, M. Adams, and P. R. Baverstock. 1990. Promiscuity: an inbreeding avoidance mechanism in a socially mono- gamous species. Behavioral Ecology and Sociobiology 26:191-199. – reference: Glemin, S., J. Ronfort, and T. Bataillon. 2003. Patterns of inbreeding depression and the architecture of the load in subdivided populations. Genetics 165:2193-2212. – reference: Jamieson, I. G., L. N. Tracy, D. Fletcher, and D. P. Armstrong. 2007. Moderate inbreeding depression in a reintroduced population of North Island robins. Animal Conservation 10:95-102. – reference: Crow, J. F., and M. Kimura. 1970. Introduction to population genetic theory. Harper & Row, New York . – reference: Jamieson, I. G., M. S. Roy, and M. Lettink. 2003. Sex-specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe. Conservation Biology 17:708-716. – reference: Keller, L. F., K. J. Jeffrey, P. Arcese, M. A. Beaumont, W. M. Hochachka, J. N. M. Smith, and M. W. Bruford. 2001. Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proceedings of the Royal Society of London Series B 268:1387-1394. – start-page: 151 year: 1980 end-page: 169 – volume: 17 start-page: 230 year: 2002 end-page: 241 article-title: Inbreeding effects in wild populations publication-title: Trends in Ecology & Evolution – volume: 268 start-page: 1387 year: 2001 end-page: 1394 article-title: Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers publication-title: Proceedings of the Royal Society of London Series B – volume: 269 start-page: 1533 year: 2002 end-page: 1539 article-title: Estimating the prevalence of inbreeding from incomplete pedigrees publication-title: Proceedings of the Royal Society of London Series B – volume: 75 start-page: 3136 year: 1992 end-page: 3144 article-title: Accounting for inbreeding and crossbreeding in genetic evaluation of large populations publication-title: Journal of Dairy Science – start-page: 76 year: 1995 end-page: 111 – volume: 75 start-page: 331 year: 2000 end-page: 343 article-title: Interrelations between effective population size and other pedigree tools for the management of conserved populations publication-title: Genetical Research – volume: 8 start-page: 234 year: 1993 end-page: 239 article-title: Assessing minimum viable population size: demography meets population genetics publication-title: Trends in Ecology & Evolution – start-page: 35 year: 1986 end-page: 56 – volume: 93 start-page: 255 year: 2004 end-page: 265 article-title: Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data publication-title: Heredity – volume: 10 start-page: 95 year: 2007 end-page: 102 article-title: Moderate inbreeding depression in a reintroduced population of North Island robins publication-title: Animal Conservation – year: 2001 – volume: 66 start-page: 95 year: 1995 end-page: 107 article-title: Effective population size/adult population size ratios in wildlife: a review publication-title: Genetical Research – volume: 17 start-page: 708 year: 2003 end-page: 716 article-title: Sex‐specific consequences of recent inbreeding in an ancestrally inbred population of New Zealand Takahe publication-title: Conservation Biology – volume: 5 start-page: 147 year: 1986 end-page: 160 article-title: Pedigree analysis by computer simulation publication-title: Zoo Biology – start-page: 147 year: 2002 end-page: 168 – volume: 70 start-page: 401 year: 2001 end-page: 409 article-title: Evaluating the severity of the population bottleneck in the Mauritius kestrel from ringing records using MCMC estimation publication-title: Journal of Animal Ecology – volume: 56 start-page: 330 year: 1922 end-page: 338 article-title: Coefficients of inbreeding and relationship publication-title: The American Naturalist – volume: 102 start-page: 482 year: 2000 end-page: 491 article-title: Inbreeding depression and its effects on the natal dispersal of Red‐Cockaded Woodpeckers publication-title: Condor – volume: 2 start-page: 255 year: 1999 end-page: 260 article-title: Do population size bottlenecks reduce evolutionary potential? publication-title: Animal Conservation – volume: 26 start-page: 191 year: 1990 end-page: 199 article-title: Promiscuity: an inbreeding avoidance mechanism in a socially mono‐ gamous species publication-title: Behavioral Ecology and Sociobiology – volume: 403 year: 2000 end-page: 616 article-title: Conservation biology—'ghost' alleles of the Mauritius kestrel publication-title: Nature – volume: 4 start-page: 290 year: 1990 end-page: 300 article-title: Management options for preserving genetic diversity: reintroduction of Guam rails to the wild publication-title: Conservation Biology – volume: 37 start-page: 572 year: 2006 end-page: 578 article-title: Extra‐pair fertilization and effective population size in the song sparrow publication-title: Journal of Avian Biology – year: 2002 – volume: 137 start-page: S173 year: 1995 end-page: S180 article-title: The restoration of the Mauritius Kestrel population publication-title: Ibis – volume: 165 start-page: 2193 year: 2003 end-page: 2212. article-title: Patterns of inbreeding depression and the architecture of the load in subdivided populations publication-title: Genetics – volume: 8 start-page: S17 year: 1999 end-page: S30 article-title: Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis publication-title: Molecular Ecology – volume: 27 start-page: 81 year: 1991 end-page: 99 article-title: A summary of the conservation management of the Mauritius Kestrel 1973–1991 publication-title: Dodo – volume: 56 start-page: 1229 year: 2002 end-page: 1239 article-title: Environmental conditions affect the magnitude of inbreeding depression in survival of Darwin's finches publication-title: Evolution – volume: 14 start-page: 565 year: 1995 end-page: 578 article-title: Clarification of genetic terms and their use in the management of captive populations publication-title: Zoo Biology – volume: 6 start-page: 1843 year: 2000 end-page: 1851 article-title: Genealogical analysis of a closed herd of black hairless Iberian pigs publication-title: Conservation Biology – year: 1970 – start-page: 297 year: 2002 end-page: 304 – volume: 116 start-page: 475 year: 1999 end-page: 480 article-title: Inbreeding in populations with incomplete pedigrees publication-title: Journal of Animal Breeding and Genetics – volume: 67 start-page: 1067 year: 2004 end-page: 1076 article-title: Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis publication-title: Animal Behaviour – volume: 71 start-page: 631 year: 2005 end-page: 639 article-title: Asymmetrical incest avoidance in the choice of social and genetic mates publication-title: Animal Behaviour – start-page: 135 year: 1980 end-page: 150 – volume: 8 start-page: 111 year: 1989 end-page: 123 article-title: Analysis of founder representation in pedigrees: founder equivalents and founder genome equivalents publication-title: Zoo Biology – start-page: 388 year: 2002 end-page: 405 – ident: e_1_2_7_23_1 doi: 10.1016/S0169-5347(02)02489-8 – ident: e_1_2_7_25_1 doi: 10.1111/j.0014-3820.2002.tb01434.x – ident: e_1_2_7_20_1 – ident: e_1_2_7_28_1 doi: 10.1046/j.1439-0388.1999.00210.x – ident: e_1_2_7_8_1 doi: 10.1650/0010-5422(2000)102[0482:IDAIEO]2.0.CO;2 – volume-title: Introduction to population genetic theory year: 1970 ident: e_1_2_7_7_1 – start-page: 35 volume-title: Conservation biology—the science of scarcity and diversity year: 1986 ident: e_1_2_7_35_1 – ident: e_1_2_7_9_1 doi: 10.1017/S0016672300034455 – ident: e_1_2_7_31_1 doi: 10.1016/j.anbehav.2003.10.011 – ident: e_1_2_7_36_1 doi: 10.1038/sj.hdy.6800485 – start-page: 76 volume-title: Population management for survival and recovery: analytical methods and strategies in small population conservation year: 1995 ident: e_1_2_7_2_1 – ident: e_1_2_7_3_1 – start-page: 147 volume-title: Population viability analysis year: 2002 ident: e_1_2_7_40_1 – ident: e_1_2_7_26_1 doi: 10.1002/zoo.1430080203 – ident: e_1_2_7_41_1 doi: 10.1016/j.anbehav.2005.06.012 – ident: e_1_2_7_19_1 doi: 10.1111/j.1469-1795.2006.00078.x – ident: e_1_2_7_24_1 doi: 10.1098/rspb.2001.1607 – ident: e_1_2_7_6_1 doi: 10.1046/j.1365-294X.1999.00734.x – ident: e_1_2_7_22_1 doi: 10.1111/j.1474-919X.1995.tb08439.x – ident: e_1_2_7_17_1 doi: 10.1111/j.1523-1739.1990.tb00291.x – ident: e_1_2_7_29_1 doi: 10.1002/zoo.1430050209 – ident: e_1_2_7_32_1 doi: 10.1016/0169-5347(93)90197-W – ident: e_1_2_7_11_1 doi: 10.1046/j.1365-294X.2003.01702.x – volume: 165 start-page: 2193 year: 2003 ident: e_1_2_7_13_1 article-title: Patterns of inbreeding depression and the architecture of the load in subdivided populations publication-title: Genetics doi: 10.1093/genetics/165.4.2193 – ident: e_1_2_7_39_1 doi: 10.3168/jds.S0022-0302(92)78077-1 – volume: 26 start-page: 191 year: 1990 ident: e_1_2_7_4_1 article-title: Promiscuity: an inbreeding avoidance mechanism in a socially mono‐ gamous species publication-title: Behavioral Ecology and Sociobiology – ident: e_1_2_7_5_1 doi: 10.1017/S0016672399004449 – start-page: 388 volume-title: Population viability analysis year: 2002 ident: e_1_2_7_16_1 – volume-title: Population management 2000 year: 2002 ident: e_1_2_7_34_1 – start-page: 135 volume-title: Conservation biology: an evolutionary‐ecological perspective year: 1980 ident: e_1_2_7_12_1 – ident: e_1_2_7_15_1 doi: 10.1038/35001148 – ident: e_1_2_7_10_1 doi: 10.1111/j.1469-1795.1999.tb00071.x – ident: e_1_2_7_38_1 doi: 10.1046/j.1523-1739.2000.99322.x – ident: e_1_2_7_33_1 doi: 10.1111/j.2006.0908-8857.03681.x – ident: e_1_2_7_42_1 doi: 10.1086/279872 – ident: e_1_2_7_18_1 doi: 10.1046/j.1523-1739.2003.01400.x – start-page: 151 volume-title: Conservation biology—an evolutionary‐ecological perspective year: 1980 ident: e_1_2_7_37_1 – ident: e_1_2_7_30_1 doi: 10.1098/rspb.2002.2035 – volume: 27 start-page: 81 year: 1991 ident: e_1_2_7_21_1 article-title: A summary of the conservation management of the Mauritius Kestrel Falco punctatus 1973–1991 publication-title: Dodo – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-2656.2001.00502.x – ident: e_1_2_7_27_1 doi: 10.1002/zoo.1430140609 |
| SSID | ssj0009514 |
| Score | 2.0838883 |
| Snippet | Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation... : Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few... |
| SourceID | proquest pubmed pascalfrancis crossref wiley jstor istex fao |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 395 |
| SubjectTerms | Animal genetics Animal populations Animal, plant and microbial ecology Animals análisis de baja de genes Applied ecology Bambous Mountains Biological and medical sciences Biology Birds Breeding Conservation Conservation biology conservation genetics Conservation of Natural Resources Conservation of Natural Resources - methods conservation programs Conservation, protection and management of environment and wildlife effective population size Endangered & extinct species Endangered species endogamia especies en peligro Evolutionary genetics Falco punctatus Falconiformes Falconiformes - genetics Falconiformes - physiology Fundamental and applied biological sciences. Psychology gene-drop analysis General aspects Genetic diversity Genetic Variation Genetics Genetics, Population genética de la conservación Inbreeding Inbreeding coefficient interspecific variation Mauritius Mauritius Kestrel methods montañas Bambous Parks, reserves, wildlife conservation. Endangered species: population survey and restocking Pedigree pedigrí physiology Population genetics Population size Reintroduction tamaño poblacional efectivo variación genética Vertebrates viability Wildlife conservation |
| Title | Inbreeding and Loss of Genetic Variation in a Reintroduced Population of Mauritius Kestrel |
| URI | https://api.istex.fr/ark:/67375/WNG-9LN9RW9C-3/fulltext.pdf https://www.jstor.org/stable/20183392 https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2008.00884.x https://www.ncbi.nlm.nih.gov/pubmed/18294297 https://www.proquest.com/docview/201455601 https://www.proquest.com/docview/19533082 https://www.proquest.com/docview/47620026 https://www.proquest.com/docview/70485984 |
| Volume | 22 |
| WOSCitedRecordID | wos000254796800022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1523-1739 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009514 issn: 0888-8892 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED5tHUi88HssDIofEG-B1HFi5xHKyiZKmQrdJl4sJ3ZQxZSipkXbf89dkoYWbdKEeLNkn5Wcv5y_i893AC9zrlSaoVuC_dIXOY99RImlQ97QcGN5WuXSOxnK0UidnSXHW3C4ugtT54dof7jRl1HZa_rATVq-WYvEQRfK78n6tgkFRColXiOb3OEI4qgDO-_Hg8lwLQFvnecbPT58muSvqJ4r59rYqrZzM0MCS7q_WMUuUiClKVGXeV0E4yqWukl6q11rcO__ve99uNswV_a2htoD2HLFQ7hd17K8xNZBlf_68hF8OyrQz642RWYKy4b4cmyWM8pwjbLsBN3zCg9sWjDDxm5K0fIWMWbZcVtPjCQ-Uc6jxXRZso-OLrWcP4bJ4OBr_9BvSjj4WSQD4bssjDIulE25MTLPZZwbF2PD8SCVzikprE0CiyyQB3EqkU-FyFmVcnFgU5uFu9ApZoXbA-bQcUVrY8mCiDQJExHG1vaEi1OXRpn1QK5WS2dNfnMqs3Gu1_wc1KEmHTbVN0mH-sKDXiv5s87xcQOZPQSENt_RFOvJF04HwNiDDljgwasKJe1cZv6DwudkpE9HH3QyHCXj06SvQw92Kxi1A3EWFSJh9aC7gau1ARwJYyA82F8BTTc2pyRpEZGD7cGLtheNBZ0AmcLNlqXuVcHEil8_QuDmSH759SNwWVWUKHyGJzXC_-hM8QTpjfQgroB8Y2Xq_ud3R9h6-q-C-3CnjuOhiKpn0FnMl-453Mp-LablvAvb8kx1G4PwG9NXVrk |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inbreeding+and+Loss+of+Genetic+Variation+in+a+Reintroduced+Population+of+Mauritius+Kestrel&rft.jtitle=Conservation+biology&rft.au=Ewing%2C+Steven+R&rft.au=Nager%2C+Ruedi+G&rft.au=Nicoll%2C+Malcolm+AC&rft.au=AUMJAUD%2C+AURELIEN&rft.date=2008-04-01&rft.eissn=1523-1739&rft.volume=22&rft.issue=2&rft.spage=395&rft.epage=404&rft_id=info:doi/10.1111%2Fj.1523-1739.2008.00884.x&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |