Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells

DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 110; H. 16; S. E1462
Hauptverfasser: Izhar, Lior, Ziv, Omer, Cohen, Isadora S, Geacintov, Nicholas E, Livneh, Zvi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 16.04.2013
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.
AbstractList DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.
DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage tolerance mechanisms, which prevent deleterious outcomes such as cell death, genomic instability, and carcinogenesis. The two main tolerance strategies are translesion DNA synthesis (TLS), in which low-fidelity DNA polymerases bypass the blocking lesion, and homology-dependent repair (HDR; postreplication repair), which is based on the homologous sister chromatid. Here we describe a unique high-resolution method for the simultaneous analysis of TLS and HDR across defined DNA lesions in mammalian genomes. The method is based on insertion of plasmids carrying defined site-specific DNA lesions into mammalian chromosomes, using phage integrase-mediated integration. Using this method we show that mammalian cells use HDR to tolerate DNA damage in their genome. Moreover, analysis of the tolerance of the UV light-induced 6-4 photoproduct, the tobacco smoke-induced benzo[a]pyrene-guanine adduct, and an artificial trimethylene insert shows that each of these three lesions is tolerated by both TLS and HDR. We also determined the specificity of nucleotide insertion opposite these lesions during TLS in human genomes. This unique method will be useful in elucidating the mechanism of DNA damage tolerance in mammalian chromosomes and their connection to pathological processes such as carcinogenesis.
Author Ziv, Omer
Cohen, Isadora S
Livneh, Zvi
Izhar, Lior
Geacintov, Nicholas E
Author_xml – sequence: 1
  givenname: Lior
  surname: Izhar
  fullname: Izhar, Lior
  organization: Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
– sequence: 2
  givenname: Omer
  surname: Ziv
  fullname: Ziv, Omer
– sequence: 3
  givenname: Isadora S
  surname: Cohen
  fullname: Cohen, Isadora S
– sequence: 4
  givenname: Nicholas E
  surname: Geacintov
  fullname: Geacintov, Nicholas E
– sequence: 5
  givenname: Zvi
  surname: Livneh
  fullname: Livneh, Zvi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23530190$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB9w5oZ85JJixw_qY1WeUgUXOFcbe9MGxXaIU6Tc-OkEKBKn3dV8mh3NlIxCDEjIOWdzzq7FVRMgzXnO9cJIztkRmXBmeKalYaN_-5hMU3pjjBm1YCdknAslGDdsQj7vMURfWQopQU9b_ECoE-1ijS0EizSW9OZpSR142CItelrEbke7QUw1piqGHzn1odsNZ6IQHN1FH-u47TOHDQaHoRuMG6haWgXqwXuoKwjUYl2nU3JcDh_x7DBn5PXu9mX1kK2f7x9Xy3VmlTZdVtghruSWS1CcFcI6njttHSpw1hYDA6Y0opSWMZ0rkWtWylLKQivLQbN8Ri5_fZs2vu8xdRtfpe8EEDDu04aLfKGkFtwM6MUB3Rce3aZpKw9tv_lrLf8CbxZyeA
CitedBy_id crossref_primary_10_1038_s41467_020_19570_7
crossref_primary_10_3390_genes8020064
crossref_primary_10_1074_jbc_M115_685271
crossref_primary_10_1016_j_dnarep_2018_06_003
crossref_primary_10_1016_j_mrfmmm_2015_08_002
crossref_primary_10_1093_nar_gku547
crossref_primary_10_1093_nar_gky943
crossref_primary_10_1038_ncomms6437
crossref_primary_10_1093_nar_gkv896
crossref_primary_10_1093_nar_gkw1315
crossref_primary_10_5487_TR_2018_34_4_297
crossref_primary_10_1016_j_dnarep_2017_04_003
crossref_primary_10_1016_j_dnarep_2016_05_007
crossref_primary_10_1534_genetics_115_178566
crossref_primary_10_1016_j_dnarep_2016_05_006
crossref_primary_10_1007_s00204_017_2003_0
crossref_primary_10_1016_j_jbc_2024_108139
crossref_primary_10_1073_pnas_1321008111
crossref_primary_10_1177_1091581814547422
crossref_primary_10_1016_j_mrfmmm_2014_07_009
crossref_primary_10_1038_s41388_024_03192_0
crossref_primary_10_1016_j_mrfmmm_2017_06_004
crossref_primary_10_1016_j_dnarep_2015_04_027
crossref_primary_10_1080_10409238_2019_1687420
crossref_primary_10_3390_biom10060902
crossref_primary_10_1093_nar_gku1398
crossref_primary_10_1016_j_yexcr_2014_07_009
crossref_primary_10_1016_j_molcel_2021_01_012
crossref_primary_10_1038_s41467_023_36149_0
crossref_primary_10_1016_j_dnarep_2021_103163
crossref_primary_10_1016_j_dnarep_2019_102771
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1216894110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 23530190
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA099194
– fundername: NCI NIH HHS
  grantid: CA099194
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c569t-bc19041c14a510b3cd12d6cde5adccb569a9f93f4c006253260f4f44b65c1a602
IEDL.DBID 7X8
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000318041500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 11:31:40 EDT 2025
Thu Apr 03 06:56:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-bc19041c14a510b3cd12d6cde5adccb569a9f93f4c006253260f4f44b65c1a602
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/110/16/E1462.full.pdf
PMID 23530190
PQID 1328546319
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1328546319
pubmed_primary_23530190
PublicationCentury 2000
PublicationDate 2013-04-16
PublicationDateYYYYMMDD 2013-04-16
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
References 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9
19153606 - EMBO J. 2009 Feb 18;28(4):383-93
10385124 - Nature. 1999 Jun 17;399(6737):700-4
10029669 - Mutat Res. 1999 Jan 25;423(1-2):23-32
18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
9665722 - Biochemistry. 1998 Jul 14;37(28):10164-72
10231549 - Biochemistry. 1999 May 4;38(18):5948-58
19079240 - Nature. 2009 Jan 29;457(7229):612-5
1632522 - Anal Biochem. 1992 Mar;201(2):331-5
19729992 - Cell Cycle. 2009 Sep 15;8(18):2857-8
20403322 - Cell. 2010 Apr 16;141(2):255-67
19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48
15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
7821287 - Environ Health Perspect. 1994 Oct;102 Suppl 4:135-8
16337601 - Mol Cell. 2005 Dec 9;20(5):783-92
16678112 - Mol Cell. 2006 May 5;22(3):407-13
20080950 - Genes Dev. 2010 Jan 15;24(2):123-8
11917106 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4459-64
17936713 - Mol Cell. 2007 Oct 12;28(1):167-75
20453836 - Nature. 2010 Jun 17;465(7300):951-5
12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80
12419234 - Mol Cell. 2002 Oct;10(4):917-24
15952890 - Annu Rev Biochem. 2005;74:317-53
18157155 - Cell Res. 2008 Jan;18(1):174-83
20660785 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14116-21
16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40
17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44
21926160 - Nucleic Acids Res. 2012 Jan;40(2):682-91
19092928 - Nature. 2008 Dec 18;456(7224):915-20
3278320 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1586-9
19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93
18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9
16971464 - Nucleic Acids Res. 2006;34(17):4731-42
18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80
16414067 - J Mol Biol. 2006 Mar 17;357(1):28-48
21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80
22798494 - Nucleic Acids Res. 2012 Oct;40(18):9036-43
16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90
19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
12226657 - Nature. 2002 Sep 12;419(6903):135-41
3104770 - Mol Cell Biol. 1987 Mar;7(3):1267-70
10398605 - Science. 1999 Jul 9;285(5425):263-5
15551273 - Bioessays. 2004 Dec;26(12):1322-6
16969082 - Cell Cycle. 2006 Sep;5(17):1918-22
22532806 - PLoS Genet. 2012;8(4):e1002659
11554790 - J Mol Biol. 2001 Sep 14;312(2):335-46
16397225 - Cancer Res. 2006 Jan 1;66(1):134-42
20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5
References_xml – reference: 10398605 - Science. 1999 Jul 9;285(5425):263-5
– reference: 16397225 - Cancer Res. 2006 Jan 1;66(1):134-42
– reference: 21908406 - Nucleic Acids Res. 2012 Jan;40(1):170-80
– reference: 11917106 - Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4459-64
– reference: 19654238 - Nucleic Acids Res. 2009 Sep;37(17):5737-48
– reference: 22798494 - Nucleic Acids Res. 2012 Oct;40(18):9036-43
– reference: 17898175 - Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15591-8
– reference: 17936713 - Mol Cell. 2007 Oct 12;28(1):167-75
– reference: 19948885 - Mol Cell Biol. 2010 Feb;30(3):684-93
– reference: 16969082 - Cell Cycle. 2006 Sep;5(17):1918-22
– reference: 18585391 - J Mol Biol. 2008 Sep 12;381(4):803-9
– reference: 19153606 - EMBO J. 2009 Feb 18;28(4):383-93
– reference: 15551273 - Bioessays. 2004 Dec;26(12):1322-6
– reference: 16341080 - Nat Rev Mol Cell Biol. 2005 Dec;6(12):943-53
– reference: 3278320 - Proc Natl Acad Sci U S A. 1988 Mar;85(5):1586-9
– reference: 10029669 - Mutat Res. 1999 Jan 25;423(1-2):23-32
– reference: 19092928 - Nature. 2008 Dec 18;456(7224):915-20
– reference: 16473566 - DNA Repair (Amst). 2006 Apr 8;5(4):479-90
– reference: 12226657 - Nature. 2002 Sep 12;419(6903):135-41
– reference: 16971464 - Nucleic Acids Res. 2006;34(17):4731-42
– reference: 20660785 - Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14116-21
– reference: 3104770 - Mol Cell Biol. 1987 Mar;7(3):1267-70
– reference: 16678112 - Mol Cell. 2006 May 5;22(3):407-13
– reference: 20080950 - Genes Dev. 2010 Jan 15;24(2):123-8
– reference: 21926160 - Nucleic Acids Res. 2012 Jan;40(2):682-91
– reference: 15952890 - Annu Rev Biochem. 2005;74:317-53
– reference: 22532806 - PLoS Genet. 2012;8(4):e1002659
– reference: 18634905 - DNA Repair (Amst). 2008 Oct 1;7(10):1636-46
– reference: 1632522 - Anal Biochem. 1992 Mar;201(2):331-5
– reference: 18953031 - Nucleic Acids Res. 2008 Dec;36(21):6767-80
– reference: 16956796 - DNA Repair (Amst). 2006 Dec 9;5(12):1495-8
– reference: 19564618 - Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11552-7
– reference: 19729992 - Cell Cycle. 2009 Sep 15;8(18):2857-8
– reference: 10231549 - Biochemistry. 1999 May 4;38(18):5948-58
– reference: 15475561 - J Biol Chem. 2004 Dec 17;279(51):53298-305
– reference: 10385124 - Nature. 1999 Jun 17;399(6737):700-4
– reference: 20453836 - Nature. 2010 Jun 17;465(7300):951-5
– reference: 18157155 - Cell Res. 2008 Jan;18(1):174-83
– reference: 8657563 - Nucleic Acids Res. 1996 May 15;24(10):1837-40
– reference: 16247017 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15954-9
– reference: 11554790 - J Mol Biol. 2001 Sep 14;312(2):335-46
– reference: 9665722 - Biochemistry. 1998 Jul 14;37(28):10164-72
– reference: 20139724 - Cell Cycle. 2010 Feb 15;9(4):729-35
– reference: 12419234 - Mol Cell. 2002 Oct;10(4):917-24
– reference: 20159558 - Mol Cell. 2010 Feb 12;37(3):396-407
– reference: 16414067 - J Mol Biol. 2006 Mar 17;357(1):28-48
– reference: 20403322 - Cell. 2010 Apr 16;141(2):255-67
– reference: 16337601 - Mol Cell. 2005 Dec 9;20(5):783-92
– reference: 19079240 - Nature. 2009 Jan 29;457(7229):612-5
– reference: 7821287 - Environ Health Perspect. 1994 Oct;102 Suppl 4:135-8
– reference: 4947693 - J Mol Biol. 1971 Oct 14;61(1):25-44
– reference: 12459444 - Mutat Res. 2002 Dec 29;510(1-2):71-80
– reference: 14657386 - Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14760-5
SSID ssj0009580
Score 2.280821
Snippet DNA lesions can block replication forks and lead to the formation of single-stranded gaps. These replication complications are mitigated by DNA damage...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E1462
SubjectTerms Benzo(a)pyrene - metabolism
DNA Adducts - metabolism
DNA Damage - physiology
DNA Repair - physiology
DNA Replication - physiology
DNA-Directed DNA Polymerase - metabolism
Genomics - methods
Humans
Plasmids - genetics
Sequence Homology
Ultraviolet Rays
Title Genomic assay reveals tolerance of DNA damage by both translesion DNA synthesis and homology-dependent repair in mammalian cells
URI https://www.ncbi.nlm.nih.gov/pubmed/23530190
https://www.proquest.com/docview/1328546319
Volume 110
WOSCitedRecordID wos000318041500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PaxQxFA7VeuhFrT9qtcoTPOghNNlkMpOTlGrx0qUHhb0tyUuCC52ZbTMKe_NP92V2Fr0IBS_DwPwgvLy8fHnJ-z7G3nkUXjkUnBbItEAJNXKvkuO6LlwlprIRwyg2Uc_nzWJhr6aEW56OVe5i4hioQ48lR35Kq6amULdL-3F9w4tqVNldnSQ07rF9RVCmeHW9aP4i3W22bARWcqOt2FH71Op03blcmBVMQ22U4t_4cpxnLh79bwsfs4cTwoSzrUscsr3YPWGH0xjO8H4imv7wlP2i21KUDASg3QYKmRM5Iwz9dSxyGxH6BJ_mZxBcS1EH_AY89SsMZXq7jiXNNj7Om45QZF5lcF2A7307Zur5Tl53oB-v3eoWVh20rm3HxAqUDYP8jH27-Pz1_AufFBk4VsYO3CPhBy1Rakdj2SsMchYMhli5gOjpHWeTVUljqc2sCBqKpJPW3lQonRGz5-x-13fxBQMXhMEGo5GJjGaTM7oOoo6YnMJG1Mfs7c7KS_L40irXxf5HXv6x8zE72nbVcr2l5ljOVKVKdfzLO3z9ih3MRm0LzaU5YfuJTBxfswf4c1jl2zejK9F1fnX5G4TM1XQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+assay+reveals+tolerance+of+DNA+damage+by+both+translesion+DNA+synthesis+and+homology-dependent+repair+in+mammalian+cells&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Izhar%2C+Lior&rft.au=Ziv%2C+Omer&rft.au=Cohen%2C+Isadora+S&rft.au=Geacintov%2C+Nicholas+E&rft.date=2013-04-16&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=110&rft.issue=16&rft.spage=E1462&rft_id=info:doi/10.1073%2Fpnas.1216894110&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon