Clinical application of deep learning-based synthetic CT from real MRI to improve dose planning accuracy in Gamma Knife radiosurgery: a proof of concept study

Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical Engineering Letters Jg. 12; H. 4; S. 359 - 367
Hauptverfasser: Park, So Hee, Choi, Dong Min, Jung, In-Ho, Chang, Kyung Won, Kim, Myung Ji, Jung, Hyun Ho, Chang, Jin Woo, Kim, Hwiyoung, Chang, Won Seok
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Korea Springer Science and Business Media LLC 01.11.2022
The Korean Society of Medical and Biological Engineering
Springer Nature B.V
Schlagworte:
ISSN:2093-9868, 2093-985X, 2093-985X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training subjects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT [Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the possibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning MR and no radiation exposure.
AbstractList Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training subjects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT [Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the possibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning MR and no radiation exposure.Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training subjects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT [Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the possibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning MR and no radiation exposure.
Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose without considering heterogeneous radiation attenuation in the tissue. In order to plan the dose considering the radiation attenuation, the Convolution algorithm should be used, and additional radiation exposure for computed tomography (CT) and registration errors between MR and CT are entailed. This study investigated the clinical feasibility of synthetic CT (sCT) from GKRS planning MR using deep learning. The model was trained using frame-based contrast-enhanced T1-weighted MR images and corresponding CT slices from 54 training subjects acquired for GKRS planning. The model was applied prospectively to 60 lesions in 43 patients including benign tumor such as meningioma and pituitary adenoma, metastatic brain tumors, and vascular disease of various location for evaluating the model and its application. We evaluated the sCT and compared between treatment plans made with MR only (TMR 10 plan), MR and real CT (rCT; Convolution with rCT [Conv-rCT] plan), and MR and synthetic CT (Convolution with sCT [Conv-sCT] plan). The mean absolute error (MAE) of 43 sCT was 107.35 ± 16.47 Hounsfield units. The TMR 10 treatment plan differed significantly from plans made by Conv-sCT and Conv-rCT. However, the Conv-sCT and Conv-rCT plans were similar. This study showed the practical applicability of deep learning based on sCT in GKRS. Our results support the possibility of formulating GKRS treatment plans while considering radiation attenuation in the tissue using GKRS planning MR and no radiation exposure.
Author Myung Ji Kim
Hwiyoung Kim
Kyung Won Chang
Jin Woo Chang
Hyun Ho Jung
In-Ho Jung
Dong Min Choi
So Hee Park
Won Seok Chang
Author_xml – sequence: 1
  givenname: So Hee
  surname: Park
  fullname: Park, So Hee
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
– sequence: 2
  givenname: Dong Min
  surname: Choi
  fullname: Choi, Dong Min
  organization: Center of Clinical Imaging Data Science, Department of Radiology, Yonsei University College of Medicine
– sequence: 3
  givenname: In-Ho
  surname: Jung
  fullname: Jung, In-Ho
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
– sequence: 4
  givenname: Kyung Won
  surname: Chang
  fullname: Chang, Kyung Won
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
– sequence: 5
  givenname: Myung Ji
  surname: Kim
  fullname: Kim, Myung Ji
  organization: Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital
– sequence: 6
  givenname: Hyun Ho
  surname: Jung
  fullname: Jung, Hyun Ho
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
– sequence: 7
  givenname: Jin Woo
  surname: Chang
  fullname: Chang, Jin Woo
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
– sequence: 8
  givenname: Hwiyoung
  surname: Kim
  fullname: Kim, Hwiyoung
  email: hykim82@yuhs.ac
  organization: Center of Clinical Imaging Data Science, Department of Radiology, Yonsei University College of Medicine, Department of Biomedical System Informatics, Yonsei University College of Medicine
– sequence: 9
  givenname: Won Seok
  orcidid: 0000-0003-3145-4016
  surname: Chang
  fullname: Chang, Won Seok
  email: changws0716@yuhs.ac
  organization: Department of Neurosurgery, Brain Research Institute, Yonsei Medical Gamma Knife Center, Yonsei University College of Medicine
BackLink https://cir.nii.ac.jp/crid/1874242817407483520$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/36238366$$D View this record in MEDLINE/PubMed
BookMark eNp9kl9r1TAYxotM3Jz7Al5IQC-8qeZvk3ohyEHncCLIBO9CTvL2LKNNatKO9cv4Wc3Z2abuYqWkgT6_p0_6vE-rvRADVNVzgt8QjOXbTJhgvMaU1rgssr56VB1Q3LK6VeLn3t2-UfvVUc4XuFyCiJaxJ9U-ayhTrGkOqt-r3gdvTY_MOPZlM_kYUOyQAxhRDyYFHzb12mRwKC9hOofJW7Q6Q12KA0pQyK_fT9AUkR_GFC8BuZgBjb0JWxIZa-dk7IJ8QMdmGAz6EnwHKBnnY57TBtLyDhlU2PLVctsYLIwTytPslmfV4870GY5unofVj08fz1af69NvxyerD6e1FU071bITpGNWUSxwoyQnRra2EaRxRBoopwXSKufWDXfcYMAOBMWOY8NBKkKBHVbvd77jvB7AWQhTMr0ekx9MWnQ0Xv__JvhzvYmXuhUCt4QXg9c3Bin-miFPevDZQl9-A8Q5ayqpIKqVDBfpy3vSizinUI63VTFBOMFbwxf_JrqLcltdEaidwKaYc4JOWz9d11cC-l4TrLeDoneDosuM6OtB0VcFpffQW_cHIbaDchGHUtvf2A9Sr3ZU8L4E3K6kFEQ5VURyLLlipQr2B-GX3Gk
CitedBy_id crossref_primary_10_3390_bioengineering10091078
crossref_primary_10_1016_j_radonc_2024_110387
crossref_primary_10_1016_j_ejmp_2024_104504
crossref_primary_10_1007_s13139_024_00861_6
crossref_primary_10_1088_2057_1976_add26b
crossref_primary_10_1016_j_media_2025_103605
crossref_primary_10_1007_s13534_024_00430_y
crossref_primary_10_1007_s40998_025_00808_3
crossref_primary_10_1055_a_2436_8444
crossref_primary_10_1016_j_phro_2024_100652
Cites_doi 10.1186/s13014-021-01794-6
10.1016/j.ijrobp.2009.10.017
10.1120/jacmp.v16i6.5530
10.1002/acm2.12554
10.1109/2945.556502
10.1118/1.4914158
10.1088/0031-9155/59/21/6595
10.1016/j.radonc.2019.03.026
10.3389/fonc.2019.00964
10.1002/mp.12155
10.1002/mp.13617
10.1016/j.ijrobp.2015.08.049
10.1002/acm2.12238
10.1109/CVPR.2017.632
10.1109/TBME.2018.2814538
10.1002/mp.14075
10.1002/mp.12964
10.1109/BIBM49941.2020.9313470
10.18637/jss.v086.i08
10.1088/0031-9155/58/23/8419
10.1002/mp.13047
10.3389/fninf.2013.00045
10.1002/mp.13663
10.1109/2945.620490
10.1007/s10278-017-0037-8
10.3389/fonc.2019.01333
ContentType Journal Article
Contributor Kim, Hwiyoung
Myung Ji Kim
Hwiyoung Kim
Kyung Won Chang
Jin Woo Chang
Hyun Ho Jung
In-Ho Jung
Dong Min Choi
So Hee Park
Won Seok Chang
Contributor_xml – sequence: 1
  fullname: So Hee Park
– sequence: 2
  fullname: Dong Min Choi
– sequence: 3
  fullname: In-Ho Jung
– sequence: 4
  fullname: Kyung Won Chang
– sequence: 5
  fullname: Myung Ji Kim
– sequence: 6
  fullname: Hyun Ho Jung
– sequence: 7
  fullname: Jin Woo Chang
– sequence: 8
  fullname: Hwiyoung Kim
– sequence: 9
  fullname: Won Seok Chang
– sequence: 10
  fullname: Kim, Hwiyoung
Copyright Korean Society of Medical and Biological Engineering 2022
Korean Society of Medical and Biological Engineering 2022.
Copyright_xml – notice: Korean Society of Medical and Biological Engineering 2022
– notice: Korean Society of Medical and Biological Engineering 2022.
DBID RYH
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s13534-022-00227-x
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-985X
EndPage 367
ExternalDocumentID PMC9550914
36238366
10_1007_s13534_022_00227_x
Genre Journal Article
GrantInformation_xml – fundername: Korea Health Industry Development Institute
  grantid: HI21C1161
  funderid: http://dx.doi.org/10.13039/501100003710
– fundername: Korea Medical Device Development Fund
  grantid: 202011D25
– fundername: Severance Hospital Research Fund for Clinical Excellence
– fundername: ;
– fundername: ;
  grantid: HI21C1161
– fundername: ;
  grantid: 202011D25
GroupedDBID 0R~
0VY
203
29~
30V
4.4
406
408
53G
8TC
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACPRK
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GJIRD
HMJXF
HRMNR
HYE
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
OK1
PT4
RLLFE
ROL
RPM
RSV
RYH
S27
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
~A9
-EM
2VQ
AAAVM
AARHV
AAYTO
AAYZH
ADINQ
AEBTG
AFLOW
AGJBK
AHSBF
AJBLW
EJD
FINBP
FSGXE
GGRSB
GQ6
HF~
HZ~
O9-
Z7X
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c569t-7f51f3c8205068741a79c6516d17ae362e198ddb64d4a0e0de520d40a4e7812e3
IEDL.DBID RSV
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2093-9868
2093-985X
IngestDate Thu Aug 21 18:37:32 EDT 2025
Thu Oct 02 05:20:03 EDT 2025
Wed Sep 17 23:53:23 EDT 2025
Mon Jul 21 05:50:07 EDT 2025
Tue Nov 18 22:35:34 EST 2025
Sat Nov 29 02:18:44 EST 2025
Fri Feb 21 02:45:27 EST 2025
Mon Nov 10 09:09:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Deep learning
Gamma Knife radiosurgery
Neuro-oncology
Synthetic CT
Artificial intelligence
Language English
License Korean Society of Medical and Biological Engineering 2022.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-7f51f3c8205068741a79c6516d17ae362e198ddb64d4a0e0de520d40a4e7812e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2717-0101
0000-0002-4135-5743
0000-0003-3145-4016
OpenAccessLink https://cir.nii.ac.jp/crid/1874242817407483520
PMID 36238366
PQID 2723514104
PQPubID 2043953
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9550914
proquest_miscellaneous_2725189730
proquest_journals_2723514104
pubmed_primary_36238366
crossref_citationtrail_10_1007_s13534_022_00227_x
crossref_primary_10_1007_s13534_022_00227_x
springer_journals_10_1007_s13534_022_00227_x
nii_cinii_1874242817407483520
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Korea
PublicationPlace_xml – name: Korea
– name: Germany
– name: Heidelberg
PublicationTitle Biomedical Engineering Letters
PublicationTitleAbbrev Biomed. Eng. Lett
PublicationTitleAlternate Biomed Eng Lett
PublicationYear 2022
Publisher Springer Science and Business Media LLC
The Korean Society of Medical and Biological Engineering
Springer Nature B.V
Publisher_xml – name: Springer Science and Business Media LLC
– name: The Korean Society of Medical and Biological Engineering
– name: Springer Nature B.V
References GuptaDKimMVinebergKABalterJMGeneration of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal imagesFront Oncol2019996410.3389/fonc.2019.00964
KazemifarSMcGuireSTimmermanRMRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approachRadiother Oncol2019136566310.1016/j.radonc.2019.03.026
AndreasenDVan LeemputKHansenRHAndersenJAEdmundJMPatch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brainMed Phys20154241596160510.1118/1.4914158
Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol. 2021;16(1):66. https://doi.org/10.1186/s13014-021-01794-6
Beare R, Lowekamp B, Yaniv Z. Image segmentation, registration and characterization in R with SimpleITK. J Stat Softw. 2018;86. https://doi.org/10.18637/jss.v086.i08
LeiYHarmsJWangTMRI-only based synthetic CT generation using dense cycle consistent generative adversarial networksMed Phys20194683565358110.1002/mp.13617
Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. 2018; https://doi.org/10.1002/mp.13047
FallowsPWrightGHarroldNBownesPA comparison of the convolution and TMR10 treatment planning algorithms for Gamma Knife((R)) radiosurgeryJ Radiosurg SBRT201852157167
OsmancikovaPNovotnyJJrSolcJPipekJComparison of the convolution algorithm with TMR10 for Leksell gamma knife and dosimetric verification with radiochromic gel dosimeterJ Appl Clin Med Phys201819113814410.1002/acm2.12238
DinklaAMFlorkowMCMasperoMDosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural networkMed Phys20194694095410410.1002/mp.13663
Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Spie; 2001:1609–1620
Lowekamp BC, Chen DT, Ibanez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:45. https://doi.org/10.3389/fninf.2013.00045
ParadisECaoYLawrenceTSAssessing the dosimetric accuracy of magnetic resonance-generated synthetic CT images for focal brain VMAT radiation therapyInt J Radiat Oncol Biol Phys20159351154116110.1016/j.ijrobp.2015.08.049
HsuSHCaoYHuangKFengMBalterJMInvestigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapyPhys Med Biol201358238419843510.1088/0031-9155/58/23/8419
Ganz JC. The history of the gamma knife. Elsevier; 2014
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2017:1125–1134
NieDTrulloRLianJMedical image synthesis with deep convolutional adversarial networksIEEE Trans Biomed Eng201865122720273010.1109/TBME.2018.2814538
GudurMSHaraWLeQTWangLXingLLiRA unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planningPhys Med Biol201459216595660610.1088/0031-9155/59/21/6595
Qiao Z, Qian Z, Tang H, et al. CorGAN: Context aware recurrent generative adversarial network for medical image generation. IEEE; 2020:1100–1103
LiuFYadavPBaschnagelAMMcMillanABMR-based treatment planning in radiation therapy using a deep learning approachJ Appl Clin Med Phys201920310511410.1002/acm2.12554
QiMLiYWuAMulti-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapyMed Phys20204741880189410.1002/mp.14075
LeeSWolbergGChwaK-YShinSYImage metamorphosis with scattered feature constraintsIEEE Trans Visual Comput Graph19962433735410.1109/2945.556502
LeeSWolbergGShinSYScattered data interpolation with multilevel B-splinesIEEE Trans Visual Comput Graph19973322824410.1109/2945.620490
UlinKUrieMMCherlowJMResults of a multi-institutional benchmark test for cranial CT/MR image registrationInt J Radiat Oncol Biol Phys20107751584158910.1016/j.ijrobp.2009.10.017
HanXMR-based synthetic CT generation using a deep convolutional neural network methodMed Phys20174441408141910.1002/mp.12155
WangYLiuCZhangXDengWSynthetic CT generation based on T2 weighted mri of nasopharyngeal carcinoma (NPC) Using a deep convolutional neural network (DCNN)Front Oncol20199133310.3389/fonc.2019.01333
XuAYBhatnagarJBednarzGGamma Knife radiosurgery with CT image-based dose calculationJ Appl Clin Med Phys201516611912910.1120/jacmp.v16i6.5530
Huang H, Yu PS, Wang C. An introduction to image synthesis with generative adversarial nets; 2018. arXiv preprint arXiv:180304469
Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical note: deep learning based MRAC using rapid ultrashort echo time imaging. Med Phys. 2018; https://doi.org/10.1002/mp.12964
YanivZLowekampBCJohnsonHJBeareRSimpleITK image-analysis notebooks: a collaborative environment for education and reproducible researchJ Digit Imaging201831329030310.1007/s10278-017-0037-8
AY Xu (227_CR2) 2015; 16
D Andreasen (227_CR22) 2015; 42
D Gupta (227_CR8) 2019; 9
S Lee (227_CR19) 1997; 3
P Fallows (227_CR3) 2018; 5
S Lee (227_CR18) 1996; 2
P Osmancikova (227_CR4) 2018; 19
E Paradis (227_CR14) 2015; 93
227_CR21
227_CR20
Y Lei (227_CR7) 2019; 46
227_CR29
Z Yaniv (227_CR17) 2018; 31
227_CR28
Y Wang (227_CR10) 2019; 9
227_CR26
227_CR25
SH Hsu (227_CR24) 2013; 58
227_CR1
M Qi (227_CR9) 2020; 47
D Nie (227_CR27) 2018; 65
K Ulin (227_CR5) 2010; 77
AM Dinkla (227_CR11) 2019; 46
F Liu (227_CR13) 2019; 20
S Kazemifar (227_CR12) 2019; 136
227_CR30
X Han (227_CR6) 2017; 44
227_CR16
227_CR15
MS Gudur (227_CR23) 2014; 59
References_xml – reference: HanXMR-based synthetic CT generation using a deep convolutional neural network methodMed Phys20174441408141910.1002/mp.12155
– reference: WangYLiuCZhangXDengWSynthetic CT generation based on T2 weighted mri of nasopharyngeal carcinoma (NPC) Using a deep convolutional neural network (DCNN)Front Oncol20199133310.3389/fonc.2019.01333
– reference: Lowekamp BC, Chen DT, Ibanez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:45. https://doi.org/10.3389/fninf.2013.00045
– reference: Ganz JC. The history of the gamma knife. Elsevier; 2014
– reference: UlinKUrieMMCherlowJMResults of a multi-institutional benchmark test for cranial CT/MR image registrationInt J Radiat Oncol Biol Phys20107751584158910.1016/j.ijrobp.2009.10.017
– reference: LeeSWolbergGChwaK-YShinSYImage metamorphosis with scattered feature constraintsIEEE Trans Visual Comput Graph19962433735410.1109/2945.556502
– reference: GudurMSHaraWLeQTWangLXingLLiRA unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planningPhys Med Biol201459216595660610.1088/0031-9155/59/21/6595
– reference: Lerner M, Medin J, Jamtheim Gustafsson C, Alkner S, Siversson C, Olsson LE. Clinical validation of a commercially available deep learning software for synthetic CT generation for brain. Radiat Oncol. 2021;16(1):66. https://doi.org/10.1186/s13014-021-01794-6
– reference: OsmancikovaPNovotnyJJrSolcJPipekJComparison of the convolution algorithm with TMR10 for Leksell gamma knife and dosimetric verification with radiochromic gel dosimeterJ Appl Clin Med Phys201819113814410.1002/acm2.12238
– reference: ParadisECaoYLawrenceTSAssessing the dosimetric accuracy of magnetic resonance-generated synthetic CT images for focal brain VMAT radiation therapyInt J Radiat Oncol Biol Phys20159351154116110.1016/j.ijrobp.2015.08.049
– reference: HsuSHCaoYHuangKFengMBalterJMInvestigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapyPhys Med Biol201358238419843510.1088/0031-9155/58/23/8419
– reference: FallowsPWrightGHarroldNBownesPA comparison of the convolution and TMR10 treatment planning algorithms for Gamma Knife((R)) radiosurgeryJ Radiosurg SBRT201852157167
– reference: NieDTrulloRLianJMedical image synthesis with deep convolutional adversarial networksIEEE Trans Biomed Eng201865122720273010.1109/TBME.2018.2814538
– reference: AndreasenDVan LeemputKHansenRHAndersenJAEdmundJMPatch-based generation of a pseudo CT from conventional MRI sequences for MRI-only radiotherapy of the brainMed Phys20154241596160510.1118/1.4914158
– reference: QiMLiYWuAMulti-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapyMed Phys20204741880189410.1002/mp.14075
– reference: Beare R, Lowekamp B, Yaniv Z. Image segmentation, registration and characterization in R with SimpleITK. J Stat Softw. 2018;86. https://doi.org/10.18637/jss.v086.i08
– reference: LeiYHarmsJWangTMRI-only based synthetic CT generation using dense cycle consistent generative adversarial networksMed Phys20194683565358110.1002/mp.13617
– reference: Jang H, Liu F, Zhao G, Bradshaw T, McMillan AB. Technical note: deep learning based MRAC using rapid ultrashort echo time imaging. Med Phys. 2018; https://doi.org/10.1002/mp.12964
– reference: Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Med Phys. 2018; https://doi.org/10.1002/mp.13047
– reference: LeeSWolbergGShinSYScattered data interpolation with multilevel B-splinesIEEE Trans Visual Comput Graph19973322824410.1109/2945.620490
– reference: KazemifarSMcGuireSTimmermanRMRI-only brain radiotherapy: assessing the dosimetric accuracy of synthetic CT images generated using a deep learning approachRadiother Oncol2019136566310.1016/j.radonc.2019.03.026
– reference: Qiao Z, Qian Z, Tang H, et al. CorGAN: Context aware recurrent generative adversarial network for medical image generation. IEEE; 2020:1100–1103
– reference: DinklaAMFlorkowMCMasperoMDosimetric evaluation of synthetic CT for head and neck radiotherapy generated by a patch-based three-dimensional convolutional neural networkMed Phys20194694095410410.1002/mp.13663
– reference: XuAYBhatnagarJBednarzGGamma Knife radiosurgery with CT image-based dose calculationJ Appl Clin Med Phys201516611912910.1120/jacmp.v16i6.5530
– reference: YanivZLowekampBCJohnsonHJBeareRSimpleITK image-analysis notebooks: a collaborative environment for education and reproducible researchJ Digit Imaging201831329030310.1007/s10278-017-0037-8
– reference: Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2017:1125–1134
– reference: Mattes D, Haynor DR, Vesselle H, Lewellyn TK, Eubank W. Nonrigid multimodality image registration. Spie; 2001:1609–1620
– reference: GuptaDKimMVinebergKABalterJMGeneration of synthetic CT images from MRI for treatment planning and patient positioning using a 3-channel U-net trained on sagittal imagesFront Oncol2019996410.3389/fonc.2019.00964
– reference: Huang H, Yu PS, Wang C. An introduction to image synthesis with generative adversarial nets; 2018. arXiv preprint arXiv:180304469
– reference: LiuFYadavPBaschnagelAMMcMillanABMR-based treatment planning in radiation therapy using a deep learning approachJ Appl Clin Med Phys201920310511410.1002/acm2.12554
– ident: 227_CR29
  doi: 10.1186/s13014-021-01794-6
– ident: 227_CR1
– volume: 77
  start-page: 1584
  issue: 5
  year: 2010
  ident: 227_CR5
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2009.10.017
– volume: 16
  start-page: 119
  issue: 6
  year: 2015
  ident: 227_CR2
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v16i6.5530
– volume: 20
  start-page: 105
  issue: 3
  year: 2019
  ident: 227_CR13
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12554
– volume: 2
  start-page: 337
  issue: 4
  year: 1996
  ident: 227_CR18
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/2945.556502
– volume: 42
  start-page: 1596
  issue: 4
  year: 2015
  ident: 227_CR22
  publication-title: Med Phys
  doi: 10.1118/1.4914158
– volume: 59
  start-page: 6595
  issue: 21
  year: 2014
  ident: 227_CR23
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/21/6595
– volume: 136
  start-page: 56
  year: 2019
  ident: 227_CR12
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2019.03.026
– ident: 227_CR20
– volume: 9
  start-page: 964
  year: 2019
  ident: 227_CR8
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.00964
– volume: 44
  start-page: 1408
  issue: 4
  year: 2017
  ident: 227_CR6
  publication-title: Med Phys
  doi: 10.1002/mp.12155
– volume: 46
  start-page: 3565
  issue: 8
  year: 2019
  ident: 227_CR7
  publication-title: Med Phys
  doi: 10.1002/mp.13617
– volume: 93
  start-page: 1154
  issue: 5
  year: 2015
  ident: 227_CR14
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2015.08.049
– volume: 19
  start-page: 138
  issue: 1
  year: 2018
  ident: 227_CR4
  publication-title: J Appl Clin Med Phys
  doi: 10.1002/acm2.12238
– ident: 227_CR21
  doi: 10.1109/CVPR.2017.632
– volume: 65
  start-page: 2720
  issue: 12
  year: 2018
  ident: 227_CR27
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2814538
– volume: 47
  start-page: 1880
  issue: 4
  year: 2020
  ident: 227_CR9
  publication-title: Med Phys
  doi: 10.1002/mp.14075
– volume: 5
  start-page: 157
  issue: 2
  year: 2018
  ident: 227_CR3
  publication-title: J Radiosurg SBRT
– ident: 227_CR28
  doi: 10.1002/mp.12964
– ident: 227_CR30
  doi: 10.1109/BIBM49941.2020.9313470
– ident: 227_CR25
– ident: 227_CR15
  doi: 10.18637/jss.v086.i08
– volume: 58
  start-page: 8419
  issue: 23
  year: 2013
  ident: 227_CR24
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/23/8419
– ident: 227_CR26
  doi: 10.1002/mp.13047
– ident: 227_CR16
  doi: 10.3389/fninf.2013.00045
– volume: 46
  start-page: 4095
  issue: 9
  year: 2019
  ident: 227_CR11
  publication-title: Med Phys
  doi: 10.1002/mp.13663
– volume: 3
  start-page: 228
  issue: 3
  year: 1997
  ident: 227_CR19
  publication-title: IEEE Trans Visual Comput Graph
  doi: 10.1109/2945.620490
– volume: 31
  start-page: 290
  issue: 3
  year: 2018
  ident: 227_CR17
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-017-0037-8
– volume: 9
  start-page: 1333
  year: 2019
  ident: 227_CR10
  publication-title: Front Oncol
  doi: 10.3389/fonc.2019.01333
SSID ssj0000515933
Score 2.3152351
Snippet Dose planning for Gamma Knife radiosurgery (GKRS) uses the magnetic resonance (MR)-based tissue maximum ratio (TMR) algorithm, which calculates radiation dose...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
nii
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 359
SubjectTerms Adenoma
Algorithms
Artificial intelligence
Attenuation
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Brain tumors
Computed tomography
Convolution
Deep learning
Engineering
Feasibility studies
Gamma Knife radiosurgery
Health services
Image acquisition
Image contrast
Image enhancement
Machine learning
Magnetic resonance imaging
Medical and Radiation Physics
Meningioma
Metastases
Neuro-oncology
Original
Original Article
Pituitary
Planning
Radiation
Radiation dosage
Radiation effects
Radiology
Radiosurgery
Synthetic CT
Tumors
Vascular diseases
Title Clinical application of deep learning-based synthetic CT from real MRI to improve dose planning accuracy in Gamma Knife radiosurgery: a proof of concept study
URI https://cir.nii.ac.jp/crid/1874242817407483520
https://link.springer.com/article/10.1007/s13534-022-00227-x
https://www.ncbi.nlm.nih.gov/pubmed/36238366
https://www.proquest.com/docview/2723514104
https://www.proquest.com/docview/2725189730
https://pubmed.ncbi.nlm.nih.gov/PMC9550914
Volume 12
WOSCitedRecordID wos000812103800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2093-985X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000515933
  issn: 2093-9868
  databaseCode: RSV
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZo4QAH3tBAWw0SN7AUx7HjcEMVBYSoUClob5HXdkqkbbLa7Fb0z_BbGTuP7UJBAinKJY7jTCaez4_5PkKes8STfLiElokTNJWpopprRlXuZR6mbJrxMohNZEdHajLJP_VJYe2w231Ykgw99TrZjQueUr_7PPDeUUSO1zHcKS_YcPz56ziz4lVLOg35BIfrNFdS9dkyV1ezEZG26qq6Cmz-vmfyl4XTEI8O7_zfm9wlt3v8Ca87h7lHrrn6Prl1iZXwAfnRc4XO4NLqNjQlWOfm0MtMnFIf_yy0FzVCSKwMDk7A56oAotAZfDx-D8sGqjBl4cA2rYN5r48E2pjVQpsLqGp4q8_ONHzwO2xgoW3VtF2e9ivQgPfiU_EwXW4lBC7ch-TL4ZuTg3e0l3GgRsh8SbNSsJIbhBoilgoRjM5yIwWTlmXaYQB1LFfWTmVqUx272DqRxDaNdeoyhB-OPyLbdVO7HQKc66lxKi6znKVow9wgQiplWepEK1HGEWHDpyxMz3HupTZmxZqd2du-QLMXwfbF94i8GO-Zdwwffy29hx6Clfuz1zNEiKNwVIdIzGNZbMHu4DtF3xu0RZIlPmECR74ReTZexv_YL87o2jWrUEYwlWOHG5HHnauNzUEbccWljEi24YRjAc8Rvnmlrr4FrvBceESIz305uOK6WX9-yyf_VvwpuZl4bw4pmrtke7lYuT1yw5wvq3axT7ayidoP_-hP2KczUA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwELWgIEEfuBYItDBIvIGlJI4TmzdUUVq1XaGyoL5FXtuBSNtktdmt6M_wrYydy3ahIIEU5SWO40wmnuPLnEPIqyh2JB82pkVsOU3SRFDFVESFdDIPk2iSscKLTWSjkTg9lR-7pLCm3-3eL0n6nnqV7MY4S6jbfe557ygixxsJRizHmH_y6csws-JUS1oN-RiH61SKVHTZMldXsxaRrldleRXY_H3P5C8Lpz4e7d39vze5R-50-BPetQ5zn1yz1QOyeYmV8CH50XGFTuHS6jbUBRhrZ9DJTHylLv4ZaC4qhJBYGeyOweWqAKLQKRyfHMCihtJPWVgwdWNh1ukjgdJ6OVf6AsoKPqizMwWHbocNzJUp66bN034LCvBefCoeus2tBM-Fu0U-770f7-7TTsaBap7KBc0KHhVMI9TgYSoQwahM6pRHqYkyZTGA2kgKYyZpYhIV2tBYHocmCVViM4Qflj0iG1Vd2ScEGFMTbUVYZDJK0IZSI0Iq0qJQsRK8CAMS9Z8y1x3HuZPamOYrdmZn-xzNnnvb598D8nq4Z9YyfPy19A56CFbuzk7PECGOwFEdIjGHZbEF273v5F1v0ORxFruECRz5BuTlcBn_Y7c4oypbL30ZHgmJHW5AHreuNjQHbcQES9OAZGtOOBRwHOHrV6rym-cKl9whQnzum94VV83681s-_bfiL8it_fHxUX50MDp8Rm7HzrN9uuY22VjMl3aH3NTni7KZP_d_6k8IdTVM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELWgIAQPXAsEWhgk3sBqEudi84YKC1VhVUFBfYu8vkCkbbLaZBH9Gb6VsZPN7kJBQkhRXuLYzmRiH8cz5xDyNIodyYeJqY1NSpMs4VQyGVEunMzDJJrkzHqxiXw85icn4mgti99Huy-3JLucBsfSVLV7M233VolvLGUJdZHongOPIoq8lLhAerde__h5-MviFEw6PfkYl-5U8Iz3mTPnV7MxO12syvI84Pl7_OQvm6h-bhrd-P-nukmu97gUXnaOdItcMNVtcm2NrfAO-dFziE5hbdcbagvamBn08hNfqJsXNTRnFUJLrAz2j8HlsACi0ym8_3AAbQ2l_5VhQNeNgVmvmwRSqcVcqjMoK3gjT08lHLrIG5hLXdZNl7_9AiTgvdgqHqrLuQTPkbtNPo1eH--_pb28A1VpJlqa2zSyTCEEScOMI7KRuVBZGmU6yqXBidVEgms9yRKdyNCE2qRxqJNQJiZHWGLYXbJV1ZW5T4AxOVGGhzYXUYI2FAqRk82slbHkqQ0DEi1fa6F67nMnwTEtVqzNzvYFmr3wti--B-TZcM-sY_74a-ld9Bas3J2dziFCH46rPURoDuNiD3aWflT0o0RTxHnsEilwRRyQJ8Nl_L7dpo2sTL3wZdKICxyIA3Kvc7uhO2gjxlmWBSTfcMihgOMO37xSlV89h7hIHVLEdp8v3XLVrT8_5YN_K_6YXDl6NSreHYwPH5KrsXNsn8W5Q7ba-cLsksvqW1s280f-o_0JRxU-MA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+application+of+deep+learning-based+synthetic+CT+from+real+MRI+to+improve+dose+planning+accuracy+in+Gamma+Knife+radiosurgery%3A+a+proof+of+concept+study&rft.jtitle=Biomedical+engineering+letters&rft.au=Park%2C+So+Hee&rft.au=Choi%2C+Dong+Min&rft.au=Jung+In-Ho&rft.au=Chang%2C+Kyung+Won&rft.date=2022-11-01&rft.pub=Springer+Nature+B.V&rft.issn=2093-9868&rft.eissn=2093-985X&rft.volume=12&rft.issue=4&rft.spage=359&rft.epage=367&rft_id=info:doi/10.1007%2Fs13534-022-00227-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2093-9868&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2093-9868&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2093-9868&client=summon